Skip to main content

Estimation of Biogenic Amines in Biological Tissues

  • Conference paper
Neurobiology

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The availability of appropriate analytical procedures is of fundamental importance in achieving a holistic understanding of the biochemistry and physiology of biogenic amines in animals. Ideally, the analytical procedure should provide sensitive quantitation of specific compounds and should permit routine processing of relatively large numbers of samples without the need for expensive instrumentation. A variety of techniques have been used to analyze biogenic amines and these are discussed below with particular emphasis placed on the estimation of catecholamines, indoleamines, and monohydroxy-phenolamines in a single sample. The use of high performance liquid chromatography with electrochemical detection is discussed in some detail and procedures for sample preparation and extraction of monoamines are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allenmark S (1982) Analysis of catecholamines by HPLC. J Liq Chromatogr 5 Suppl 1:1–41

    Article  CAS  Google Scholar 

  • Allison LA, Mayer GS, Shoup RE (1984) opthalaldehyde derivatives of amines for high-speed liquid chromatography/electrochemistry. Anal Chem 56:1089–1096

    Google Scholar 

  • Anderson GM, Batter DK, Young JA, Shaywitz BA, Cohen DJ (1980) Simplified liquid chromato- graphic-electrochemical determination of norepinephrine and dopamine in rat brain. J Chromatogr 181:453–455

    Article  PubMed  CAS  Google Scholar 

  • Axelrod J, Saavedra J, Usdin E (1976) Trace amines in the brain. In: Usdin E, Sandler M (eds) Trace amines and the brain. Dekker, New York, p 1

    Google Scholar 

  • Baüey BA, Martin RJ, Downer RGH (1982) Simultaneous determination of dopamine, norepinephrine, tyramine and octopamine by reverse-phase liquid chromatography with electrochemical detection. J Liq Chromatogr 5:2435–2452

    Article  Google Scholar 

  • Bailey BA, Martin RJ, Downer RGH (1984a) Haemolymph octopamine levels during and following flight in the American cockroach,Periplaneta americana L. Can J Zool 62:19–22

    Article  CAS  Google Scholar 

  • Bailey BA, Martin RJ, Downer RGH (1984b) A rapid and specific technique for the extraction of tyramine and octopamine from biological tissues for HPLC analysis. In: Boulton AA, Baker GB, Dewhurst WG, Sandler M (eds) Neurobiology of the trace amines. Humana, Qifton, NJ, pp 85–90

    Chapter  Google Scholar 

  • Baker GB, Coutts RT, LeGatt DF (1980) A procedure for extraction and separation of phenylethyl- amine, tyramine and octopamine. Biochem Soc Trans 8:622–623

    PubMed  CAS  Google Scholar 

  • Baker GB, Coutts RT, Martin IL (1981) Analysis of amines in the central nervous system by gas chromatography with electron capture detection. Prog Neurobiol (NY) 17:1–24

    Article  CAS  Google Scholar 

  • Baker GB, Coutts RT, LeGatt DF (1982) Gas chromatographic analysis of amines in biological systems. In: Baker GB, Coutts RT (eds) Analysis of biogenic amines, techniques and instrumentation in analytical chemistry, vol 4. Elsevier, Amsterdam, pp 109–128

    Google Scholar 

  • Boulton AA, Juorio AV (1982) Brain trace amines. In: Lajtha A (ed) Handbook of neurochemistry, 2nd ed, vol 1. Plenum, New York, p 189

    Google Scholar 

  • Buck SH, Murphy RC, Mollinoff PB (1977) The normal occurrence of octopamine in the central nervous system of the rat. Brain Res 122:281–297

    Article  PubMed  CAS  Google Scholar 

  • Burstein M, Scholnick HR, Morfin R (1970) Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J Lipid Res 11:583–595

    PubMed  CAS  Google Scholar 

  • Candy DJ (1981) Hormonal regulation of substrate transport and metabolism. In: Downer RGH (ed) Energy metabolism in insects. Plenum, New York, pp 19–52

    Chapter  Google Scholar 

  • Canfeil C, Bindr SR, Khayam-Bashi H (1982) Quantitation of urinary normetanephrine and metanephrine by reversed-phase extraction and mass-fragmentographic analysis. Clin Chem 28:25–28

    Google Scholar 

  • Christensen HD, Blank CL (1979) The determination of neurochemicals in tissue samples at sub- picomole levels. In: Hawk GL (ed) Biological/biomedical applications of liquid chromatography. Part II. Dekker, New York, pp 133–164

    Google Scholar 

  • Coutts RT, Baker GB (1982) Gas chromatography. In: Lajtha A (ed) Handbook of neurochemistry, 2nd edn, vol 2. Plenum, New York, pp 429–448

    Google Scholar 

  • Danielson TJ, Boulton AA, Robertson HA (1977) m-octopamine, p-octopamine and phenylethanol- amine in rat brain: a sensitive, specific assay and the effects of some drugs. J Neurochem 29: 1131–1135

    Google Scholar 

  • Davenport, Evans PD (1984) Stress induced changes in the octopamine levels of insect haemolymph. Insect Biochem 14:135–141

    Article  CAS  Google Scholar 

  • Davis BA, Durden DA (1982) Quantitative high resolution mass spectrometry of biogenic amines. In: Baker GB, Coutts RT (eds) Analysis of biogenic amines, techniques and instrumentation in analytical chemistry, vol 4. Elsevier, Amsterdam, pp 129–150

    Google Scholar 

  • Davis TP, Gehrke CW, Gehrke CW Jr, Cunningham TD, Kuo KC, Gerhardt KO, Johnson HD, Williams GH (1978) High-performance liquid-chromatographic separation and fluorescence measurement of biogenic amines in plasma, urine and tissue. Clin Chem 24:1317–1324

    PubMed  CAS  Google Scholar 

  • Davis TP, Gehrke CW, Gehrke CW Jr, Cunningham TD, Kuo KC, Gerhardt KO, Johnson HD, Wüliams CH (1979) High-performance liquid chromatographic analysis of biogenic amines in biological materials as opthalaldehyde derivatives. J Chromatogr 162:293–310

    Article  PubMed  CAS  Google Scholar 

  • Doshi PS, Edwards DJ (1981) Effects of L-dopa on dopamine and norepinephrine concentrations in rat brain assessed by gas chromatography. J Chromatogr 210:505–511

    Article  PubMed  CAS  Google Scholar 

  • Downer RGH, Bailey BA, Martin RJ (1984) Estimation of biogenic amines by HPLC and the electrochemical detector. SP Chromatographic Review 11:5–7

    Google Scholar 

  • Duffield PH, Dougan DFH, Wade DN, Low GKC, Duffield AM (1983) A negative ion chemical ionization GCMS assay for octopamine, tyramine and their a-methylated analogs in regions of rat brain after administration of amphetamine. Spec tros Int J 2:311–317

    CAS  Google Scholar 

  • Durden DA, Boulton AA (1982) Mass spectrometric analysis of some neurotransmitters and their precursors and metabolites. In: Lajtha A (ed) Handbook of neurochemistry, 2nd ed, vol 2. Plenum, New York, pp 397–428

    Google Scholar 

  • Durden DA, Juorio AV, Davies BA (1980) Thin-layer chromatographic and high resolution mass spectrometric determination of jS-hydroxyphenylethylamines in tissues as dansyl-acetyl derivatives. Anal Chem 52:1815–1820

    Article  PubMed  CAS  Google Scholar 

  • Dymond GR, Evans PD (1979) Biogenic amines in the nervous system of the cockroach, Penptaeffl americana association of octopamine with mushroom bodies and dorsal unpaired median (DUM) neurones. Insect Biochem 9:535–545

    Article  CAS  Google Scholar 

  • Edwards DJ, Blau K (1972) Analysis of phenylethylamines in biological tissues by gas-liquid chromatography with electron-capture detection. Anal Biochem 45:387–402

    Article  PubMed  CAS  Google Scholar 

  • Eriksson B-M, Persson B-A (1982) Determination of catecholamines in rat heart tissue and plasma samples by liquid chromatography with electrochemical detection. J Chromatogr 228:143–154

    Article  PubMed  CAS  Google Scholar 

  • Evans PD (1978) Octopamine distribution in the insect nervous system. J Neurochem 30:1009–1013

    Article  CAS  Google Scholar 

  • Fuzeau-Braesch S, Papin C (1983) Dosage de I’octopamine par Chromatographie liquide i haute performance (HPLC) et detection électrochemique (ED): essais sur le cerveau du criquetLocusta migratoria cinerascens. Agressologie 24:377–399

    PubMed  CAS  Google Scholar 

  • Hampson DR, Baker GB, Coutts RT (1984) A rapid and sensitive gas chromatographic method for quantitation of 2-phenylethylamine in brain tissue and urine. Res Commun Chem Pathol Pharmacol 43:169–172

    PubMed  CAS  Google Scholar 

  • Harmar AJ, Horn AS (1976) Octopamine in mammalian brain: rapid post mortem increase and effects of drugs. J Neurochem 26:987–993

    Article  PubMed  CAS  Google Scholar 

  • Hegstrand LR, Eichelman B (1981) Determination of rat brain catecholamines using liquid chromatography with electrochemical detection. J Chromatogr 222:107–111

    Article  PubMed  CAS  Google Scholar 

  • Hutson PH, Curzon G (1983) Monitoring in vivo of transmitter metabolism by electrochemical methods. Biochem J 211:1–12

    PubMed  CAS  Google Scholar 

  • Johansson M (1981) Retention in reversed-phase ion-pair chromatography of amines on alkyl-bonded phases. J Liq Chromatogr 4:1435–1457

    Article  CAS  Google Scholar 

  • Kamata S, Imura K, Okada A, Kawashima Y, Yamatodani A, Watanabe T, Wade H (1982) Simultaneous analyses of phenylethyiamine, phenylethanolamine, tyramine and octopamine in rat brain using fluorescamine. J Chromatogr 231:291–299

    Article  PubMed  CAS  Google Scholar 

  • Karoum F, Nasrallah H, Potkin S, Chuang L, Moyer-Schwing J, Phülips I, Wyatt RJ (1979) Mass fragmentography of phenylethyiamine, m- and p-tyramine and related amines in plasma, cerebrospinal fluid, urine and brain. J Neurochem 33:201–212

    Article  PubMed  CAS  Google Scholar 

  • Kenyhercz TM, Kissinger FT (1978a) Identification and quantification of tryptophan and tyrosine metabolites in the banana by liquid chromatography with electrochemical detection. J Food Sci 43:1354–1356

    Article  CAS  Google Scholar 

  • Kenyhercz TM, Kissinger FT (1978b) Determination of selected acidic, neutral and basic natural products in cocao bean and processed cocoa. Liquid chromatography with electrochemical detection. Lloydia (Cinci) 41:130–139

    CAS  Google Scholar 

  • Kissinger FT, Bruntlett CS, Shoup RE (1981) Neurochemical applications of liquid chromatography with electrochemical detection. Life Sci 28:455–465

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Foti A, Dequattro V, Kolloch R, Miano L (1980) A radioenzymatic assay for free and conjugated normetanephrine and octopamine excretion in man. Clin Chim Acta 107:163–173

    Article  PubMed  CAS  Google Scholar 

  • Laxmyr L (1984) Biogenic amines and DOPA in the central nervous system of decapod crustaceans. Comp Biochem Physiol 77C: 139–143

    CAS  Google Scholar 

  • LeGatt DF, Baker GB, Coutts RT (1981) Simultaneous extraction and separation of trace amines of biological interest. J Chromatogr 225:301–308

    Article  CAS  Google Scholar 

  • Leroy P, Nicolas A, Moreau A (1983) Electrochemical detection of sympatomimetric drugs following pre-column o-pthalaldehyde derivatization and reversed-phase high performance liquid chromatography. J Chromatogr 282:561–559

    Article  CAS  Google Scholar 

  • Lyness WH (1982) Simultaneous measurement of dopamine and its metabolites, 5-hydroxytrypt- amine, 5-hydroxyindoleacetic acid and tryptophan in brain tissue using liquid chromatography and electrochemical detection. Life Sci 31:1435–2443

    Article  PubMed  CAS  Google Scholar 

  • Mack F, Bonisch H (1979) Dissociation constants and lipophilicity of catecholamines and related compounds. Arch Pharmacol (Weinheim) 310:1–9

    CAS  Google Scholar 

  • Majors RE (1980) Practical operation of bonded-phase columns in high-performance liquid chromatography. In: Horvath C (ed) High-performance liquid chromatography: advances and perspectives, vol 1. Academic, New York, pp 75–111

    Google Scholar 

  • Marsden CA (1983) Application of electrochemical detection to neuropharmacology. Trends Biochem Sci 1983:148–152

    Google Scholar 

  • Martin IL, Baker GB (1976) Procedural difficulties in the gas liquid chromatographic assay of the arylalkylamines. J Chromatogr 123:45–50

    Article  PubMed  CAS  Google Scholar 

  • Martin RJ, Bailey BA, Downer RGH (1983) Rapid estimation of catecholamines, octopamine and 5-hydroxytryptamine from biological tissues using high performance liquid chromatography with eoulometric detection. J Chromatogr 278:265–274

    Article  PubMed  CAS  Google Scholar 

  • Martin RJ, Bailey BA, Downer RGH (1984) Analysis of octopamine, dopamine, 5-hydroxytrypt- amine and tryptophan in the brain and nerve cord of the American cockroach. In: Boulton A A, Baker GB, Dewhurst WG, Sandler M (eds) Neurobiology of the trace amines. Humana, New York, pp 91–96

    Chapter  Google Scholar 

  • Mayer GS, Shoup RE (1983) Simultaneous multiple electrode liquid chromatographic-electrochem- ical assay for catecholamines, indoleamines and metabolites in brain tissue. J Chromatogr 255: 533–544

    Article  PubMed  CAS  Google Scholar 

  • Mefford JN (1981) Application of high performance liquid chromatography with electrochemical detection to neurochemical analysis: measurement of catecholamines, serotonin and metabolites in rat brain. J Neurosci Methods 3:207–224

    Article  PubMed  CAS  Google Scholar 

  • Mell LD, Carpenter DD (1980) Fluorometric determination of octopamine in tissue homogenates by high performance liquid chromatography. Neurochem Res 5:1089–1096

    Article  PubMed  CAS  Google Scholar 

  • Molinoff FB, Landsberg L, Axelrod J (1969) An enzymatic assay for octopamine and other c-hydroxylated phenylethylamines. J Pharmacol Exp Ther 170:253–261

    PubMed  CAS  Google Scholar 

  • Morier E, Rips R (1982) A new technique for simultaneous assay of biogenic amines and their metabolites in unpurified mouse brain. J Liq Chromatogr 5:151–164

    Article  CAS  Google Scholar 

  • Nassel DR, Laxmyr L (1983) Quantitative determination of biogenic amines and dopa in the CNS of adult and larval blowflies, Calliphora erythrocephala. Comp Biochem Physiol 75C:259–265

    Google Scholar 

  • Nielson JA, Johnston CA (1982) Rapid, concurrent analysis of dopamine, 5-hydroxytryptamine, their precursors and metabolites utilizing high performance liquid chromatography with electrochemical detection: analysis of brain tissue and cerebrospinal fluid. Life Sci 31:2847–2856

    Article  Google Scholar 

  • Pleece SA, Redfern PN, Riley CM, Tomlinson E (1982) Biogenic amine resolution in tissue extracts of rat brain using ion-pair high-performance liquid chromatography with electrochemical detection. Analyst 107:755–760

    Article  PubMed  CAS  Google Scholar 

  • Richard DA (1979) Electrochemical detection of tryptophan metabolites following high-performance liquid chromatography. J Chromatogr 175:293–299

    Article  Google Scholar 

  • Roston DA, Shoup RE, Kissinger PT (1982) Liquid chromatography/electrochemistry: thin-layer multiple electrode detection. Anal Chem 54:1417–1434

    Article  Google Scholar 

  • Saavedra JM (1984) The use of enzymatic radioisotopic microassays for the quantification of /3-phenylethylamine, phenylethanolamine, tyramine and octopamine. In: Boulton AA, Baker GB, Dewhurst WG, Sandler M (eds) Neurobiology of the trace amines. Humana, Clifton, NJ, pp 41–55

    Chapter  Google Scholar 

  • Sasa S, Blank L (1977) Determination of serotonin and dopamine in mouse brain tissue by high performance liquid chromatography with electrochemical detection. Anal Chem 49:354–359

    Article  PubMed  CAS  Google Scholar 

  • Shimada K, Tanaka M, Nambara T (1983) New derivatization of amines for high performance liquid chromatography with electrochemical detection. J Chromatogr 280:271–277

    Article  Google Scholar 

  • Shoup RE, Bruntlett CS, Jacons WA, Kissinger PT (1981) LCEC: a powerful tool for biomedical problem solving. Am Lab (Fairfield Conn) 151:144–153

    Google Scholar 

  • Slingsby JM, Boulton AA (1976) Separation and quantitation of some urinary arylalkylamines. J Chromatogr 123:51–56

    Article  PubMed  CAS  Google Scholar 

  • Sloley BD, Downer RGH (1984, in press) Distribution of 5-hydroxytryptamine and indolealkyl- amine metabolites in the american cockroach, Periplaneta americana L. Comp Biochem Physiol

    Google Scholar 

  • Svendsen H, Greibrokk T (1981) High-performance liquid chromatographic determination of biogenic amines. Comparisons of detection methods. J Chromatogr 213:429–437

    Article  PubMed  CAS  Google Scholar 

  • Talamo BR (1979) Function of octopamine in the nervous system. In: Mosnaim AD, Wolf ME (eds) Noncatecholic phenylethylamine. Part IL Phenylethanolamine, tyramine and octopamine. Dekker, New York, pp 261–292

    Google Scholar 

  • Taylor RB, Reid R, Kendle KE, Geddes C, Curie PF (1983) Assay procedures for the determination of biogenic amines and their metabolites in rat hypothalamus using ion-pairing reversed-phase high performance liquid chromatography. J Chromatogr 277:101–114

    Article  PubMed  CAS  Google Scholar 

  • Todoriki H, Hayashi T, Naruse H, Hirakawa AY (1983) Sensitive high-performance liquid chromatographic determination of catecholamines in rat brain using a laser fluorimetric detection system. J Chromatogr 276:45–54

    Article  PubMed  CAS  Google Scholar 

  • Tonelli D, Gattavecchia E, Gandolfi M (1982) Thin-layer chromatographic determination of indolie tryptophan metabolites in human urine using Sep-Pak C-18 extraction. J Chromatogr 231: 283–289

    Article  PubMed  CAS  Google Scholar 

  • Wagner J, Vitali P, Palfreyman MG, Zraika M, Huot S (1982) Simultaneous determination of 3,4- dihydroxyphenylalanine, 5-hydroxytryptophan, dopamine, 4-hydroxy-3-methoxyphenylamine, norepinephrine, 3,4-dihydroxyphenylacetic acid, homovanollic acid, serotonin, and 5-hydroxy- indoleacetic acid in rat cerebrospinal fluid and brain by high-performance liquid chromatography with electrochemical detection. J Neurochem 38:1241–1254

    Article  PubMed  CAS  Google Scholar 

  • Warsh JJ, Chiu AS, Godse DD (1982) Determination of biogenic amines and their metabolites by high-performance liquid chromatography. In: Baker GB, Coutts RT (eds) Analysis of biogenic amines, techniques and instrumentation in analytical chemistry, vol 4. Elsevier, Amsterdam, pp 203–236

    Google Scholar 

  • Wenk G, Greenland R (1980) Investigation of the performance of a high-performance liquid chromatography system with an electrochemical detector. J Chromatogr 183:261–267

    Article  PubMed  CAS  Google Scholar 

  • Williams CM, Couch MW, Midgeley JM (1984) Natural occurrence and metabolism of the isometric octopamines and synephrines. In: Boulton AA, Baker GB, Dewhurst WG, Sandler M (eds) Neurobiology of the trace amines. Humana, New York, pp 97–103

    Chapter  Google Scholar 

  • Yui Y, Itokawa Y, Kawai C (1980) A rapid and highly sensitive method for determination of picogram levels of norepinephrine and epinephrine in tissues by high-performance liquid chromatography. Anal Biochem 108:11–15

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Downer, R.G.H., Bailey, B.A., Martin, R.J. (1985). Estimation of Biogenic Amines in Biological Tissues. In: Gilles, R., Balthazart, J. (eds) Neurobiology. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87599-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87599-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87601-1

  • Online ISBN: 978-3-642-87599-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics