Skip to main content

The Ekeland’s Principle and the Pareto ε-Efficiency

  • Chapter
Multi-Objective Programming and Goal Programming

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 432))

Abstract

We present in this paper a new variant of Ekeland’s variational principle for vector valued functions with applications to the study of Pareto ε-efficiency. A new existence result for Pareto efficiency is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman M.: A generalization of Brézis-Browder principle on ordered sets, Nonlin. Anal., Theory, Meth. and Appl. 6 Nr. 2 (1982), 157–165.

    Article  Google Scholar 

  2. Banas J.: On drop property and nearly uniformly smooth Banach spaces, Nonlin. Anal., Theory, Meth. and Appl. 14 (1990), 927–933.

    Article  Google Scholar 

  3. Brézis H. and Browder F. E.: A general principle on ordered set in nonlinear functional analysis, Adv. Math. 21 (1976), 777–787.

    Article  Google Scholar 

  4. Caristi J.: Fixed point theorems for mappings satisfying inwardness condition, Trans. Amer. Math. Soc, 215(1976),241–251.

    Article  Google Scholar 

  5. Danes J.: A geometric theorem useful in nonlinear functional analysis, Boll. Un. Mat. Ital. 6 (1972), 369–375.

    Google Scholar 

  6. Danes J.: Equivalence of some geometric and related results of nonlinear functional analysis, Comm. Math. Univ. Carolinae 26(1985), 445–454.

    Google Scholar 

  7. Dancs S., Hegedus M. and Medvegyev P.: A general ordering and fixed-point principle in complete metric space, Acta Sci. Math. (Szeged) 46(1983), 381–388.

    Google Scholar 

  8. De Figueiredo D. G.: The Ekeland variational principle with applications and detours, Tata Institute of Fundamental Research, Bombay (1989)

    Google Scholar 

  9. Ekeland L: Sur les problèmes variationnels, C.R. Acad. Sci. Paris 275 (1972), A 1057–1059.

    Google Scholar 

  10. Ekeland L: On some variational principle, J. Math. Anal. Appl. 47 (1974), 324–354.

    Article  Google Scholar 

  11. Ekeland L: Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (3), (1979), 443–474.

    Article  Google Scholar 

  12. Ekeland L: Some lemmas about dynamical systems, Math. Scand. 52 (1983), 262–268.

    Google Scholar 

  13. Ekeland L: The s-variational principle revised, (Notes by S. Terracini), Methods of nonconvex analysis (Ed. A. Cellina), Lecture Notes in Math. Springer-Verlag Nr. 1446 (1990), 1–15.

    Chapter  Google Scholar 

  14. Elliot R. J. and Jarvis T. M.: Prior play in a deterministic differential gaine, J. Math. Anal. Appl. 86 (1982), 137–145.

    Article  Google Scholar 

  15. Georgiev P. G.: The strong Ekeland variational principle, the strong drop theorem and applications, J. Math. Anal. Appl. 131 (1988), 1–21.

    Article  Google Scholar 

  16. Giles J. R. and Kutzarova D. N.: Characterization of drop and weak drop properties for closes bounded convex sets, Bull. Austral. Math. Soc. 43 (1991), 337–385.

    Article  Google Scholar 

  17. Giles J. R., Sims B. and Yorke A. C.: On the drop and weak drop properties for a Banach space, Bull. Austral. Math. Soc. 41 (1990), 503–507.

    Article  Google Scholar 

  18. Isac G.: Sur l’existence de l’optimum de Pareto, Riv. Mat. Univ. Parma (4) 9 (1983), 303–335.

    Google Scholar 

  19. Isac G.: Pareto optimization in ifnfinite dimensional spaces: the importance of nuclear cones, J. Math. Anal. Appl. 182(1994), 393–404.

    Article  Google Scholar 

  20. John J.: Mathematical vector optimization in partially ordered linear spaces, Peter Lang, Frankfurt (1986).

    Google Scholar 

  21. Khanh P. Q.: On Caristi-Kirk’s theorem and Ekeland’s variational principle for Pareto extrema, Preprint 357 Institute of Mathematics, Polish Academy of Sciences.

    Google Scholar 

  22. Loridan P.: ε-solutions in vector minimization problems, J. Optim. Theory Appl. 43 Nr. 2 (1984), 265–276.

    Article  Google Scholar 

  23. Luc D. T.: Theory of vector optimization, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag Nr. 319 (1989).

    Google Scholar 

  24. Montesinos V.: Drop property equals reflexivity, Studia Math. 87 (1987), 93–100.

    Google Scholar 

  25. Németh A. B.: A Nonconvex vector minimization problem, Nonlin. Anal. Theory, Methods and Appl. 10 (1986), 669–678.

    Article  Google Scholar 

  26. Németh A. B.: Between Pareto efficiency and Pareto s-efficiency, Optimization 20 Nr. 5 (1989), 615–637.

    Article  Google Scholar 

  27. Oettli W. and Théra M.: Equivalents of Ekeland’s principle, Bull. Austral. Math. Soc. 48 (1993), 385–392.

    Article  Google Scholar 

  28. Penot J. P.: The drop theorem, the petal theorem and Ekeland’s variational principle, Nonlin. Anal., Theory, Meth., Appl. 10 Nr. 9 (1986), 813–822.

    Article  Google Scholar 

  29. Perressini A. L.: Ordered topological vector spaces, Harper and Row (1967), New York, Evanston and London.

    Google Scholar 

  30. Rolewicz S.: On drop property, Studia Math. 85 (1987), 27–35.

    Google Scholar 

  31. Rolewicz S.: On A-uniform convexity and drop property, Studia Math, 87 (1987), 181–191.

    Google Scholar 

  32. Schaefer H. H.: Topological vector spaces Mcmillan Company, New York, London (1966).

    Google Scholar 

  33. Staib T.: On two generalizations of Pareto minimality, J. Optim. Theory Appl. 59 Nr. 2 (1988), 289–306.

    Google Scholar 

  34. Takahashi W.: Existence theorems generalizing fixed point theorems for multivalued mappings, Fixed point theory and applications (ed. J. B. Baillon and M. Théra) Pitman Research Notes in Math., 252, Longman, Harlow (1991), 397–406.

    Google Scholar 

  35. Tammer Chr.: A generalization of Ekeland’s variational principle, Optimization, 25 (1992), 129–141.

    Article  Google Scholar 

  36. Tammer Chr.: A variational principle and a fixed point theorem, To appear (Proc. IFIP-Conf Compiegne (1993)).

    Google Scholar 

  37. Tammer Chr.: existence results and necessary conditions for ε-efficient elements, In: B. Brosowski, J. Ester, S. Helding and R. Nehse (eds), Multicriteria Decision. Proc. 14 Th. Meeting of the German Working Group “ Mehrkriterielle Entsheidung” Peter Larg, Frankfurt (1993), 97–110.

    Google Scholar 

  38. Valyi L: Approximate saddle-point theorems in vector optimization, J. Optim. Theory Appl. 55 Nr. 3 (1987), 435–448.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Isac, G. (1996). The Ekeland’s Principle and the Pareto ε-Efficiency. In: Tamiz, M. (eds) Multi-Objective Programming and Goal Programming. Lecture Notes in Economics and Mathematical Systems, vol 432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87561-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87561-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60662-8

  • Online ISBN: 978-3-642-87561-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics