Skip to main content

Die Methoden der Nervenphysiologie

  • Chapter
Neue Ergebnisse der Nervenphysiologie
  • 10 Accesses

Zusammenfassung

Tintenfische (Cephalopoden). Der Kalmar, Loligo (vgl. Abb. 27b, S. 65), bleibt in Gefangenschaft nur wenige Tage am Leben und läßt sich schlecht transportieren. Das Arbeiten mit Loligo forbesi (europäischer Kalmar) und Loligo paelii (amerikanischer Kalmar) ist deshalb an eine Marinebiologische Station gebunden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Schrifttum

  • Adrian, R. H. 1956: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.) 133, 631–658.

    CAS  Google Scholar 

  • Alexander, J. T., and W. L. Nastuk 1953: An instrument for the production of micro-electrodes used in electrophysiological studies. Rev. sci. Instr. 24, 528–531

    Google Scholar 

  • Arvanitaki, A., N. Chalazonitis et M. Otsuka 1956: Activité paroxystique du soma neuronique d’Aplysia sous l’effet de la strychnine. C. R. Acad. Sci. (Paris) 243, 307–309.

    CAS  Google Scholar 

  • Asmussen, E. 1932: Über die Reaktion isolierter Muskelfasern auf direkte Reize. Pflüg. Arch. ges. Physiol. 230, 263–272.

    Google Scholar 

  • Benoit, P., et E. Coraboeuf 1955: Modifications électrotoniques du potentiel de pointe et du potentiel consécutif de la fibre musculaire striée. C. R. Soc. Biol. (Paris) 149, 1435–1438.

    CAS  Google Scholar 

  • Brock, L. G., J. S. Coombs and J. C. Eccles 1952: The recording of potentials from motoneurones with an intracellular electrode. J. Physiol. (Lond.) 117, 431–460.

    CAS  Google Scholar 

  • Bülbring, E., and I. N. Hooton 1954: Membrane potentials of smooth muscle fibres in the rabbit’s sphincter pupillae. J. Physiol. (Lond.) 125, 292–301.

    Google Scholar 

  • Bullock, T. H., and S. Hagiwara 1957: Intracellular recording from the giant synapse of the squid. J. gen. Physiol. 40, 565–577

    PubMed  CAS  Google Scholar 

  • Burnstock, G., and R. W. Straub 1958: A method for studying the effects of ions and drugs on the resting and action potentials in smooth muscle with external electrodes. J. Physiol. (Lond.) 140, 156–167

    CAS  Google Scholar 

  • Caldwell, P. C., and A. C. Downing 1955: The preparation of capillary microelectrodes. J. Physiol. (Lond.) 128, 31 P.

    Google Scholar 

  • Caspersson, T. 1955: Quantitative cytochemical methods for the study of cell metabolism. Experientia (Basel) 11, 45–60.

    CAS  Google Scholar 

  • Castillo, J. Del, and B. Katz 1955: On the localization of acetylcholine receptors. J. Physiol. (Lond.) 128, 157–181.

    Google Scholar 

  • Cole, K. S., and H. J. Curtis 1939: Electric impedance of the squid giant axon during activity. J. gen. Physiol. 22, 649–670.

    PubMed  CAS  Google Scholar 

  • Coombs, J. S., J. C. Eccles and P. Fatt 1955: The electrical properties of the motoneurone membrane. J. Physiol. (Lond.) 130, 291–325.

    CAS  Google Scholar 

  • Crain, S. M. 1956: Resting and action potentials of cultured chick embryo spinal ganglion cells. J. comp. Neurol. 104, 285–329

    PubMed  CAS  Google Scholar 

  • Curtis, H. J., and K. S. Cole 1942: Membrane resting and action potentials from the squid giant axon. J. cell. comp. Physiol. 19, 135–144.

    CAS  Google Scholar 

  • Davis, L., and R. Lorente De Nó 1947: Contribution to the mathematical theory of the electrotonus. In R. Lorente De Nó 1947. A study of nerve physiology. Stud. Rockefeller Inst. med. Res. 131, 442–496.

    Google Scholar 

  • Dickinson, C. J. 1950: Electrophysiological technique. London: Offices of electronic Engineering.

    Google Scholar 

  • Draper, M. H., and S. Weidmann 1951: Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol. (Lond.) 115, 74–94.

    CAS  Google Scholar 

  • Eccles, R. M. 1955: Intracellular potentials recorded from a mammalian sympathetic ganglion. J. Physiol. (Lond.) 130, 572–584.

    CAS  Google Scholar 

  • Essex, H. E., and N. de Rezende 1943: Observations on injury and repair of peripheral nerves. Amer. J. Physiol. 140, 107–114.

    Google Scholar 

  • Evans, M. H. 1958: A simple intensity modulator for electrophysiology. J. Physiol. (Lond.) 142, 8–9 P.

    Google Scholar 

  • Eyzaguirre, C., and S. W. Kuffler 1955: Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J. gen. Physiol. 39, 87–119

    PubMed  CAS  Google Scholar 

  • Fatt, P., and B.Katz 1951: An analysis of the end-plate potential recorded with an intracellular electrode. J. Physiol. (Lond.) 115, 320–370.

    CAS  Google Scholar 

  • Fatt, P., and B. Katz 1953: The electrical properties of crustacean muscle fibres. J. Physiol. (Lond.) 120, 171–204.

    CAS  Google Scholar 

  • Frank, K., and M. G. F. Fuortes 1955: Potentials recorded from the spinal cord with microelectrodes. J. Physiol. (Lond.) 130, 625–654.

    CAS  Google Scholar 

  • Frankenhaeuser, B., and A. L. Hodgkin 1957: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.) 137, 218–244.

    CAS  Google Scholar 

  • Grundfest, H., C. Y. Kao and M. Altamirano 1954: Bioelectric effects of ions micro-injected into the giant axon of Loligo. J. gen. Physiol. 38, 245–282.

    PubMed  CAS  Google Scholar 

  • Gruyter, E. De 1954: Neuer Vorverstärker für physiologische Zwecke. Helv. physiol. Pharmacol. Acta 12, C53 - C54.

    Google Scholar 

  • Gruyter, E. De 1956: Millivoltmeter. Experientia (Basel) 12, 357–359

    Google Scholar 

  • Hagiwara, S., and A. Watanabe 1956: Discharges of motoneurons of Cicada. J. cell, comp. Physiol. 47, 415–428

    CAS  Google Scholar 

  • Hodgkin, A. L. 1939: The subthreshold potentials in a crustacean nerve fibre. Proc. roy. Soc. B 126, 87–121.

    Google Scholar 

  • Hodgkin, A. L. 1947: The membrane resistance of a non-medullated nerve fibre. J. Physiol. (Lond.) 106, 305–318.

    Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley 1945: Resting and action potentials in single nerve fibres. J. Physiol. (Lond.) 104, 176–195.

    CAS  Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley 1947: Potassium leakage from an active nerve fibre. J. Physiol. (Lond.) 106, 341–367.

    Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley 1952a: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 497–506.

    CAS  Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley 1952b: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544.

    CAS  Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley 1953: Movement of radioactive potassium and membrane current in a giant axon. J. Physiol. (Lond.) 121, 403–414.

    CAS  Google Scholar 

  • Hodgkin, A. L., A. F. Huxley and B. Katz 1952: Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116, 424–448.

    CAS  Google Scholar 

  • Hodgkin, A. L., and B. Katz 1949: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.) 108, 37–77

    CAS  Google Scholar 

  • Hodgkin, A. L., and R. D. Keynes 1955a: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. (Lond.) 128, 28–60.

    CAS  Google Scholar 

  • Hodgkin, A. L., and R. D. Keynes 1955b: The potassium permeability of a giant nerve fibre. J. Physiol. (Lond.) 128, 61–88.

    CAS  Google Scholar 

  • Hodgkin, A. L., and R. D. Keynes 1956: Experiments on the injection of substances into squid giant axons by means of a microsyringe. J. Physiol. (Lond.) 131, 592–616.

    CAS  Google Scholar 

  • Hodgkin, A. L., and W. A. H. Rushton 1946: The electrical constants of a crustacean nerve fibre. Proc. roy. Soc. B 133, 444–479

    Google Scholar 

  • Hodgman, C. D. 1954: Handbook of chemistry and physics. 36 edit. 1106–1107. Cleveland, Ohio: Chemical Rubber Publ. Co.

    Google Scholar 

  • Hodler, J., R. Stämpfli and I. Tasaki 1952: Role of potential wave spreading along myelinated nerve fiber in excitation and conduction. Amer. J. Physiol. 170, 375 bis 389

    Google Scholar 

  • Holman, M. 1957: The effect of changes in sodium chloride concentration on the smooth muscle of the guinea-pig’s taenia coli. J. Physiol. (Lond.) 136, 569–584.

    CAS  Google Scholar 

  • Hoppe, W. 1955: Zur Mikroabsorptionsspektralanalyse im sichtbaren Spektralgebiet und im UV. Experientia (Basel) 11, 281–282.

    CAS  Google Scholar 

  • Huxley, A. F., and R. Stämpfli 1949: Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. (Lond.) 108, 315–339

    Google Scholar 

  • Huxley, A. F., and R. Stämpfli 1951a: Direct determination of membrane resting potential and action potential in single myelinated nerve fibres. J. Physiol. (Lond.) 112, 476–495.

    CAS  Google Scholar 

  • Huxley, A. F., and R. Stämpfli 1951 b: Effect of potassium and sodium on resting and action potentials of single myelinated nerve fibres. J. Physiol. (Lond.) 112, 496–508.

    Google Scholar 

  • Jent, M. 1945: Der Cornea-Test zur Prüfung und Verfolgung der Regeneration im peripheren Nerven. Helv. physiol. pharmacol. Acta 3, 65–69

    Google Scholar 

  • Kao, C. Y., and H. Grundfest 1957: Postsynaptic electrogenesis in septate giant axons. I. Earthworm median giant axon. J. Neurophysiol. 20, 553–573

    PubMed  CAS  Google Scholar 

  • Kato, G. 1934: Microphysiology of nerve. Tokyo: Maruzen.

    Google Scholar 

  • Kato, G. 1941: Neuere Untersuchungen an einzelnen Nervenfasern. Abh. exakt. Biol. Heft 2, 121–149

    Google Scholar 

  • Katz, B. 1948: The electrical properties of the muscle fibre membrane. Proc. roy. Soc. B 135, 506–534.

    Google Scholar 

  • Kemp, R. 1955: Cathode-ray oscilloscope intensity modulator. Rev. sci. Instr. 26, 1120–1121.

    Google Scholar 

  • Keynes, R. D. 1951: The ionic movements during nervous activity. J. Physiol. (Lond.) 114, 119–150.

    CAS  Google Scholar 

  • Keynes, R. D., and P. R. Lewis 1951: The resting exchange of radioactive potassium in crab nerve. J. Physiol. (Lond.) 113, 73–98.

    CAS  Google Scholar 

  • Keynes, R. D., and H. Marttns-Ferreira 1953: Membrane potentials in the electroplates of the electric eel. J. Physiol. (Lond.) 119, 315–351.

    CAS  Google Scholar 

  • Kilb, H., u. R. Stämpfli 1956: Eine Vorrichtung zur Membranpotentialmessung am einzelnen bespülten Ranvier’schen Schnürring in Ruhe und Erregung. Helv. phvsiol. pharmacol. Acta 14, 251–254.

    CAS  Google Scholar 

  • Klensch, H. 1954: Einführung in die biologische Registriertechnik. Stuttgart: Thieme.

    Google Scholar 

  • Krebs, H. A., u. K. Henseleit 1932: Untersuchungen über die Harnstoff-Bildung im Tierkörper. Hoppe-Seylers Z. physiol. Chem. 210, 33–66.

    CAS  Google Scholar 

  • Kuffler, S. W. 1942: Electric potential changes at an isolated nerve-muscle junction. J. Neurophysiol. 5, 18–26.

    Google Scholar 

  • Ling, G., and R.W. Gerard 1949: The normal membrane potential of frog sartorius fibers. J. cell. comp. Physiol. 34, 383–396.

    CAS  Google Scholar 

  • Locke, F. S. 1930: Die Wirkung der Metalle des Blutplasmas und verschiedener Zucker auf das isolierte Säugetierherz. Zbl. Physiol. 14, 670–672.

    Google Scholar 

  • Lüttgau, H.-C. 1954: Analyse der Wirkung von Barium-Ionen an der isolierten markhaltigen Nervenfaser. Pflüg. Arch. ges. Physiol. 260, 141–147.

    Google Scholar 

  • Lüttgau, H.-C. 1956: Das Na-Transportsystem während der Erregungsprozesse am Ranvier-Knoten isolierter markhaltiger Nervenfasern. Experientia (Basel) 12, 482 bis 486.

    Google Scholar 

  • Macnichol jr., E. F., and H. G. Wagner 1954: A high-impedance input circuit suitable for electrophysiological recording from micropipette electrodes. Res. rept. Nav. Med. Res. Inst. 12, 97–118.

    Google Scholar 

  • Marmont, G. 1949: Studies on the axon membrane. I. A new method. J. cell. comp. Physiol. 34, 351–382.

    CAS  Google Scholar 

  • Moore, J. W., and K. S. Cole 1955: Membrane potentials of the squid giant axon in vivo. Fed. Proc. 14, 103

    Google Scholar 

  • v. Muralt, A. 1946: Die Signalübermittlung im Nerven. Basel: Birkhäuser.

    Google Scholar 

  • Muscholl, E. 1957: Elektrophysiologische Untersuchung der einzelnen Faseranteile des isolierten Rattenzwerchfelles. Pflüg. Arch. ges. Physiol. 264, 467–483.

    CAS  Google Scholar 

  • Nastuk, W. L. 1953: The electrical activity of the muscle cell membrane at the neuromuscular junction. J. cell. comp. Physiol. 42, 249–272.

    CAS  Google Scholar 

  • Nastuk, W. L., and A. L. Hodgkin 1950: The electrical activity of single muscle fibers. J. cell. comp. Physiol. 35, 39–73

    CAS  Google Scholar 

  • Niedergerke, R. 1955: Local muscular shortening by intracellularly applied calcium. J. Physiol. (Lond.) 128, 12P - 13 P.

    Google Scholar 

  • Pantin, C. F. A. 1946: Notes on microscopical technique for zoologists. Cambridge: Cambridge University Press.

    Google Scholar 

  • Phillips, C. G. 1956: Intracellular records from Betz cells in the cat. Quart. J. exp. Physiol. 41, 58–69

    PubMed  CAS  Google Scholar 

  • Poretti, G. G. 1953: Bestrahlung von peripheren Nerven mit Röntgen- und Radiumstrahlen. Gedruckte Dissertation. Physiologisches Institut, Bern.

    Google Scholar 

  • Ringer, S. 1885: Regarding the influence of the organic constituents of the blood on the contractility of the ventricle. J. Physiol. (Lond.) 6, 361–381.

    CAS  Google Scholar 

  • Ritchie, J. M., and R. W. Straub 1957: The hyperpolarization which follows activity in mammalian non-medullated fibres. J. Physiol. (Lond.) 136, 80–97

    CAS  Google Scholar 

  • Solms, S. J., W. L. Nastuk and J. T. Alexander 1953: Development of a high-fidelity preamplifier for use in the recording of bioelectric potentials with intracellular electrodes. Rev. sci. Instr. 24, 960–967.

    Google Scholar 

  • Stämpfli, R. 1952: Bau und Funktion isolierter markhaltiger Nervenfasern. Ergebn. Physiol. 47, 70–165

    PubMed  Google Scholar 

  • Stämpfli, R. 1954: A new method for measuring membrane potentials with external electrodes. Experientia (Basel) 10, 508–509

    Google Scholar 

  • Stämpfli, R. 1956: Nouvelle méthode pour enregistrer le potentiel d’action d’un seul étranglement de Ranvier et sa modification par un brusque changement de la concentration du milieu extérieur. J. Physiol. (Paris) 48, 710–714.

    Google Scholar 

  • Stämpfli, R., and K. Nishie 1956: Effects of calcium-free solutions on membrane-potential of myelinated nerve fibers of the Brazilian frog Leptodactylus ocellatus. Helv. physiol. Pharmacol. Acta 14, 93–104.

    Google Scholar 

  • Stämpfli, R., and M. Willi 1957: Membrane potential of a Ranvier node measured after electrical destruction of its membrane. Experientia (Basel) 13, 297–298.

    Google Scholar 

  • Straub, R. 1956a: Die Wirkungen von Veratridin und Ionen auf das Ruhepotential markhaltiger Nervenfasern des Frosches. Helv. physiol. pharmacol. Acta 14, 1–28.

    CAS  Google Scholar 

  • Stämpfli, R. 1956b: Sucrose-gap apparatus for studying the resting and action potential in mammalian non-medullated fibres. J. Physiol. (Lond.) 135, 2P - 4 P.

    Google Scholar 

  • Svaetichin, G., and R. Jonasson 1956: A technique for oscillographic recording of spectral response curves. Acta physiol. scand. 39, Suppl. 134, 3–16.

    Google Scholar 

  • Tasaki, I. 1939: The strength-duration relation of the normal polarized and narcotized nerve fiber. Amer. J. Physiol. 125, 367–379

    Google Scholar 

  • Tasaki, I. 1953: Nervous transmission. Springfield, Ill.: Ch. C. Thomas.

    Google Scholar 

  • Tasaki, I. 1955: New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber. Amer. J. Physiol. 181, 639 bis 650.

    Google Scholar 

  • Tasaki, I. 1956: Initiation and abolition of the action potential of a single node of Ranvier. J. gen. Physiol. 39, 377–395

    PubMed  CAS  Google Scholar 

  • Tasaki, I., and K. Frank 1955: Measurement of the action potential of myelinated nerve fiber. Amer. J. Physiol. 182, 572–578.

    PubMed  CAS  Google Scholar 

  • Tasaki, I., and W. H. Freygang 1955: The parallelism between the action potential, action current and membrane resistance at a node of Ranvier. J. gen. Physiol. 39, 211–223.

    PubMed  CAS  Google Scholar 

  • Tasaki, I., and S. Hagiwara 1957: Capacity of muscle fiber membrane. Amer. J. Physiol. 188, 423–429

    PubMed  CAS  Google Scholar 

  • Tasaki, I., and K. Mizuguchi 1949: The changes in the electric impedance during activity and the effects of alcaloids and polarization upon the bioelectric processes in the myelinated nerve fibre. Biochim. biophys. Acta 3, 484–493

    CAS  Google Scholar 

  • Tauc, L. 1955: Etude de l’activité élémentaire des cellules du ganglion abdominal de l’Aplysie. J. Physiol. (Paris) 47, 769–792.

    CAS  Google Scholar 

  • Tobias, J. M. 1955: Effects of phospholipases, collagenase and chymotrypsin on impulse conduction and resting potential in the lobster axon with parallel experiments on frog muscle. J. cell. comp. Physiol. 46, 183–207

    CAS  Google Scholar 

  • Tobias, J. M., and S. H. Bryant 1955: An isolated giant axon preparation from the lobster nerve cord. J. cell. comp. Physiol. 46, 163–182.

    CAS  Google Scholar 

  • Tschachotin, S. 1935: Die Mikrostrahlstichmethode und andere Methoden des zytologischen Mikroexperimentes. Hdb. d. biol. Arbeitsmethoden. (E. Abderhalden) Abt. V, Teil 10, Heft 5, 877–958.

    Google Scholar 

  • Tyler, A., A.Monroy, C. Y. Kao and H. Grundfest 1956: Membrane potential and resistance of the starfish egg before and after fertilization. Biol. Bull. (Woods Hole) 111, 153–177

    Google Scholar 

  • Tyrode, M. V. 1910: The mode of action of some purgative salts. Arch. int. Pharmacodyn. 20, 205–223

    Google Scholar 

  • Weidmann, S. 1951a: Electrical characteristics of Sepia axons. J. Physiol. (Lond.) 114, 372–381.

    CAS  Google Scholar 

  • Weidmann, S. 1951b: Effect of current flow on the membrane potential of cardiac muscle. J. Physiol. (Lond.) 115, 227–236.

    CAS  Google Scholar 

  • Weidmann, S. 1955a: The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J. Physiol. (Lond.) 127, 213–224.

    CAS  Google Scholar 

  • Weidmann, S. 1955b: Effects of calcium ions and local anaesthetics on electrical properties of Purkinje fibres. J. Physiol. (Lond.) 129, 568–582.

    CAS  Google Scholar 

  • Weidmann, S. 1957: Resting and action potentials of cardiac muscle. Ann. N. Y. Acad. Sci. 65, 663–678.

    PubMed  CAS  Google Scholar 

  • Woodbury, J. W., and A. J. Brady 1956: Intracellular recording from moving tissues with a flexibly mounted ultramicroelectrode. Science 123, 100–101.

    PubMed  CAS  Google Scholar 

  • Woodbury, J. W., and L. A. Woodbury 1950: Membrane resting and action potentials from excitable tissues. Fed. Proc. 9, 139.

    Google Scholar 

  • Woodbury, L. A., H. H. Hecht and A. R. Christopherson 1951: Membrane resting and action potentials of single cardiac muscle fibres of the frog ventricle. Amer. J. Physiol. 164, 307–318.

    PubMed  CAS  Google Scholar 

  • Young, J. Z. 1936: The structure of nerve fibres in cephalopods and crustacea. Proc. roy. Soc. B 121, 319–337

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Weidmann, S. (1958). Die Methoden der Nervenphysiologie. In: Neue Ergebnisse der Nervenphysiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87587-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87587-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87588-5

  • Online ISBN: 978-3-642-87587-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics