1/f-Noise in Hall Voltage

  • H. M. J. Vaes
  • T. G. M. Kleinpenning
Conference paper
Part of the Springer Series in Electrophysics book series (SSEP, volume 2)


The relative 1/f noise spectral density of a homogeneous semiconductor can generally be represented by the empirical relation \( S_V /V^2 = S_G /G^2 = \alpha /Nf \) , where V is the voltage applied to the conductor, G the conductance, a is an experimental constant of about 2x10-3, N is the total number of free charge carriers, and f is the frequency [1]. It is assumed that the 1/f fluctuations are spatially independent. Furthermore, from 1/f noise in thermo-emf, it is concluded that 1/f fluctuations in the conductance are energetically uncorrelated [2]. Hence the cross-correlation spectral density of 1/f fluctuations in the conductivity can be written as
$$ S_\sigma \left( {\vec r_1 ,\vec r_2 ,\varepsilon _1 ,\varepsilon _2 ,f} \right) = \frac{{a'}} {{n\left( {\varepsilon _1 } \right)f}}\sigma _0^2 \left( {\varepsilon _1 } \right)\delta \left( {\vec r_1 - \vec r_2 } \right)\delta \left( {\varepsilon _1 - \varepsilon _2 } \right) $$
where σ(ε) and n(ε) are the conductivity and carrier density with energy ε. For lattice scattering \( a' = \left( {8/3\pi } \right)\alpha \left[ 3 \right] \). For fluctuations in the number of free charge carriers, the conductivity fluctuations are energetically correlated. Consequently 1/f noise cannot be caused by number fluctuations but is caused by mobility fluctuations [2].


Free Charge Carrier Noise Density Noise Spectral Density Hall Voltage Homogeneous Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F.N.Hooge, Physica60, 130 (1972) and B83, 14 (1976).Google Scholar
  2. 2.
    T.G.M.Kleinpenning, Physica (Utrecht)77, 78 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    H.M.J.Vaes and T.G.M.Kleinpenning, J.Appl.Phys.48, 5131 (1977).ADSCrossRefGoogle Scholar
  4. 4.
    T.G.M.Kleinpenning, J.Appl.Phys.48, 2946 (1977).ADSCrossRefGoogle Scholar
  5. 5.
    R.A.Smith, Semiconductors ( Cambridge U.P., London, 1964 ).Google Scholar
  6. 6.
    L.K.J.Vandamme and W.M.G. van Bokhoven, Appl.Phys.14, 205 (1977).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • H. M. J. Vaes
    • 1
  • T. G. M. Kleinpenning
    • 1
  1. 1.Department of Electrical EngineeringUniversity of TechnologyEindhovenThe Netherlands

Personalised recommendations