Zelluläre Adhäsionsmoleküle und ihre Bedeutung für die Dermatologie. Eine Zwischenbilanz

  • P. von den Driesch

Zusammenfassung

Zelluläre Adhäsionsmoleküle (CAMs) und ihre Zell/Zell- und Zell/Matrix-Interaktionen sind ein wesentliches Thema der biologischen Forschung der letzten Jahre. Mittlerweile sind von vier verschiedenen Familien zumindest teilweise Funktion und Bedeutung bekanntgeworden.

Hierbei war die Haut in ihrer Funktion als Schutz- und hochsensibles Immunorgan natürlich von großem Interesse. Der gegenwärtige Wissensstand zeigt vor allem die umfassende Relevanz von Adhäsion für immunologische Reaktionen an der Haut. Dabei scheint die Erkenntnis, daß eine ganze Reihe von primär unabhängigen Interaktionen die Extravasation und Immigration von Leukozyten moduliert, wesentlich. Weitere wichtige Resultate zeigen die Rolle der Adhäsionsmoleküle für das biologische Verhalten maligner Tumore, vor allem des Melanoms. Noch relativ gering ist aber bisher das Wissen um die Beteiligung von CAMs bei Embryogenese, Wachstum und Differenzierung.

Ziel der vorliegenden Arbeit soll es sein, den Stand des Wissens über die CAMs mit Blickpunkt auf die Haut darzustellen. Bei den schnellen Fortschritten in diesem Sektor kann aber ein solches Review naturgemäß nur eine Zwischenbilanz darstellen.

Summary

Realization of cellular adhesion molecules (CAMs) and their cell/cell and cell/extracellular matrix interactions represent a major effort of the biological research during the past years. So far, four different adhesion families and, in part, their functions have been described. The skin as a protection and highly sensible immune organ was of considerable interest for this work. The present knowledge underlines the fundamental significance of cellular adhesion for the immunological reactions in the skin. Thereby, the finding that a couple of primary independent adhesion mechanisms can modulate leukocyte immigration into the skin is of considerable interest.

Other important results have been reported about the role of CAMs in the biological behaviour of malignant tumors like melanoma. Less has been achieved for the knowledge about the influence of CAMs in embryogenesis, tissue organization, growth and differentiation.

The aim of this paper is to review the state of the art especially according to the skin. But due to the rapid progress in this field, such a review can only represent an intermediate balance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Abel, E A, Wood, G S, Hoppe, R T: Expression of Leu-8 antigen, a majority T-cell marker, is uncommon in mycosis fungoides. J. invest. Derm. 85, 199–202 (1985)PubMedGoogle Scholar
  2. 2.
    Adams, J C, Watt, F M: Changes in keratinocyte adhesion during terminal differentiation: reduction in fibronectin binding precedes alpha5 beta1 integrin loss from the cell surface. Cell 63, 425–435 (1990)PubMedGoogle Scholar
  3. 3.
    Albelda, S, Buck, C A: Integrins and other cell adhesion molecules. FASEB J. 4, 2868–2880 (1990)PubMedGoogle Scholar
  4. 4.
    Altieri, D C, Morrissey, J H, Edgington, T S: Adhesive receptor Mac-1 coordinates the activation of Factor X on stimulated cells of monocytic and myeloid differentiation: an alternative initiation of the coagulation protease cascade. Proc. nat. Acad. Sci. USA 85, 7462–7466 (1988)PubMedGoogle Scholar
  5. 5.
    Anderson, D C, Springer, TA: Leukocyte adhesion deficiency: an inherited defect in the MAC-1, LFA-1 and pl50/95 glykoproteins. Ann. Rev. Med. 38, 175–194 (1987)PubMedGoogle Scholar
  6. 6.
    Anichini, A, Mortarini, R, Supino, R, Parmiani, G: Human melanoma cells with high susceptibility to cell-mediated lysis can be identified on the basis of ICAM-1 phenotype, VLA profile and invasive ability. Int. J. Cancer 46, 508–515 (1990)PubMedGoogle Scholar
  7. 7.
    Arnaout, M A: Leukocyte adhesion molecules deficiency: its structural basis, pathophysiology and implications for modulating the inflammatory response. Immunol. Rev. 114, 145–180 (1990)PubMedGoogle Scholar
  8. 8.
    Berg, E L, Robinson, M K, Warnock, R A, Butcher, E C: The human peripheral lymph node vascular addressin is a ligand for LECAM-1, the peripheral lymph node homing receptor. J. Cell Biol. 113, 343–349 (1991)Google Scholar
  9. 9.
    Braakman, E, Goedegebuure, P S, Vreugdenhil, R J et al: ICAM — melanoma cells are relatively resistent to CD3-mediated T-cell lysis. Int. J. Cancer 46, 475–480 (1990)PubMedGoogle Scholar
  10. 10.
    Brandley, B K, Swiedler, S J, Robbins, P W: Carbohydrate ligands of the cell adhesion molecules. Cell 63, 861–863 (1990)PubMedGoogle Scholar
  11. 11.
    Bröcker, E B, Suter, L, Brüggen, J et al: Phenotypic dynamics of tumor progression in malignant melanoma. Int. J. Cancer 36, 29–35 (1985)PubMedGoogle Scholar
  12. 12.
    Carter, W G, Ryan, M C, Gahr, P J: Epiligrin, a new cell adhesion ligand for integrin α3β1 in epithelial basement membranes. Cell 65, 599–610 (1991)PubMedGoogle Scholar
  13. 13.
    Chin, Y-H, Falanga, V, Taylor, R J: Adherence of human helper/memory T-cell subsets to psoriatic dermal endothelium. J. invest. Derm. 94, 413–417 (1990)PubMedGoogle Scholar
  14. 14.
    Clayberger, C, Krensky, A M, McIntyre, B W et al: Identification and characterization of two novel lymphocyte function-associated antigens, L24 and L25. J. Immunol. 138, 1510–1515 (1987)PubMedGoogle Scholar
  15. 15.
    Davignon, D, Martz, E, Reynolds, T et al: Monoclonal antibody to a novel lymphocyte function-associated antigen (LFA-1): mechanism of blocking of T lymphocyte-mediated killing and effects on other T and B lymphocyte functions. J. Immunol. 127, 590–595 (1981)PubMedGoogle Scholar
  16. 16.
    Davis, L S, Oppenheimer-Marks, N, Bednarczyk, J L et al: Fibronectin promotes proliferation of naive and memory T cells by signaling through both the VLA-4 and VLA-5 integrin molecules. J. Immunol. 145, 785–793 (1990)PubMedGoogle Scholar
  17. 17.
    De Panfilis, G, Soligo, D, Manara, G C et al: Adhesion molecules on the plasma membrane of epidermal cells. I. Human resting Langerhans cells express two members of the adherence promoting CD11/CD18 family, namely H-Mac-1 (CD11b/CD18) and gpl50.95 (CD11c/CD18). J. invest. Derm. 93, 60–69 (1989)PubMedGoogle Scholar
  18. 18.
    De Panfilis, G, Manara, G C, Ferrari, C et al: Adhesion molecules in the plasma membrane of epidermal cells. II. The intercellular adhesion molecule-1 is constitutively present on the cell surface of human resting Langerhans cells. J invest. Derm. 94, 317–321 (1990)PubMedGoogle Scholar
  19. 19.
    De Panfilis, G, Manara, G C, Ferrari, C et al: Adhesion molecules on the plasma membrane of epidermal cells. III. Keratinocytes and Langerhans cells constitutively express the lymphocyte function-associated antigen 3. J. invest. Derm. 96, 512–517 (1991)PubMedGoogle Scholar
  20. 20.
    Detmers, P A, Lo, S K, Olsen-Egbert, E et al: Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leucocyte adhesion receptor CD11b/CD18 on human neutrophils. J. exp. Med. 171, 1155–1162(1990)PubMedGoogle Scholar
  21. 21.
    Diamond, M S, Staunton, D E, Marlin, S D, Springer, T A: Binding of the integrin Mac-1 (CD1lb/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65, 961–971 (1991)PubMedGoogle Scholar
  22. 22.
    Dransfield, I, Buckle, A M, Hogg, N: Early events of the immune response mediated by leukocyte integrins. Immunol. Res. 114, 29–44 (1990)Google Scholar
  23. 23.
    Driesch, P von den, Gruschwitz, M, Schell, H, Sterry, W: Adhesion molecules, CD23 and IgE in a case of angiolymphoid hyperplasia with eosinophilia. J. Am. Acad. Derm., in press (1992)Google Scholar
  24. 24.
    Driesch, P von den, Gruschwitz, M, Hornstein, O P, Sterry, W: Adhesion molecule pattern in cutaneous vascular reactions. Br. J. Derm., in press (1992)Google Scholar
  25. 25.
    Dustin, M L, Singer, K H, Tuck, D T, Springer, T A: Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon γ and is mediated by intercellular adhesion molecule 1 (ICAM-1). J. exp. Med. 167, 1323–1340 (1988)PubMedGoogle Scholar
  26. 26.
    Elices, M J, Oshorn, L, Takada, Y: VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60, 577–584 (1990)PubMedGoogle Scholar
  27. 27.
    Fisher, G J, Esmann, J, Griffiths, C E M et al: Cellular, immunologic and biochemical characterization of topical retinoic acid-treated human skin. J. invest. Derm. 96, 699–707 (1991)PubMedGoogle Scholar
  28. 28.
    García-González, E, Swerlick, R A, Lawley, T J: Cell adhesion molecules. Am. J. Dermatopath. 12, 188–192(1990)PubMedGoogle Scholar
  29. 29.
    Garioch, J J, MacKie, R M, Forsyth, A: Keratinocyte expression of intercellular adhesion molecule-1 correlated with infiltration of lymphocyte function associated antigen-1 positive cells in evolving allergic contact dermatitis reactions. Br. J. Derm. 125, Suppl, 15 (1991)Google Scholar
  30. 30.
    Geng, J G, Bevilaqua, M P, Moore, K L et al: Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 343, 757–760 (1990)PubMedGoogle Scholar
  31. 31.
    Graber, N, Gopal, V, Wilson, D: T cells bind to cytokine activated endothelial cells via a novel, inducible sialoglycoprotein and endothelial leukocyte adhesion molecule. J. Immunol. 145, 819–830 (1990)PubMedGoogle Scholar
  32. 32.
    Griffin, J D, Spertini, O, Ernst, T J et al: Granulocyte-macrophage colony-stimulating factor and other cytokines regulate surface expression of the leukocyte adhesion molecule-1 on human neutrophils, monocytes, and their precursors. J. Immunol. 145, 576–584 (1990)PubMedGoogle Scholar
  33. 33.
    Griffiths, C E M, Voorhees, J J, Nickoloff B J: Characterization of intercellular adhesion molecule-1 and HLA-DR expression in normal and inflamed skin: modulation by recombinant gamma interferon and tumor necrosis factor. J. Am. Acad. Derm. 20, 617–629 (1989)PubMedGoogle Scholar
  34. 34.
    Groux, H, Huet, S, Valentin, H et al: Suppressor effects and cyclic AMP accumulation by the CD29 molecule of CD4+ lymphocytes. Nature 339, 152–155 (1989)PubMedGoogle Scholar
  35. 35.
    Groves, R W, Allen, M H, Barker, J N W N et al: Endothelial leukocyte adhesion molecule-1 (ELAM-1) expression in cutaneous inflammation. Br. J. Derm. 124, 117–123 (1991)Google Scholar
  36. 36.
    Gruschwitz, M, Driesch, P von den, Kellner, I et al: Expression of adhesion proteins involved in cell-cell and cell-matrix interactions in the skin of patients with scleroderma. J. Am. Acad. Derm., in press (1992)Google Scholar
  37. 37.
    Gupta, A K, Ellis, C N, Cooper, K D et al: Oral cyclosporine for treatment of alopecia areata. J. Am. Acad. Derm. 22, 242–250 (1990)PubMedGoogle Scholar
  38. 38.
    Haynes, B F: The role of the thymic microenvironment in promotion of early stages in human T-cell maturation. Clin. Res. 34, 422–431 (1986)PubMedGoogle Scholar
  39. 39.
    Hemler, M E, Jacobson, J G, Strominger, J L: Biochemical characterization of VLA-1 and VLA-2 cell surface heterodimers on activated T cells. J. biol. Chem. 260, 15246–15252 (1985)PubMedGoogle Scholar
  40. 40.
    Hemler, M E, Huang, C, Schwarz, L: The VLA protein family. J. Biol. Chem. 262, 3300–3309 (1987)PubMedGoogle Scholar
  41. 41.
    Hemler, M E: Adhesive protein receptors on hematopoetic cells. Immunol. today 9, 109–113 (1988)PubMedGoogle Scholar
  42. 42.
    Hemler, M E, Elices, M J, Parker, C et al: Structure of the integrin VLA-4 and its cell-cell and cell-matrix adhesion functions. Immunol. Res. 114, 43–65 (1990)Google Scholar
  43. 43.
    Hunyadi, J, Simon, J, Dobozy, A: Immune-associated surface markers of human keratinocytes. Immunol. Letters, in press (1992)Google Scholar
  44. 44.
    Jalkanen, S, Aho, R, Kallajoki, M et al: Lymphocyte homing receptors and adhesion molecules in intravascular malignant lymphomas. Int. J. Cancer 44, 777–787 (1989)PubMedGoogle Scholar
  45. 45.
    Johnson, J P, Stade, B G, Holzmann, B et al: De novo expression of intercellular-adhesion molecule-1 in melanoma correlated with increased risk of metastasis. Proc. nat. Acad. Sci. USA 86, 641–644 (1989)PubMedGoogle Scholar
  46. 46.
    Johnston, G I, Cook, R G, McEver, R P: Cloning of GMP-140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation. Cell 56, 1033–1044(1989)PubMedGoogle Scholar
  47. 47.
    Jutila, G I, Lewinsohn, D M, Berg, E L, Butcher, E C: Function and regulation of the neutrophil MEL-14 antigen in vivo: comparison with LFA-1 and MAC-1. J. Immunol. 143, 3318–3324 (1989)PubMedGoogle Scholar
  48. 48.
    Kageshita, T, Nakamura, T, Yamada, M et al: Differential expression of melanoma associated antigens in acral lentiginous melanoma and in nodular melanoma lesions. Cancer Res. 51, 1726–1732 (1991)PubMedGoogle Scholar
  49. 49.
    Katz, A M, Rosenthal, D, Sauder, D N: Cell adhesion molecules. Int. J. Derm. 30, 153–160 (1991)PubMedGoogle Scholar
  50. 50.
    Kaufmann, R, Weber, L, Klein, C E: Integrine — neue Rezeptormoleküle: ihre Bedeutung für die Differenzierung, Regeneration und Immunantwort der Haut. Hautarzt 41, 256–261 (1990)PubMedGoogle Scholar
  51. 51.
    Keizer, G D, Te Velde, A A, Schwarting, R: Role of p150/95 in adhesion, migration, chemotaxis and phagocytosis in human monocytes: Eur. J. Immunol. 17, 1317–1322 (1987)PubMedGoogle Scholar
  52. 52.
    Kellner, I, Konter, U, Sterry, W: Upregulation of adhesion molecules in inflammatory skin diseases (Abstract). Arch. Derm. Res. (Suppl) 281, 550 (1989)Google Scholar
  53. 53.
    Kellner, I, Konter, U, Sterry, W: Overexpression of ECM-receptors (VLA-3 and -6) on psoriatic keratinocytes. Br. J. Derm., 125, 211–216 (1991)Google Scholar
  54. 54.
    Kishimoto, T K, O’Connor, K, Lee, A et al: Cloning of the beta subunit of the leukocyte adhesion proteins: homology to an extracellular matrix receptor defines a novel supergene family. Cell 48, 681–690 (1987)PubMedGoogle Scholar
  55. 55.
    Klein, C E, Steinmayer, T, Mattes, J M et al: Integrins of normal human epidermis: differential expression, synthesis and molecular structure. Br. J. Derm. 123, 171–178 (1990)Google Scholar
  56. 56.
    Klein, C E, Steinmayer, T, Kaufmann, D et al: Identification of a melanoma progression antigen as integrin VLA-2. J. invest. Derm. 96, 281–284 (1991)PubMedGoogle Scholar
  57. 57.
    Konter, U, Kellner, I, Klein, E et al: Adhesion molecule mapping in normal skin. Arch. Derm. Res. 281, 454–462 (1989)PubMedGoogle Scholar
  58. 58.
    Konter, U, Kellner, I, Hoffmeister, B, Sterry, W: Induction and upregulation of adhesion receptors in oral and dermal lichen planus. J. oral path. Med. 19, 459–463 (1991)Google Scholar
  59. 59.
    Krutmann, J, Köck, A, Schauer, E et al: Tumor necrosis factor β and ultraviolet radiation are potent regulators of human keratinocyte ICAM-1 expression. J. invest. Derm. 95, 127–131 (1991)Google Scholar
  60. 60.
    Lange Wantzin, G, Ralfkier, E, Lisby, S, Rothlein, R: The role of intercellular adhesion molecules in inflammatory skin reactions. Br. J. Derm. 119, 141–145 (1988)Google Scholar
  61. 61.
    Larsen, E, Palabrica, T, Sayer, S et al: PADGEM-dependent adhesion of platelets to monocytes and neutrophils is mediated by a lineage-specific carbohydrate, LNF III (CD15). Cell 63, 467–474 (1990)PubMedGoogle Scholar
  62. 62.
    Larson, R S, Springer, T A: Structure and function of leukocyte integrins. Immunol. Rev. 114, 181–217 (1990)PubMedGoogle Scholar
  63. 63.
    Lawrence, M B, Springer, T A: Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65, 859–873 (1991)PubMedGoogle Scholar
  64. 64.
    Le Varlet, B, Dezutter-Dambuyant, C, Staquet, M J et al: Human epidermal Langerhans cells express integrins of the β1 subfamily. J. invest. Derm. 96, 518–522 (1991)PubMedGoogle Scholar
  65. 65.
    Lewis, R E, Buchsbaum, M, Whitaker, D et al: Intercellular adhesion molecule expression in the evolving human cutaneous delayed hypersensitivity reaction. J. invest. Derm. 93, 672–677 (1989)PubMedGoogle Scholar
  66. 66.
    Lindström, P, Lerner, R, Palmblad, J, Patarroyo, M: Rapid adhesive responses of endothelial cells and of neutrophils induced by leukotriene B4 are mediated by leucocytic adhesion protein CD18. Scand. J. Derm. 31, 737–744 (1990)Google Scholar
  67. 67.
    Lisby, S, Ralfkier, E, Rothlein, R et al: Intercellular adhesion molecule-1 (ICAM-1) expression correlated to inflammation. Br. J. Derm. 120, 479–484 (1989)Google Scholar
  68. 68.
    Lo, S K, Detmers, P A, Levin, S M et al: Transient adhesion of neutrophils to endothelium. J. exp. Med. 169, 1779–1793(1989)Google Scholar
  69. 69.
    Lowe, J B, Stoolman, L M, Nair, R P et al: ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyl-transferase cDNA. Cell 63, 475–484 (1990)PubMedGoogle Scholar
  70. 70.
    Mackay, C R, Marston, W L, Dudler, L: Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. exp. Med. 171, 801–817 (1990)PubMedGoogle Scholar
  71. 71.
    Mackay, C R: Skin-seeking memory T cells. Nature 349, 737–738 (1991)PubMedGoogle Scholar
  72. 72.
    Marlin, S D, Morton, C C, Anderson, D C, Springer, T A: LFA-1 immunodeficiency disease: definition of the genetic defect and chromosomal mapping of alpha and beta subunits of the lymphocyte function associated antigen 1 (LFA-1) by complementation in hybrid cells. J. exp. Med. 164, 855–867 (1986)PubMedGoogle Scholar
  73. 73.
    Matis, W L, Lavker, R M, Murphy, G F: Substance P induces the expression of an endothelial leukocyte adhesion molecule by microvascular endothelium. J. invest. Derm. 94, 492–495 (1990)PubMedGoogle Scholar
  74. 74.
    Munro, J M, Pober, J S, Cotran, R S: Recruitment of neutrophils in the local endotoxin response: association with de novo endothelial expression of endothelial leukocyte adhesion molecule-1. Lab. Invest. 64, 295–299 (1991)PubMedGoogle Scholar
  75. 75.
    Natali, P, Nicotra, M R, Cavaliere, R et al: Differential expression of intercellular adhesion molecule-1 in primary and metastatic melanoma lesions. Cancer Res. 50, 1271–1278 (1990)PubMedGoogle Scholar
  76. 76.
    Nazzaro, V, Berti, E, Cavalli, R: Very late antigen (VLA) expression in various forms of epidermolysis bullosa simplex. Arch. Derm. Res. 283, 1–4 (1991)PubMedGoogle Scholar
  77. 77.
    Nickoloff, B J: Role of Interferon-γ in cutaneous trafficking of lymphocytes with emphasis on molecular and cellular adhesion events. Arch. Derm. 124, 1835–1843 (1988)PubMedGoogle Scholar
  78. 78.
    Nickoloff, B J, Griffiths, E M, Baadsgaard, J J et al: Markedly diminished epidermal keratinocyte expression of intercellular adhesion molecule-1 (ICAM-1) in Sézary syndrome. JAMA 261, 2217–2221 (1989)PubMedGoogle Scholar
  79. 79.
    Nickoloff, B J, Griffith, C E M, Barker, J N W N: The role of adhesion molecules, chemotactic factors, and cytokines in inflammatory and neoplastic skin disease — 1990 update. J. invest. Derm. 94, 151S–157S (1990)PubMedGoogle Scholar
  80. 80.
    Nickoloff, B J: Anti B4 integrin antibody prominently stains nerves in psoriatic skin (letter). Arch. Derm. 127, 271–272 (1991)PubMedGoogle Scholar
  81. 81.
    Norris, D A, Lyons, B, Middleton, M H et al: Ultraviolet radiation can either suppress or induce expression of intercellular adhesion molecule-1 (ICAM-1) on the surface of cultured human keratinocytes. J. invest. Derm. 95, 132–138 (1990)PubMedGoogle Scholar
  82. 82.
    Norris, P, Poston, R N, Thomas, D S et al: The expression of endothelial leukocyte adhesion molecule-1 (ELAM-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule (VCAM-1) in experimental cutaneous inflammation: a comparison of ultraviolett B erythema and delayed hypersensitivity. J. invest. Derm. 96, 763–770 (1991)PubMedGoogle Scholar
  83. 83.
    Osborn, L, Hession, C, Tizard, R et al: Direct cloning of vascular cell adhesion molecule-1, a cytokine induced endothelial protein that binds to lymphocytes. Cell 59, 1203–1211 (1989)PubMedGoogle Scholar
  84. 84.
    Osborn, L: Leukocyte adhesion to endothelium in inflammation. Cell 62, 3–6 (1990)PubMedGoogle Scholar
  85. 85.
    Patarroyo, M, Prieto, J, Rincon, J: Leukocyte-cell adhesion: a molecular process fundamental in leukocyte physiology. Immunol. Rev. 114, 67–108 (1990)PubMedGoogle Scholar
  86. 86.
    Peltonen, J, Larjava, H, Jaakkola, S et al: Localization of integrin receptors for fibronectin, collagen, and laminin in human skin. J. clin. Invest. 84, 1916–1923 (1989)PubMedGoogle Scholar
  87. 87.
    Petzelbauer, P, Stingl, G, Wolff, K, Volc-Platzer, B: Cyclosporine A suppresses ICAM-1 expression by papillary endothelium in healing psoriatic plaques. J. invest. Derm. 96, 362–369 (1991)PubMedGoogle Scholar
  88. 88.
    Picker, L J, Kishimoto, T K, Smith, W et al: ELAM-1 is an adhesion molecule for skin-homing T cells. Nature 349, 795–799 (1991)Google Scholar
  89. 89.
    Rice, G E, Bevilaqua, M P: An inducible endothelial cell surface glykoprotein mediates melanoma adhesion. Science 246, 1303–1306 (1989)PubMedGoogle Scholar
  90. 90.
    Rice, G E, Munro, J M, Corless, C, Bevilaqua, M P: Vascular and nonvascular expression of INCAM-110. Am. J. Path. 138, 385–393 (1991)PubMedGoogle Scholar
  91. 91.
    Rohde, D, Schlüter-Wigger, W, Mielke, V et al: Endothelial leukocyte adhesion molecule-1 (ELAM-1) expression correlates with the T-cell immigration. J. invest. Derm., in press (1991)Google Scholar
  92. 92.
    Sanchez-Madrid, F, Krensky, A M, Ware, C F et al: Three distinct antigens associated with human T lymphocyte-mediated cytolysis: LFA-1, LFA-2, and LFA-3. Proc. nat. Acad. Sci. 79, 7489–7493 (1982)Google Scholar
  93. 93.
    Shappel, S B, Toman, C, Anderson, D C et al: Mac-1 (CD11b/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils. J. Immunol. 144, 2702–2711 (1990)Google Scholar
  94. 94.
    Shelley, C S, Remold-O’Donnel, E, Davis III, A E et al: Molecular characterization of sialophorin (CD43), the lymphocyte surface sialoglycoprotein defective in Wiskott-Aldrich syndrome. Proc. nat. Acad. Sci. USA 86, 2819–2823 (1989)PubMedGoogle Scholar
  95. 95.
    Shimizu, Y, Newman, W, Gopal, T V: Four molecular pathways of T-cell adhesion to endothelial cells: roles of LFA-1, VCAM-1, and ELAM-1 and changes in pathway hierarchy under different activation conditions. J. Cell Biol. 113, 1203–1212, 1991PubMedGoogle Scholar
  96. 96.
    Shimizu, Y, Seventer, G A van, Horgan, K J, Shaw, S: Roles od adhesion molecules in T-cell recognition: fundamental similarities between four integrins on resting human T cells (LFA-1, VLA-4, VLA-5, VLA-6) in expression, binding, and costimulation. Immunol. Rev. 114, 109–143 (1990)PubMedGoogle Scholar
  97. 97.
    Shimizu, Y, Shaw, S: Lymphocyte interactions with extracellular matrix. FASEB J. 5, 2292–2299 (1991)PubMedGoogle Scholar
  98. 98.
    Shimizu, Y, Shaw, S, Graber, N: Activation dependent binding of human memory T cells to adhesion molecule ELAM-1. Nature 349, 799–802 (1991)PubMedGoogle Scholar
  99. 99.
    Shiohara, T, Moriya, N, Gotoh, C et al: Locally administered monoclonal antibodies to lymphocyte function-associated antigen 1 and to L3T4 prevent cutaneous graft-vs-host disease. J. Immunol. 141, 2261–2267(1988)Google Scholar
  100. 100.
    Shiohara, T, Moriya, N, Gotoh, C: Differential expression of lymphocyte function — associated antigen 1 (LFA-1) on epidermotropic and non-epidermotropic T-cell clones. J. invest. Derm. 93, 804–808 (1989)PubMedGoogle Scholar
  101. 101.
    Shiohara, T, Nickoloff, B, Sagawa, Y et al: Fixed drug eruptions: expression of epidermal keratinocyte intercellular adhesion molecule-1 (ICAM-1). Arch. Derm. 125, 1371–1376 (1989)PubMedGoogle Scholar
  102. 102.
    Simon, J C, Cruz Jr, P D, Tigelaar, R E et al: Adhesion molecules CD11a, CD18, and ICAM-1 on human epidermal Langerhans cells serve a functional role in the activation of alloreactive T cells. J. invest. Derm. 96, 148–151 (1991)PubMedGoogle Scholar
  103. 103.
    Simon, M, Hunyadi, J: Etretinate suppresses ICAM-1 expression by lesional keratinocytes in healing cutaneous lichen planus. Arch. Derm. Res. 1990, 412–414 (1990)Google Scholar
  104. 104.
    Sonnenberg, A, Calafat, J, Janssen, H et al: Integrin alpha6/beta4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J. Cell Biol. 113, 907–917(1991)PubMedGoogle Scholar
  105. 105.
    Spertini, O, Kansas, G S, Munro, J M et al: Regulation of leukocyte migration by activation of the leukocyte adhesion molecule-1 (LAM-1) selectin. Nature 349, 691–694 (1991)PubMedGoogle Scholar
  106. 106.
    Springer, T, Galfre, G, Secher, D S, Milstein, C: Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur. J. Immunol. 9, 301–306 (1979)PubMedGoogle Scholar
  107. 107.
    Springer, T A, Dustin, M L, Kishimoto, T K et al: The lymphocyte function associated LFA-1, CD-2, and LFA-3 molecules: cell adhesion receptors of the immune system. Ann. Rev. Immunol. 5, 223–252 (1987)Google Scholar
  108. 108.
    Springer, T A: Adhesion receptors of the immune system. Nature 346, 425–434 (1990)PubMedGoogle Scholar
  109. 109.
    Springer, T A, Lasky, L A: Sticky sugars for selectins. Nature 1991, 349 (1991)Google Scholar
  110. 110.
    Stalder, J F, Gellard, P, Vergracht, A et al: Abnormalities in the expression of polymorphonuclear adhesion glycoproteins after stimulation in two patients with Papillon-Lefèvre syndrome (Abstract). J. invest. Derm. 92, 146 (1989)Google Scholar
  111. 111.
    Staunton, D E, Dustin, M L, Springer, T A: Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 339, 61–64 (1989)PubMedGoogle Scholar
  112. 112.
    Sterry, W, Mielke, V: CD4+ cutaneous T-cell lymphomas show the phenotype of helper/inducer T cells (CD45RA, CDw29+). J. invest. Derm. 93, 413–416 (1989)PubMedGoogle Scholar
  113. 113.
    Stoolman, L M: Adhesion molecules controlling lymphocyte migration. Cell 56, 907–910 (1989)PubMedGoogle Scholar
  114. 114.
    Taylor, R S, Griffiths, C E M, Brown, M D et al: Constitutive absence and interferon-γ-induced expression of adhesion molecules in basal cell carcinoma. J. Am. Acad. Derm. 22, 721–726 (1990)PubMedGoogle Scholar
  115. 115.
    Te Velde, A A, Keizer, G D, Figdor, C G: Differential function of LFA-1 family molecules (CD11 and CD18) in adhesion to human melanoma and endothelial cells. Immunology 61, 261–267 (1987)Google Scholar
  116. 116.
    Vejlsgaard, G L, Ralfkier, E, Avnstorp, C et al: Kinetics and characterization of intercellular adhesion molecule-1 (ICAM-1) expression on keratinocytes in various inflammatory skin lesions and malignant cutaneous lymphomas. J. Am. Acad. Derm. 20, 617–629 (1989)Google Scholar
  117. 117.
    Wayner, E A, Garcia-Pardo, A, Humphries, M J et al: Identification and characterization of the T-lymphocyte adhesion receptor for an alternative cell attachment domaine (CS-1) in plasma fibronectin. J. Cell. Biol. 109, 1321–1325 (1989)PubMedGoogle Scholar
  118. 118.
    Weber-Matthiesen, K, Sterry, W: Organization of the monocyte/macrophage system of normal human skin. J. invest. Derm. 95, 83–89 (1990)PubMedGoogle Scholar
  119. 119.
    Williams, A F: Out of equilibrium. Nature 1991, 473–474 (1991)Google Scholar
  120. 120.
    Williams, D A, Rios, M, Stephens, C et al: Fibronectin and VLA-4 in haematopoetic stem cell-microenvironment interactions. Nature 352, 438–441 (1991)PubMedGoogle Scholar
  121. 121.
    Wood, G S, Hong, S R, Sasaki, D T: Leu-8/CD7 antigen expression by CD3+ T cells: comparative analysis of skin and blood in mycosis fungoides/Sézary syndrome relative to normal blood values. J. Am. Acad. Derm. 22, 602–607 (1990)PubMedGoogle Scholar
  122. 122.
    Wright, S D, Craigmyle, L S, Silverstein, S: Fibronectin and serum amyloid P component stimulate C3bi and C3bi+ mediated phagocytosis in cultured human monocytes. J. exp. Med. 158, 1338–1343 (1983)PubMedGoogle Scholar
  123. 123.
    Wright, S D, Jong, M T C: Adhesion-promoting receptors on human macrophages recognize Escherichia coli by binding to lipopolysaccharide. J. exp. Med. 164, 1876–1888 (1986)PubMedGoogle Scholar
  124. 124.
    Yednock, T A, Rosen, S D: Lymphocyte homing. Adv. Immunol. 44, 313–379 (1989)PubMedGoogle Scholar
  125. 125.
    Yohn, J J, Critelli, M, Lyons, M B, Norris, D A: Modulation of melanocyte intercellular adhesion molecule-1 by immune cytokines. J. invest. Derm. 90, 233–237 (1990)Google Scholar
  126. 126.
    Zambruno, G, Manca, V, Sabtantonio, M L: VLA protein expression on epidermal cells (keratinocytes, Langerhans cells, melanocytes): a light and electron microscopic immunohistochemical study. Br. J. Derm. 124, 135–145(1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • P. von den Driesch
    • 1
  1. 1.Dermatologische Universitätsklinik ErlangenDeutschland

Personalised recommendations