Advertisement

Genetic Recombination Induced by Ultraviolet Light

  • Paul Howard-Flanders
  • Brian M. Wilkins
  • W. Dean Rupp

Abstract

When bacteria are exposed to ultraviolet (UV) light, the principal photoproducts to be formed in their DNA are pyrimidine dimers. These dimers are of the cyclobutane type and are formed between adjacent pyrimidine bases in the same single strand (Setlow, 1966). It is also known that wild type cells survive exposure to UV light by means of a recovery mechanism in which the pyrimidine dimers are excised from the DNA forming single strand gaps. The twin helix is then reconstructed by DNA synthesis using the intact opposite strand as template. Certain strains that carry mutations in loci designated uvr are unable to excise pyrimidine dimers, and are abnormally sensitive to the lethal effects of UV light (Setlow and Carrier, 1964; Boyce and Howard-Flanders, 1964).

Keywords

Single Strand Genetic Recombination Double Exchange Pyrimidine Dimer Unirradiated Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, J. ,and C. A. Thomas: J. Molec. Biol. 18, 262 (1966).CrossRefGoogle Scholar
  2. Anraku, N., and J. Tomizawa: J. Molec. Biol. 11, 501 (1965).PubMedCrossRefGoogle Scholar
  3. Bollum, F. J., and R. B. Setlow: Biochim. Biophys. Acta (Amst.) 68, 599 (1963).CrossRefGoogle Scholar
  4. Bonhoeffer, F.: Z. Vererbungsl. 98, 141 (1966).PubMedCrossRefGoogle Scholar
  5. Boyce, R. P., and P. Howard-Flanders: Proc. Nat. Acad. Sci. (Wash.) 51, 293 (1964).CrossRefGoogle Scholar
  6. Doudney, C. O., and B. J. Bruce: Radiat. Res. 28, 597 (1966).PubMedCrossRefGoogle Scholar
  7. Gross, J. D., and L. G. Caro: J. Molec. Biol. 16, 269 (1966).PubMedCrossRefGoogle Scholar
  8. Howard-Flanders, P., and R. P. Boyce: Rad. Res. Suppl. 6, 156 (1966).CrossRefGoogle Scholar
  9. Jacob, F., S. Brenner, and F. Cuzin: Cold Spr. Harb. Symp. Quant. Biol. 28, 329 (1963).CrossRefGoogle Scholar
  10. Jacob, F., and E. L. Wollman: Ann. Inst. Pasteur 88, 724 (1955).Google Scholar
  11. Jacob, F., and E. L. Wollman: Symp. Soc. Exp. Biol. 12, 75 (1958).PubMedGoogle Scholar
  12. Joset, F., and T. H. Wood: Genetics 53, 343 (1966).PubMedGoogle Scholar
  13. Levinthal, C.: In: The Viruses (Ed. F. M. Burnet, and W. M. Stanley), Vol. 2, p. 281. New York: Academic Press 1959.Google Scholar
  14. McGrath, R., and R. W. Williams: Nature (Lond.) 212, 534 (1966).CrossRefGoogle Scholar
  15. Mitra, S., P. Reichard, R. B. Inman, L. L. Bertsch, and A. Kornberg: J. Molec. Biol. 24, 429 (1967).CrossRefGoogle Scholar
  16. Oppenheim, A. B., and M. Riley: J. Molec. Biol. 20, 331 (1966).PubMedCrossRefGoogle Scholar
  17. Ptashne, M.: J. molec. Biol. 11, 829 (1965).PubMedCrossRefGoogle Scholar
  18. Rupp, W. D., and P. Howard-Flanders: J. Molec. Biol. 31, 291 (1968).PubMedCrossRefGoogle Scholar
  19. Setlow, R. B.: Science 153, 379 (1966).PubMedCrossRefGoogle Scholar
  20. Setlow, R. B., and W. L. Carrier: Proc. Nat. Acad. Sci. (Wash.) 51, 226 (1964).CrossRefGoogle Scholar
  21. Swenson, P. A., and R. B. Setlow: J. Molec. Biol. 15, 201 (1966).PubMedCrossRefGoogle Scholar
  22. Watson, J. D., and F. H. C. Crick: Nature (Lond.) 171, 964 (1953).CrossRefGoogle Scholar
  23. Wilkins, B. M., and P. Howard-Flanders: In preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1968

Authors and Affiliations

  • Paul Howard-Flanders
    • 1
  • Brian M. Wilkins
    • 1
  • W. Dean Rupp
    • 1
  1. 1.Departments of Radiology and Molecular BiophysicsYale UniversityNew HavenUSA

Personalised recommendations