Skip to main content

Logic and Closed Loops for a Computer Junket to Mars

  • Chapter
Neural Networks

Abstract

At present, three of us, Jose da Fonseca, Roberto Moreno Diaz and I, are assisting Louis Sutro of the Instrumentation Laboratory of M.I.T.; in his planning of a device to land on Mars to look for signs of life, say moving things or those bigger on top than on the bottom, like a tree or man. Because it must retrorocket in a thin atmosphere, it must crawl or roll out of the region it has blasted. Our primary work is with its vision, but it must have several other types of input for safe locomotion. It will have pressure and touch receptors on a hand to poke, and strain gauges on its wheels or springs and, of course, accelerometers to know which way is up and how it is moving. Without these it could not form, in its computer, a model of its surroundings to guide its motions. There is no possibility for it to send back to earth a full series of pictures detailed and fast enough for us to guide it. The channel back to earth is noisy and, with the little power promised, the rate of transmission is about what an amateur Radio Operator sends by hand. Worse yet! The time required for a single signal back to earth is of the order of 10 min. Hence we must build into it enough sense to observe a moving bug or worm and tell us what it saw or to study the landscape and describe it to us in a few well-chosen words.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moreno-Diaz, R.: Modeling the group 2, ganglion cell of the frog’s retina. Quarterly progress report No. 81, pp. 227–236. Research Laboratory of Electronics, M.I.T. April 15, 1966.

    Google Scholar 

  2. Moreno-Diaz, R.: Exponential inhibition may be formulated as follows: Let E and I be the excitatory and inhibitory signals. After inhibition, the resulting signal (activity) is E e — KI, where K is a constant. See, for example: Sitypperheyn, J. J.: Contrast detection in frog’s retina. Acta physiol. pharmacol. neerl. 13, 231–277 (1965).

    Google Scholar 

  3. Lettvin, J. Y., H. R. Maturana, W. H. Prrrs, and W. S. Mcculloch: Two remarks on the visual system of the frog. In: Sensory communicatione, pp. 757–776 (W. A. Rosenblith, Ed.). Cambridge, Mass.: The M.I.T. Press, Cambridge, Mass., and New York and London: John Wiley and Sons, Inc. 1961.

    Google Scholar 

  4. Grusser-Cornehls, R., O. J. Gausser, and T. H. Bullock: Unit responses in the frog’s tectum to moving and non-moving visual stimuli. Science 141, 820–822 (1963).

    Article  Google Scholar 

  5. Mcculloch, W. S., and W. H. Prrrs: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 9, 127–247 (1943).

    Google Scholar 

  6. Minsky, M. L., and S. A. Papert: Unrecognizable sets of numbers. Project MAC progress report III, pp. 18–20. Massachusetts institute of Technology, July 1965 to July 1966.

    Google Scholar 

  7. Blum, M.: Properties of a neuron with many inputs. In: Principles of self-organization, pp. 95–119 ( voN Foerster, H., and G. Zopf, Eds.). Oxford and New York: Pergamon Press 1961.

    Google Scholar 

  8. Schnabel, C. P. J.: Number of modes of oscillation of a net of N neurons. Quarterly progress report No.80, p. 253. Research Laboratory of Electronics, M.I.T. Jan. 15, 1965.

    Google Scholar 

  9. Moreno-Diaz, R.: Realizability of a neural network capable of all possible modes of oscillation. Quarterly progress report No. 82, pp. 280–285. Research Laboratory of Electronics, M.I.T. July 15, 1966.

    Google Scholar 

  10. Moreno-Diaz, R.: Stability of networks with loops. Quarterly progress report No. 83, pp. 165–171. Research Laboratory of Electronics, M.I.T. Oct. 15, 1966.

    Google Scholar 

  11. Caianiello, E. R., and A. DE Luca: Decision equation for binary systems. Application to neuronal behavior. Kybernetik 3, 33–40 (1966).

    Article  Google Scholar 

  12. Caianiello, E. R.:Decision equation and reverberation. Kybernetik 3, 98–99 (1966).

    Article  Google Scholar 

  13. Huffmann, D. A.: The synthesis of linear sequential coding networks. In: Information theory, pp. 77–95 ( C. Cherry, Ed.). London: Butterworths 1955.

    Google Scholar 

  14. Huffmann, D. A.: A linear circuit viewpoint on error-correcting codes. IRE Trans. IT-2, 20–28 (1956).

    Google Scholar 

  15. Cohn, M.: Controllability in linear sequential networks. IRE Trans. CT-9, 74–78 (1962).

    Google Scholar 

  16. Elspas, B.: The theory of autonomous linear sequential networks. IRE Trans. CT-6, 45–60 (1959).

    Google Scholar 

  17. Fire, P.: Boolean operations on binary Markov chains. Report EDL-L 27. Sylvania Electronic Defense Laboratories 1964.

    Google Scholar 

  18. Friedland, B., and T. E. Stern: On periodicity of states in linear modular sequential circuits. IRE Trans. IT-5, 136–137 (1959).

    Google Scholar 

  19. Friedland, B., and T. E. Stern: Linear modular sequential circuits. IRE Trans. CT-6, 61–68 (1959).

    Google Scholar 

  20. Golomb, W.: Sequences with Randomness properties. Final report on contract No. W 36–039 SC-54–36611. Baltimore, Md.: Glenn L. Martin Co. 1955.

    Google Scholar 

  21. Hartmanis, J.: Linear multivalued sequential coding networks, IRE Trans. CT-6, 69–74 (1959).

    Google Scholar 

  22. Massey, J.: Shift-register synthesis and BCH decoding. Pers. communication.

    Google Scholar 

  23. Mowle, F. J.: Enumeration and classification of stable feedback shift registers. Technical report No. EE-661. Department of Electrical Engineering. Notre Dame, Indiana: University of Notre Dame 1966.

    Google Scholar 

  24. Peterson, W. W.: Error-Correcting Codes. Cambridge, Mass.: The M.I.T. Press 1961.

    MATH  Google Scholar 

  25. Srinivasan, C. V.: State diagram of linear sequential machines. J. Franklin Inst. 273, 383–418 (1962).

    Article  MathSciNet  Google Scholar 

  26. Stern, T. E., and B. Friedland: The linear modular sequential circuit generalized. IRE Trans. CT-8, 79–80 (1961).

    Google Scholar 

  27. Zierler, N.: Several binary-sequence generators. Technical report No. 95. Lincoln Laboratory, M.I.T. 1955.

    Google Scholar 

  28. Golomb, S. W.: Linear recurring sequences. SIAM J. 7, 31–48 (1959).

    Google Scholar 

  29. Golomb, S. W.: Non-linear shift register sequences. Memorandum No. 20–149. Jet Propulsion Laboratory. Pasadena, California: California Institute of Technology 1957.

    Google Scholar 

  30. Golomb, S. W., L. R. Welch, and R. M. Goldstein: Cycles from non-linear shift registers. Jet Propulsion Laboratory. Pasadena, California: California Institute of Technology 1959.

    Google Scholar 

  31. Magleby, K. B.: The synthesis of nonlinear feedback shift registers. Technical report No. 6207–1. Stanford, California: Stanford Electronics Laboratories 1963.

    Google Scholar 

  32. Massey, J., and R. LIu: Equivalence of nonlinear shift registers. IEEE Trans. IT-10, 378–379 (1964).

    Google Scholar 

  33. Fukunaga, K.: A theory of nonlinear autonomous sequential nets using Z transforms. IEEE Trans. EC-13, 310–312 (1964).

    Google Scholar 

  34. Kubista, T., and J. Massey: Pseudo-linear generalized shiftregisters. Department of Electrical Engineering. Notre Dame, Indiana University of Notre Dame 1966.

    Google Scholar 

  35. Massey, J., and R. Liu: Application of Lyapunov’s direct method to the error-propagation effect in convolutional codes. IEEE Trans. IT-10, 248–250 (1964).

    Google Scholar 

  36. Rader, C. M., and B. Gold: Digital filter design techniques in the frequency domain. Proc. IEEE 55, 149–170 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

McCulloch, W.S. (1968). Logic and Closed Loops for a Computer Junket to Mars. In: Caianiello, E.R. (eds) Neural Networks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87596-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87596-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87598-4

  • Online ISBN: 978-3-642-87596-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics