Neurosecretion pp 124-139 | Cite as

Pathological Aspects of the Concept of Neurosecretion with Special Reference to the Pathogenesis of Diabetes Insipidus

  • J. C. Sloper
  • M. A. Karim
  • M. A. Richards
Conference paper


This is the first occasion at these symposia in which a paper has been devoted to the pathological aspects of neurosecretion. This we propose to do, drawing particular attention first, to the bearing the concept of neurosecretion has on the study of the selective vulnerability of different parts of the central nervous system; and second, to the problem of the pathogenesis of diabetes insipidus. Although our main concern is the pathogenesis of the human disease, our studies involve also the dog, rat and mouse. It should perhaps be emphasised that this tendency to limit the number of species examined is forced on the pathologist, for he is obliged to define the normal with considerable care, no mean problem in a species such as man, whose life span is over 70 years. He is obliged, too, to take particular care in the exclusion of naturally-occurring diseases, for example, forms of nephritis, in the animals which he uses for experiments. This surely is a problem which must bedevil the work of the comparative endocrinologist, although little reference has been made to it here, save by Dr. Bern. This emphasis on animal work should not, incidentally, obscure the great contribution of human pathologists to the clarification of neurohypophysial function. It was, for example, a necropsy made by von Gaupp in 1944 which led the latter first to suggest that the nerve-fibres of the posterior pituitary secreted antidiuretic hormone. This was no idle speculation, for he and Ernst Scharrer had written in 1935 one of the earliest papers on the possible endocrine activity of neurones of the supraoptic nucleus.


Diabetes Insipidus Hypertonic Saline Alcian Blue Median Eminence Nephrogenic Diabetes Insipidus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C. W. M., and J. C. Sloper: The hypothalamic elaboration of the posterior pituitary principles in man, the rat and dog. Histochemical evidence derived from performic acid — Alcian blue reaction for cystine. J. Endocrin. 13, 221 (1956).CrossRefGoogle Scholar
  2. Andersson, B., and S. M. McCann: Drinking, antidiuresis and milk ejection from electrical stimulation within the hypothalamus of the goat. Acta physiol. scand. 35, 191 (1955).PubMedCrossRefGoogle Scholar
  3. Arnold, A.: Effects of X-irradiation on the hypothalamus. A possible explanation for the therapeutic benefits following X-irradiation of the hypophysial region for pituitary dysfunction. J. clin. Endocr. 14, 859 (1954).PubMedCrossRefGoogle Scholar
  4. Bargmann, W.: Zwischenhirn und Neurohypophyse; eine neue Vorstellung über die funktionelle Bedeutung des Hinterlappens. Med. Mschr. 5, 466 (1951).PubMedGoogle Scholar
  5. Barlow, E. E., and H. E. de Wardener: Compulsive water drinking. Quart. J. Med. 28, 235 (1959).PubMedGoogle Scholar
  6. Barrnett, R. J.: Histochemical demonstration of disulfide groups in the neurohypophysis under normal and experimental conditions. Endocrinology 55, 484 (1954).PubMedCrossRefGoogle Scholar
  7. Biggart, J. H.: Anatomical basis for resistance to pituitrin in diabetes insipidus. J. Path. Bact. 44, 305 (1937).CrossRefGoogle Scholar
  8. Billenstien, D. C., and T. F. Leveque: The reorganization of the neurohypophysial stalk following hypophysectomy in the rat. Endocrinology 56, 704 (1955).PubMedCrossRefGoogle Scholar
  9. Blotner, H.: Primary or idiopathic diabetes insipidus; a system disease. Metabolism 7, 191 (1958).PubMedGoogle Scholar
  10. Braverman, L. E., J. P. Mancini, and D. M. McGoldrick: Hereditary idiopathic diabetes insipidus. Ann. intern. Med. 63, 503 (1965).PubMedGoogle Scholar
  11. Campbell, W. F.: Vasopressin-resistant diabetes insipidus associated with cytological changes in the supraoptic and paraventricular nuclei. Lancet 1961 II, 522.CrossRefGoogle Scholar
  12. Darmady, E. M., J. Offer, J. Prince, and F. Stranach: The proximal convoluted tubule in the renal handling of water. Lancet 1964 II, 1254.CrossRefGoogle Scholar
  13. de Wardener, H. E.: The Kidney. 2nd ed. London: Churchill, Ltd. 1961.Google Scholar
  14. Fisher, C., W. R. Ingram, and S. W. Ranson: Relation of hypothalamico-hypophyseal system to diabetes insipidus. Arch. Neurol. Psychiat. (Chic.) 34, 124 (1935).Google Scholar
  15. Flament-Durant, J.: See p. 60 in this volume.Google Scholar
  16. Forssmann, H.: On hereditary diabetes insipidus. Acta med. scand. Suppl. 159, 1 (1945).Google Scholar
  17. Friedman, S. M., and C. L. Friedman: Salt and water distribution in hereditary and in induced hypothalamic diabetes insipidus in the rat. Canad. J. Physiol. Pharmacol. 43, 699 (1965).CrossRefGoogle Scholar
  18. Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. (Thesis, Karolinska Institutet, Stockholm.) Uppsala: Almqvist and Wicksells 1965.Google Scholar
  19. Gaupp, R. von: Über den Diabetes insipidus. Z. ges. Neurol. Psychiat. 171, 514 (1941).CrossRefGoogle Scholar
  20. Gaupp, R. von: Ein weiterer Beitrag zur pathologischen Anatomie des Diabetes insipidus. Z. ges. Neurol. Psychiat. 177, 500 (1944).Google Scholar
  21. Gaupp, R. von, and E. Scharrer: Die Zwischenhirnsekretion bei Mensch und Tier. Z. ges. Neurol. Psychiat. 153, 327 (1935).CrossRefGoogle Scholar
  22. Green, J. D., and D. J. Maxwell: Comparative anatomy of the hypophysis and observations on the mechanism of neurosecretion. In: Comp. Endocrin. p. 368 (Ed. A. Gorbman). New York: Wiley 1959.Google Scholar
  23. Groot, J. de, and J. E. Hartfield: Quantitative changes in rat pituitary neurosecretory material in altered adrenocortical function. Acta Neurol. 22, 177 (1961).Google Scholar
  24. Hankiss, J.: Improvement of diabetes insipidus in hepatitis. N. Y. State J. Med. 58, 2219 (1958).PubMedGoogle Scholar
  25. Hankiss, J., M. Keszthelyi, and B. Siro: A new type of diabetes insipidus due to increased hormone inactivation. Amer. J. Med. Sci. 242, 605 (1961).PubMedCrossRefGoogle Scholar
  26. Harrington, A. R., and H. Valtin: Vasopressin effect on urinary concentration in rats with hereditary diabetes insipidus (Brattleboro strain). Proc. Soc. exp. Biol. (N.Y.) 118, 448 (1965).Google Scholar
  27. Haymaker, W., G. Laqueur, W. J. Nauta, J. E. Pickering, J. C. Sloper, and F. S. Vogel: The effects of barium 140-lanthanum 140 (gamma) radiation on the central nervous system and pituitary gland of macaque monkeys; a study of 67 brains and spinal cords and 77 pituitary glands. J. Neuropath. 17, 12 (1958).PubMedCrossRefGoogle Scholar
  28. Heller, H., and F. F. Urban: The fate of the antidiuretic principle of postpituitary extracts in vivo and in vitro. J. Physiol. 85, 502 (1935).PubMedGoogle Scholar
  29. Held, W.: Experimentell-morphologische Untersuchungen über das Verhalten der „Neurosekretorischen Bahn” nach Hypophysenstieldurchschneidung, Eingriffen in den Wasserhaushalt und Belastung der Osmoregulation. Virchows Arch. path. Anat. 319, 526 (1951).Google Scholar
  30. Mogilnitzky, B. N.: Zur Frage über den Zusammenhang der Hypophyse mit dem Zwischenhirn. Virchows Arch. path. Anat. 267, 263 (1930).Google Scholar
  31. Nelson, E., P. A. Lindstrom, and W. Haymaker: Pathological effects of ultrasound on the human brain — a study of 25 cases in which ultrasonic irradiation was used as a lobotomy procedure. J. Neuropath. exp. Neurol. 18, 489 (1959).PubMedCrossRefGoogle Scholar
  32. Orkand, P. M., and S. L. Palay: The fine structure of the supraoptic nucleus in normal rats compared with that in rats with hereditary diabetes insipidus. Anat. Pec. (abstr.) 154, 397 (1966).Google Scholar
  33. Ortmann, R.: Über experimentelle Veränderungen der Morphologie des Hypophysen-Zwischenhirnsystems und die Beziehung der sog. „Gomorisubstanz” zum Adiuretin. Z. Zellforsch. 36, 92 (1951).PubMedCrossRefGoogle Scholar
  34. Palay, S. L.: The fine structure of the neurohypophysis. Progr. Neurobiol. 2, 31 (1957); (Korey, S. R., and J. I. Nurnberger eds.) New York: Hoeber 1957.PubMedGoogle Scholar
  35. Richards, M. A., and J. C. Sloper: Hypothalamic involvement by “Visceral” Larva Migrans in a dog suffering from diabetes insipidus. Vet. rec. 76, 449 (1964).Google Scholar
  36. Rodeck, H.: Zusammenhänge zwischen Neurosekret und den sogenannten Hypophysen-hinterlappenhormonen.III Mitt. Untersuchungen zur färberischen Darstellung von synthetischen Oxytocin. Z. ges. exp. Med. 132, 122 (1959).PubMedCrossRefGoogle Scholar
  37. Sachs, H.: Vasopressin biosynthesis I. In vivo studies. J. Neurochem. 5, 297 (1960).CrossRefGoogle Scholar
  38. Silverstein, E., L. Sokoloff, O. Mickelsen, and G. E. Jay: Primary polydipsia and hydronephrosis in an inbred strain of mice. Amer. J. Path. 38, 143 (1961).PubMedGoogle Scholar
  39. Sloper, J. C: Histochemical observations on the neurohypophysis in dog and cat with reference to the relationship between neurosecretory material and posterior lobe hormone. J. Anat. (London) 88, 576 (1954).Google Scholar
  40. Sloper, J. C.: Hypothalamic neurosecretion in the dog and cat with particular reference to the identification of neurosecretory material with posterior lobe hormone. J. Anat. (Lond.) 89, 301 (1955).Google Scholar
  41. Sloper, J. C.: The effect of ionising radiations on hypothalamus and pituitary. Cong. Intern. Neuropath. Acta Medica Belgica (Brussels) p. 279 (1957).Google Scholar
  42. Sloper, J. C.: The application of newer histochemical and isotope techniques for the localisation of protein-bound cystine or cysteine to the study of hypothalamic neurosecretion in normal and pathological conditions. 2nd Internat. Symp. on Neurosecretion (1957) p. 20 (Bargmann, W., B. Hanström, and E. Scharrer, eds.) Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  43. Sloper, J. C.: The hypothalamic neurosecretory cell: its normal characteristics, its reaction to injury and its capacity for regeneration in man and in a variety of animals. Symp. Zool. Soc. London, 9, 29 (1962).Google Scholar
  44. Sloper, J. C.: The experimental and cytopathological investigation of neurosecretion in the hypothalamus and pituitary. In the Pituitary Gland, Vol. III, p. 131 (Harris, G. W., and B. T. Donovan, eds.) London: Butterworths 1966.Google Scholar
  45. Sloper, J. C., and R. G. Bateson: Ultrastructure of neurosecretory cells in the supraoptic nucleus of the dog and rat. J. Endocrin. 31, 139 (1965).CrossRefGoogle Scholar
  46. Sloper, J. C., and B. C. King: Activity and degeneration in secretory neurones of the hypothalamus and posterior pituitary of the rat. J. Path. 86, 179 (1963).CrossRefGoogle Scholar
  47. Sokol, H. W., and H. Valtin: Morphology of the neurosecretory system in rats homozygous and heterzygous for hypothalamic diabetes insipidus (Brattleboro strain). Endocrinology 77, 692 (1965).PubMedCrossRefGoogle Scholar
  48. Sterba, G.: Floureszenzmikroskopische Untersuchungen über die Neurosekretion beim Bachneunauge (Lampetra planeri). Z. Zeilforsch. 55, 763 (1961).CrossRefGoogle Scholar
  49. Sterba, G., and K. P. Wellner: Grundlagen des histochemischen und biochemischen Nachweises von Neurosekret (= Trägerprotein der Oxytozine) mit Pseudoisozyaninen. Acta Histochem. 17, 268 (1964).PubMedGoogle Scholar
  50. Stutinsky, F.: Sur l’origine de la substance Gomori-positive du complexe hypothalamo hypophysare. C. R. Soc. Biol. Paris 145, 367 (1951).PubMedGoogle Scholar
  51. Stutinsky, F.: Recherches expérimentales sur le complexe hypothalamo-neurohypophysaire. Arch. Anat. micr. Morph. exp. 46, 93 (1957).Google Scholar
  52. Valtin, H., and H. A. Schroeder: Familial hypothalamic diabetes insipidus in rats (Brattleboro strain) Amer. J. Physiol. 206, 425 (1964).Google Scholar
  53. Valtin, H., and H. A. Schroeder, K. Benirschke, and H. W. Sokol: Familial hypothalamic diabetes insipidus in rats. Nature (Lond.) 196, 1109.Google Scholar
  54. Vasquez-Lopez, E.: Structure of the neurohypophysis with special reference to nerve endings. Brain 65, 1 (1942).CrossRefGoogle Scholar
  55. Vogel, F. S., G. C. Hoak, J. C. Sloper, and W. Haymaker: The induction of acute morphological changes in the central nervous system and pituitary body of macaque monkey by cobalt-60 (gamma) radiation. J. Neuropath. 17, 138 (1958).PubMedCrossRefGoogle Scholar
  56. Williams, R. H., and C. Henry: Nephrogenic diabetes insipidus appearing during infancy in males and transmitted by females. Ann. int. Med. 27, 84 (1947).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • J. C. Sloper
    • 1
  • M. A. Karim
    • 1
  • M. A. Richards
    • 2
  1. 1.Pathology Department of Charing Cross Hospital Medical SchoolUniversity of LondonEngland
  2. 2.Department of MedicineRoyal Veterinary College LondonEngland

Personalised recommendations