Die Methoden der Nervenphysiologie

  • S. Weidmann


Tintenfische (Cephalopoden). Der Kalmar, Loligo (vgl. Abb. 27b, S. 65), bleibt in Gefangenschaft nur wenige Tage am Leben und läßt sich schlecht transportieren. Das Arbeiten mit Loligo forbesi (europäischer Kalmar) und Loligo paelii (amerikanischer Kalmar) ist deshalb an eine Marinebiologische Station gebunden.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, R. H. 1956: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.) 133, 631–658.Google Scholar
  2. Alexander, J. T., and W. L. Nastuk 1953: An instrument for the production of micro-electrodes used in electrophysiological studies. Rev. sci. Instr. 24, 528–531Google Scholar
  3. Arvanitaki, A., N. Chalazonitis et M. Otsuka 1956: Activité paroxystique du soma neuronique d’Aplysia sous l’effet de la strychnine. C. R. Acad. Sci. (Paris) 243, 307–309.Google Scholar
  4. Asmussen, E. 1932: Über die Reaktion isolierter Muskelfasern auf direkte Reize. Pflüg. Arch. ges. Physiol. 230, 263–272.Google Scholar
  5. Benoit, P., et E. Coraboeuf 1955: Modifications électrotoniques du potentiel de pointe et du potentiel consécutif de la fibre musculaire striée. C. R. Soc. Biol. (Paris) 149, 1435–1438.Google Scholar
  6. Brock, L. G., J. S. Coombs and J. C. Eccles 1952: The recording of potentials from motoneurones with an intracellular electrode. J. Physiol. (Lond.) 117, 431–460.Google Scholar
  7. Bülbring, E., and I. N. Hooton 1954: Membrane potentials of smooth muscle fibres in the rabbit’s sphincter pupillae. J. Physiol. (Lond.) 125, 292–301.Google Scholar
  8. Bullock, T. H., and S. Hagiwara 1957: Intracellular recording from the giant synapse of the squid. J. gen. Physiol. 40, 565–577PubMedGoogle Scholar
  9. Burnstock, G., and R. W. Straub 1958: A method for studying the effects of ions and drugs on the resting and action potentials in smooth muscle with external electrodes. J. Physiol. (Lond.) 140, 156–167Google Scholar
  10. Caldwell, P. C., and A. C. Downing 1955: The preparation of capillary microelectrodes. J. Physiol. (Lond.) 128, 31 P.Google Scholar
  11. Caspersson, T. 1955: Quantitative cytochemical methods for the study of cell metabolism. Experientia (Basel) 11, 45–60.Google Scholar
  12. Castillo, J. Del, and B. Katz 1955: On the localization of acetylcholine receptors. J. Physiol. (Lond.) 128, 157–181.Google Scholar
  13. Cole, K. S., and H. J. Curtis 1939: Electric impedance of the squid giant axon during activity. J. gen. Physiol. 22, 649–670.PubMedGoogle Scholar
  14. Coombs, J. S., J. C. Eccles and P. Fatt 1955: The electrical properties of the motoneurone membrane. J. Physiol. (Lond.) 130, 291–325.Google Scholar
  15. Crain, S. M. 1956: Resting and action potentials of cultured chick embryo spinal ganglion cells. J. comp. Neurol. 104, 285–329PubMedGoogle Scholar
  16. Curtis, H. J., and K. S. Cole 1942: Membrane resting and action potentials from the squid giant axon. J. cell. comp. Physiol. 19, 135–144.Google Scholar
  17. Davis, L., and R. Lorente De Nó 1947: Contribution to the mathematical theory of the electrotonus. In R. Lorente De Nó 1947. A study of nerve physiology. Stud. Rockefeller Inst. med. Res. 131, 442–496.Google Scholar
  18. Dickinson, C. J. 1950: Electrophysiological technique. London: Offices of electronic Engineering.Google Scholar
  19. Draper, M. H., and S. Weidmann 1951: Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol. (Lond.) 115, 74–94.Google Scholar
  20. Eccles, R. M. 1955: Intracellular potentials recorded from a mammalian sympathetic ganglion. J. Physiol. (Lond.) 130, 572–584.Google Scholar
  21. Essex, H. E., and N. de Rezende 1943: Observations on injury and repair of peripheral nerves. Amer. J. Physiol. 140, 107–114.Google Scholar
  22. Evans, M. H. 1958: A simple intensity modulator for electrophysiology. J. Physiol. (Lond.) 142, 8–9 P.Google Scholar
  23. Eyzaguirre, C., and S. W. Kuffler 1955: Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J. gen. Physiol. 39, 87–119PubMedGoogle Scholar
  24. Fatt, P., and B.Katz 1951: An analysis of the end-plate potential recorded with an intracellular electrode. J. Physiol. (Lond.) 115, 320–370.Google Scholar
  25. Fatt, P., and B. Katz 1953: The electrical properties of crustacean muscle fibres. J. Physiol. (Lond.) 120, 171–204.Google Scholar
  26. Frank, K., and M. G. F. Fuortes 1955: Potentials recorded from the spinal cord with microelectrodes. J. Physiol. (Lond.) 130, 625–654.Google Scholar
  27. Frankenhaeuser, B., and A. L. Hodgkin 1957: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.) 137, 218–244.Google Scholar
  28. Grundfest, H., C. Y. Kao and M. Altamirano 1954: Bioelectric effects of ions micro-injected into the giant axon of Loligo. J. gen. Physiol. 38, 245–282.PubMedGoogle Scholar
  29. Gruyter, E. De 1954: Neuer Vorverstärker für physiologische Zwecke. Helv. physiol. Pharmacol. Acta 12, C53 - C54.Google Scholar
  30. Gruyter, E. De 1956: Millivoltmeter. Experientia (Basel) 12, 357–359Google Scholar
  31. Hagiwara, S., and A. Watanabe 1956: Discharges of motoneurons of Cicada. J. cell, comp. Physiol. 47, 415–428Google Scholar
  32. Hodgkin, A. L. 1939: The subthreshold potentials in a crustacean nerve fibre. Proc. roy. Soc. B 126, 87–121.Google Scholar
  33. Hodgkin, A. L. 1947: The membrane resistance of a non-medullated nerve fibre. J. Physiol. (Lond.) 106, 305–318.Google Scholar
  34. Hodgkin, A. L., and A. F. Huxley 1945: Resting and action potentials in single nerve fibres. J. Physiol. (Lond.) 104, 176–195.Google Scholar
  35. Hodgkin, A. L., and A. F. Huxley 1947: Potassium leakage from an active nerve fibre. J. Physiol. (Lond.) 106, 341–367.Google Scholar
  36. Hodgkin, A. L., and A. F. Huxley 1952a: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 497–506.Google Scholar
  37. Hodgkin, A. L., and A. F. Huxley 1952b: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117, 500–544.Google Scholar
  38. Hodgkin, A. L., and A. F. Huxley 1953: Movement of radioactive potassium and membrane current in a giant axon. J. Physiol. (Lond.) 121, 403–414.Google Scholar
  39. Hodgkin, A. L., A. F. Huxley and B. Katz 1952: Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116, 424–448.Google Scholar
  40. Hodgkin, A. L., and B. Katz 1949: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.) 108, 37–77Google Scholar
  41. Hodgkin, A. L., and R. D. Keynes 1955a: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. (Lond.) 128, 28–60.Google Scholar
  42. Hodgkin, A. L., and R. D. Keynes 1955b: The potassium permeability of a giant nerve fibre. J. Physiol. (Lond.) 128, 61–88.Google Scholar
  43. Hodgkin, A. L., and R. D. Keynes 1956: Experiments on the injection of substances into squid giant axons by means of a microsyringe. J. Physiol. (Lond.) 131, 592–616.Google Scholar
  44. Hodgkin, A. L., and W. A. H. Rushton 1946: The electrical constants of a crustacean nerve fibre. Proc. roy. Soc. B 133, 444–479Google Scholar
  45. Hodgman, C. D. 1954: Handbook of chemistry and physics. 36 edit. 1106–1107. Cleveland, Ohio: Chemical Rubber Publ. Co.Google Scholar
  46. Hodler, J., R. Stämpfli and I. Tasaki 1952: Role of potential wave spreading along myelinated nerve fiber in excitation and conduction. Amer. J. Physiol. 170, 375 bis 389Google Scholar
  47. Holman, M. 1957: The effect of changes in sodium chloride concentration on the smooth muscle of the guinea-pig’s taenia coli. J. Physiol. (Lond.) 136, 569–584.Google Scholar
  48. Hoppe, W. 1955: Zur Mikroabsorptionsspektralanalyse im sichtbaren Spektralgebiet und im UV. Experientia (Basel) 11, 281–282.Google Scholar
  49. Huxley, A. F., and R. Stämpfli 1949: Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. (Lond.) 108, 315–339Google Scholar
  50. Huxley, A. F., and R. Stämpfli 1951a: Direct determination of membrane resting potential and action potential in single myelinated nerve fibres. J. Physiol. (Lond.) 112, 476–495.Google Scholar
  51. Huxley, A. F., and R. Stämpfli 1951 b: Effect of potassium and sodium on resting and action potentials of single myelinated nerve fibres. J. Physiol. (Lond.) 112, 496–508.Google Scholar
  52. Jent, M. 1945: Der Cornea-Test zur Prüfung und Verfolgung der Regeneration im peripheren Nerven. Helv. physiol. pharmacol. Acta 3, 65–69Google Scholar
  53. Kao, C. Y., and H. Grundfest 1957: Postsynaptic electrogenesis in septate giant axons. I. Earthworm median giant axon. J. Neurophysiol. 20, 553–573PubMedGoogle Scholar
  54. Kato, G. 1934: Microphysiology of nerve. Tokyo: Maruzen.Google Scholar
  55. Kato, G. 1941: Neuere Untersuchungen an einzelnen Nervenfasern. Abh. exakt. Biol. Heft 2, 121–149Google Scholar
  56. Katz, B. 1948: The electrical properties of the muscle fibre membrane. Proc. roy. Soc. B 135, 506–534.Google Scholar
  57. Kemp, R. 1955: Cathode-ray oscilloscope intensity modulator. Rev. sci. Instr. 26, 1120–1121.Google Scholar
  58. Keynes, R. D. 1951: The ionic movements during nervous activity. J. Physiol. (Lond.) 114, 119–150.Google Scholar
  59. Keynes, R. D., and P. R. Lewis 1951: The resting exchange of radioactive potassium in crab nerve. J. Physiol. (Lond.) 113, 73–98.Google Scholar
  60. Keynes, R. D., and H. Marttns-Ferreira 1953: Membrane potentials in the electroplates of the electric eel. J. Physiol. (Lond.) 119, 315–351.Google Scholar
  61. Kilb, H., u. R. Stämpfli 1956: Eine Vorrichtung zur Membranpotentialmessung am einzelnen bespülten Ranvier’schen Schnürring in Ruhe und Erregung. Helv. phvsiol. pharmacol. Acta 14, 251–254.Google Scholar
  62. Klensch, H. 1954: Einführung in die biologische Registriertechnik. Stuttgart: Thieme.Google Scholar
  63. Krebs, H. A., u. K. Henseleit 1932: Untersuchungen über die Harnstoff-Bildung im Tierkörper. Hoppe-Seylers Z. physiol. Chem. 210, 33–66.Google Scholar
  64. Kuffler, S. W. 1942: Electric potential changes at an isolated nerve-muscle junction. J. Neurophysiol. 5, 18–26.Google Scholar
  65. Ling, G., and R.W. Gerard 1949: The normal membrane potential of frog sartorius fibers. J. cell. comp. Physiol. 34, 383–396.Google Scholar
  66. Locke, F. S. 1930: Die Wirkung der Metalle des Blutplasmas und verschiedener Zucker auf das isolierte Säugetierherz. Zbl. Physiol. 14, 670–672.Google Scholar
  67. Lüttgau, H.-C. 1954: Analyse der Wirkung von Barium-Ionen an der isolierten markhaltigen Nervenfaser. Pflüg. Arch. ges. Physiol. 260, 141–147.Google Scholar
  68. Lüttgau, H.-C. 1956: Das Na-Transportsystem während der Erregungsprozesse am Ranvier-Knoten isolierter markhaltiger Nervenfasern. Experientia (Basel) 12, 482 bis 486.Google Scholar
  69. Macnichol jr., E. F., and H. G. Wagner 1954: A high-impedance input circuit suitable for electrophysiological recording from micropipette electrodes. Res. rept. Nav. Med. Res. Inst. 12, 97–118.Google Scholar
  70. Marmont, G. 1949: Studies on the axon membrane. I. A new method. J. cell. comp. Physiol. 34, 351–382.Google Scholar
  71. Moore, J. W., and K. S. Cole 1955: Membrane potentials of the squid giant axon in vivo. Fed. Proc. 14, 103Google Scholar
  72. v. Muralt, A. 1946: Die Signalübermittlung im Nerven. Basel: Birkhäuser.Google Scholar
  73. Muscholl, E. 1957: Elektrophysiologische Untersuchung der einzelnen Faseranteile des isolierten Rattenzwerchfelles. Pflüg. Arch. ges. Physiol. 264, 467–483.Google Scholar
  74. Nastuk, W. L. 1953: The electrical activity of the muscle cell membrane at the neuromuscular junction. J. cell. comp. Physiol. 42, 249–272.Google Scholar
  75. Nastuk, W. L., and A. L. Hodgkin 1950: The electrical activity of single muscle fibers. J. cell. comp. Physiol. 35, 39–73Google Scholar
  76. Niedergerke, R. 1955: Local muscular shortening by intracellularly applied calcium. J. Physiol. (Lond.) 128, 12P - 13 P.Google Scholar
  77. Pantin, C. F. A. 1946: Notes on microscopical technique for zoologists. Cambridge: Cambridge University Press.Google Scholar
  78. Phillips, C. G. 1956: Intracellular records from Betz cells in the cat. Quart. J. exp. Physiol. 41, 58–69PubMedGoogle Scholar
  79. Poretti, G. G. 1953: Bestrahlung von peripheren Nerven mit Röntgen- und Radiumstrahlen. Gedruckte Dissertation. Physiologisches Institut, Bern.Google Scholar
  80. Ringer, S. 1885: Regarding the influence of the organic constituents of the blood on the contractility of the ventricle. J. Physiol. (Lond.) 6, 361–381.Google Scholar
  81. Ritchie, J. M., and R. W. Straub 1957: The hyperpolarization which follows activity in mammalian non-medullated fibres. J. Physiol. (Lond.) 136, 80–97Google Scholar
  82. Solms, S. J., W. L. Nastuk and J. T. Alexander 1953: Development of a high-fidelity preamplifier for use in the recording of bioelectric potentials with intracellular electrodes. Rev. sci. Instr. 24, 960–967.Google Scholar
  83. Stämpfli, R. 1952: Bau und Funktion isolierter markhaltiger Nervenfasern. Ergebn. Physiol. 47, 70–165PubMedGoogle Scholar
  84. Stämpfli, R. 1954: A new method for measuring membrane potentials with external electrodes. Experientia (Basel) 10, 508–509Google Scholar
  85. Stämpfli, R. 1956: Nouvelle méthode pour enregistrer le potentiel d’action d’un seul étranglement de Ranvier et sa modification par un brusque changement de la concentration du milieu extérieur. J. Physiol. (Paris) 48, 710–714.Google Scholar
  86. Stämpfli, R., and K. Nishie 1956: Effects of calcium-free solutions on membrane-potential of myelinated nerve fibers of the Brazilian frog Leptodactylus ocellatus. Helv. physiol. Pharmacol. Acta 14, 93–104.Google Scholar
  87. Stämpfli, R., and M. Willi 1957: Membrane potential of a Ranvier node measured after electrical destruction of its membrane. Experientia (Basel) 13, 297–298.Google Scholar
  88. Straub, R. 1956a: Die Wirkungen von Veratridin und Ionen auf das Ruhepotential markhaltiger Nervenfasern des Frosches. Helv. physiol. pharmacol. Acta 14, 1–28.Google Scholar
  89. Stämpfli, R. 1956b: Sucrose-gap apparatus for studying the resting and action potential in mammalian non-medullated fibres. J. Physiol. (Lond.) 135, 2P - 4 P.Google Scholar
  90. Svaetichin, G., and R. Jonasson 1956: A technique for oscillographic recording of spectral response curves. Acta physiol. scand. 39, Suppl. 134, 3–16.Google Scholar
  91. Tasaki, I. 1939: The strength-duration relation of the normal polarized and narcotized nerve fiber. Amer. J. Physiol. 125, 367–379Google Scholar
  92. Tasaki, I. 1953: Nervous transmission. Springfield, Ill.: Ch. C. Thomas.Google Scholar
  93. Tasaki, I. 1955: New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber. Amer. J. Physiol. 181, 639 bis 650.Google Scholar
  94. Tasaki, I. 1956: Initiation and abolition of the action potential of a single node of Ranvier. J. gen. Physiol. 39, 377–395PubMedGoogle Scholar
  95. Tasaki, I., and K. Frank 1955: Measurement of the action potential of myelinated nerve fiber. Amer. J. Physiol. 182, 572–578.PubMedGoogle Scholar
  96. Tasaki, I., and W. H. Freygang 1955: The parallelism between the action potential, action current and membrane resistance at a node of Ranvier. J. gen. Physiol. 39, 211–223.PubMedGoogle Scholar
  97. Tasaki, I., and S. Hagiwara 1957: Capacity of muscle fiber membrane. Amer. J. Physiol. 188, 423–429PubMedGoogle Scholar
  98. Tasaki, I., and K. Mizuguchi 1949: The changes in the electric impedance during activity and the effects of alcaloids and polarization upon the bioelectric processes in the myelinated nerve fibre. Biochim. biophys. Acta 3, 484–493Google Scholar
  99. Tauc, L. 1955: Etude de l’activité élémentaire des cellules du ganglion abdominal de l’Aplysie. J. Physiol. (Paris) 47, 769–792.Google Scholar
  100. Tobias, J. M. 1955: Effects of phospholipases, collagenase and chymotrypsin on impulse conduction and resting potential in the lobster axon with parallel experiments on frog muscle. J. cell. comp. Physiol. 46, 183–207Google Scholar
  101. Tobias, J. M., and S. H. Bryant 1955: An isolated giant axon preparation from the lobster nerve cord. J. cell. comp. Physiol. 46, 163–182.Google Scholar
  102. Tschachotin, S. 1935: Die Mikrostrahlstichmethode und andere Methoden des zytologischen Mikroexperimentes. Hdb. d. biol. Arbeitsmethoden. (E. Abderhalden) Abt. V, Teil 10, Heft 5, 877–958.Google Scholar
  103. Tyler, A., A.Monroy, C. Y. Kao and H. Grundfest 1956: Membrane potential and resistance of the starfish egg before and after fertilization. Biol. Bull. (Woods Hole) 111, 153–177Google Scholar
  104. Tyrode, M. V. 1910: The mode of action of some purgative salts. Arch. int. Pharmacodyn. 20, 205–223Google Scholar
  105. Weidmann, S. 1951a: Electrical characteristics of Sepia axons. J. Physiol. (Lond.) 114, 372–381.Google Scholar
  106. Weidmann, S. 1951b: Effect of current flow on the membrane potential of cardiac muscle. J. Physiol. (Lond.) 115, 227–236.Google Scholar
  107. Weidmann, S. 1955a: The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J. Physiol. (Lond.) 127, 213–224.Google Scholar
  108. Weidmann, S. 1955b: Effects of calcium ions and local anaesthetics on electrical properties of Purkinje fibres. J. Physiol. (Lond.) 129, 568–582.Google Scholar
  109. Weidmann, S. 1957: Resting and action potentials of cardiac muscle. Ann. N. Y. Acad. Sci. 65, 663–678.PubMedGoogle Scholar
  110. Woodbury, J. W., and A. J. Brady 1956: Intracellular recording from moving tissues with a flexibly mounted ultramicroelectrode. Science 123, 100–101.PubMedGoogle Scholar
  111. Woodbury, J. W., and L. A. Woodbury 1950: Membrane resting and action potentials from excitable tissues. Fed. Proc. 9, 139.Google Scholar
  112. Woodbury, L. A., H. H. Hecht and A. R. Christopherson 1951: Membrane resting and action potentials of single cardiac muscle fibres of the frog ventricle. Amer. J. Physiol. 164, 307–318.PubMedGoogle Scholar
  113. Young, J. Z. 1936: The structure of nerve fibres in cephalopods and crustacea. Proc. roy. Soc. B 121, 319–337Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • S. Weidmann

There are no affiliations available

Personalised recommendations