Skip to main content

Physical basis

  • Chapter
MRI of the Body

Abstract

Already proven to be a powerful diagnostic tool, magnetic resonance imaging (MRI) is expanding rapidly in the medical field. With this technique, tissue structures are differentiated with far better contrast resolution than with other imaging techniques. However, MRI can seem complex, since it is based on unfamiliar physical concepts, and its principles are different from those of other medical exploration methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam A (1961) The principles of nuclear magnetism. Int Series of Monogr on Phys, Clarendon Press, Oxford

    Google Scholar 

  2. Andrew ER (1969) Nuclear Magnetic Resonance. Cambridge University Press, Cambridge

    Google Scholar 

  3. Axel L (1984) Blood flow effects in magnetic resonance imaging. AJR 143: 1157–1166

    PubMed  CAS  Google Scholar 

  4. Beall PT, Hazelwood CF (1983) Nuclear magnetic resonance imaging. Cl Partain, AE James, FD Rollo, RR Price (eds) Saunders, Philadelphia, pp 312–338

    Google Scholar 

  5. Beall PT, Amtey SR, Kasturi SR (1984) NMR data handbook for biomedical applications. Pergamon Press, New York

    Google Scholar 

  6. Bloch F (1946) Nuclear induction. Phys Rev 70: 460–474

    Article  CAS  Google Scholar 

  7. Bloembergen M (1970) Nuclear magnetic relaxation. WA Benjamin Inc, New York

    Google Scholar 

  8. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM (1984) A review of normal tissue hydrogen. NMR relaxation times and relaxations mechanisms from 1–100 Mhz: Dependence on tissue type, NMR frequency, temperature, species, excision and age. Med Phys 11 (4): 425–448

    Article  PubMed  CAS  Google Scholar 

  9. Bradley G, Waluch V (1985) Blood flow: magnetic resonance imaging. Radiology 154: 443–450

    PubMed  Google Scholar 

  10. Brant-Zawadzki M, Berry I, Osaki L, Brasch R, Murovic J, Norman D (1986) Gd-DTPA in clinical MR of the brain. Am J Neurol 7: 781–788

    Google Scholar 

  11. Buxton RB, Wismer GL, Brady TJ, Rosen BR (1986) Quantitative proton chemical shift imaging. Magn Reson Med 3: 881–901

    Article  PubMed  CAS  Google Scholar 

  12. Damadian R, Goldsmith M, Minkoff L (1977) NMR in cancer. XVI FONAR image of the live human body. Physiol Chem 9: 97–108

    CAS  Google Scholar 

  13. Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153: 189–194

    PubMed  CAS  Google Scholar 

  14. Edelstein WA, Hutchison JMS, Johnson G, Redpath T (1980) Spin-warp imaging and applications to human whole-body imaging. Phys Med Biol 25: 751

    Article  PubMed  CAS  Google Scholar 

  15. Fullerton GD, Cameron IL, Ord VA (1984) Frequency dependence of magnetic resonance. Spin-lattice relaxation of protons in biological materials. Radiology 151: 135–138

    PubMed  CAS  Google Scholar 

  16. Garroway AN (1974) Velocity measurements in flowing fluids by NMR. J Phys D (Appl Phys) 7: 159–163

    Article  Google Scholar 

  17. Garroway AN, Grannel PK, Mansfield P (1974) Image formation in NMR by a selective irradiation process. J Phys C (solid state physics) 7: 457

    Article  Google Scholar 

  18. Hazelwood CF (1979) A view of the signifiance and understanding of the physical properties of cell-associated water. In: Drost-Hansen W, Clegg J (eds). Cell-Associated water, Academic Press, New York

    Google Scholar 

  19. Hoult DI, Richardj RE (1976) The signal-to-noise ratio of the NMR experiment. J Magn Reson 24: 71–85

    Google Scholar 

  20. Idy I, Bittoun J, Desgrez A (1987) L’IRM et la spectroscopie par RMN: principes physiques et mesure des paramètres. Radiol J CEPUR 7: 261

    Google Scholar 

  21. Kumar A, Welti D, Ernst RR (1975) NMR Fourier Zeugmatography. J Magn Reson 18: 69–83

    CAS  Google Scholar 

  22. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242: 190–191

    Article  CAS  Google Scholar 

  23. Lee JKT, Dixon WT, Ling D, Levill RG, Murphy WA (1984) Fatty infiltration of the liver: demonstration by proton spectroscopic imaging. Radiology 153: 195–201

    PubMed  CAS  Google Scholar 

  24. Levy-Leblond JM, Balibar F (1984) Quantique (rudiments). Inter-Editions, Paris

    Google Scholar 

  25. Mansfield P, Maudsley AA, Baires J (1976) Fast scan proton imaging by NMR. J Phys Sci Instr 9: 271–278

    Article  Google Scholar 

  26. Mansfield P, Mandsley AA (1977) Planar spin imaging. J Magn Reson 27: 101–119

    CAS  Google Scholar 

  27. Mansfield P, Morris PG (1982) NMR imaging in biomedicine. In Advances in magnetic resonance. JS Waugh (ed) Academic Press, New York

    Google Scholar 

  28. Mueller E, Deimling M, Reinhardt ER (1986) Quantification of pulsatile flow in MRI by an analysis of T2 changes in EGG-gated multiecho experiments. Magn Res Med 3: 331–335

    Article  CAS  Google Scholar 

  29. Ordidge RJ, Mansfield P, Doyle M, Coupland RI (1987) Real time movie images by NMR. Br J Radiol 55: 729–733

    Article  Google Scholar 

  30. Purcell EM, Honey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69: 37–38

    Article  CAS  Google Scholar 

  31. Shimizu K, Matsuda T, Sakurai T, Fujita A, Ohara H, Okamura S, Hashimoto S, Mano H, Kawai C, Kiri M (1986) Visualisation of moving fluid: quantitative analysis of blood flow velocity using MR imaging. Radiology 159: 195–199

    PubMed  CAS  Google Scholar 

  32. Singer JR, Crooks LE (1983) Nuclear magnetic resonance blood flow measurements in the human brain. Science 221: 654

    Article  PubMed  CAS  Google Scholar 

  33. Slichter CP (1963) Principles of magnetic resonance. Harper and Row, New York, pp 137–183

    Google Scholar 

  34. Straugan K, Spencer DH, Bydder GM (1983) Nuclear magnetic resonance imaging. CL Partain, AE James, FD Rollo, RR Price (eds) Saunders, Philadelphia, pp 195–206

    Google Scholar 

  35. Waluch V, Bradley WG (1984) NMR even echo rephasing in slow laminar flow. J Comput Assist Tomogr 8: 594–598

    Article  PubMed  CAS  Google Scholar 

  36. Wehrli FW, Mac Fall J, Newton TH (1983) Parameters determinings the appearance of NMR images. In Advanced imaging Techniques. TH Newton, DG Protts (eds) Clavadel Press vol 1: 81–118

    Google Scholar 

  37. Wesbey G (1984) Translational molecular self-diffusion in magnetic resonance imaging: Effects and applications. Biomedical Magnetic Resonance. Radiology Research and Education Foundation (ed)

    Google Scholar 

  38. Wismer GL, Rosen BR, Buxton R, Stard DD, Brady TJ (1985) Chemical shift imaging of bone narrow: preliminary experience. AJR 145: 1031–1037

    PubMed  CAS  Google Scholar 

  39. Zimmermann JR, Brittin WE (1957) Nuclear magnetic resonance studies in multiple phase system: lifetime of a water molecule in a absorbency phase on a silica gel. J Phys Chem 61: 1328–1333

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag France

About this chapter

Cite this chapter

Idy-Peretti, I., Bittoun, J. (1989). Physical basis. In: Vanel, D., et al. MRI of the Body. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87556-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87556-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87558-8

  • Online ISBN: 978-3-642-87556-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics