Advertisement

Control of Peptide Chain Initiation in Uninfected and Virus Infected Cells by Membrane Mediated Events

  • Gebhard Koch
  • Hermann Oppermann
  • Patricia Bilello
  • Friedrich Koch
  • Donald Nuss
Part of the Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 19)

Summary

Initiation of protein synthesis in tissue culture cells is rapidly inhibited or blocked by addition of either DMSO, ethanol, TPCK, cytochalasin B, or sucrose to the growth medium. In contrast, these agents do not interfere with the initiation of protein synthesis in cell-free extracts to a comparable extent. These results support the hypothesis that protein synthesis in tissue culture cells can be influenced by membrane mediated events. Translation of viral mRNA in RNA virus infected cells is resistant to a number of these inhibitors of peptide chain initiation and proceeds under conditions where translation of host mRNA is almost completely suppressed. It appears that viral mRNA possesses a greater ability than host mRNA to form mRNA-ribosome initiation complexes when the overall rate of peptide chain initiation is reduced. This observation has led to a number of predictions concerning the strategy of virus directed suppression of host mRNA translation. Under optimal growth conditions protein synthesis appears to be regulated mainly, but not exclusively, by the amount of the mRNA available for translation. However, when cellular growth and/or the overall rate of peptide chain initiation is restricted, control of protein synthesis at the translational level becomes decisive with the translation of each mRNA species proceeding with its own characteristic efficiency, most probably as a result of inherent differential affinities of individual mRNA species for ribosomes. Introduction

Keywords

Virus Infected Cell Tissue Culture Cell Viral mRNA Total Protein Synthesis Hypertonic Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

MEM

Minimal Essential Medium

HIB

Hypertonic Initiation Block

VSV

Vesicular Stomatitis Virus

TPCK

L-1-Tosylamido-2-Phenylethyl Chloromethyl Ketone

DMSO

Dimethylsulfoxide

L

Immunoglobulin Light Chain

H

Immunoglobulin Heavy Chain

DEAE

Diethylaminoethyl-dextran

HEPES

N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burger, M. M. (1970). Nature 227: 170–171.PubMedCrossRefGoogle Scholar
  2. Fan, H. and Penman, S. 61970). J. Mol. Biol. 50: 655–670.Google Scholar
  3. Hoffman, A., Bilello, P., Mittelstaedt, R., McFarland, E. and Koch, G. (1975). Arch. Biochem. Biophys. (submitted).Google Scholar
  4. Koch, G. (1973).In, Current Topics in Microbiol. and Immunol. 62: 89–138 ( Braun, Wrand and Wecker ).Google Scholar
  5. Koch, G. (1974). Biochem. Biophys. Res. Commun. 61: 817–824.CrossRefGoogle Scholar
  6. Koch, G., Bilello, P., Fishman, M., Mittelstaedt, R. and Borriss, E. (1976). Immune RNA in Neoplasia, Academic Press (in press).Google Scholar
  7. Koch, F. and Koch, G. (1974). Res. Commun. in Chem. Pathol. and Pharma. 9: 291–298.Google Scholar
  8. Koch, G., Kubinski, H. and Koch, F. (1974). Hoppe Seyler’s Z. für Phys. Chemie. 385: 1218.Google Scholar
  9. Koch, G. and Oppermann, H. (1975). Virology 63: 395–403.PubMedCrossRefGoogle Scholar
  10. Laemmli, U. K. and Favre, M. (1973). J. Mol. Biol. 80: 575–599.PubMedCrossRefGoogle Scholar
  11. Laskov, R. and Scharff, M. D. (1970). J. Exp. Med. 131: 515–541.PubMedCrossRefGoogle Scholar
  12. Lawrence, C. and Thach, R. E. (1974). J. Virol. 14: 598–610.PubMedGoogle Scholar
  13. Lodish, H. (1971). J. Biol. Chem. 246: 7131–7138.PubMedGoogle Scholar
  14. Lodish, H. (1974). Nature 251: 385–388.PubMedCrossRefGoogle Scholar
  15. MacDonald, C. and Gibbs, J. (1969). Biopolymers 7: 707–725.CrossRefGoogle Scholar
  16. MacDonald, C., Gibbs, J. and Pipkin, A. (1968). Biopolymers 6: 1–25.PubMedCrossRefGoogle Scholar
  17. Mans, J. R. and Novelli, G. D. (1961). Arch. Biochem. Biophys. 94: 48–54.Google Scholar
  18. Matthews, T. J., Butterworth, B. E., Chaggin, L. and Rueckert, R. R. (1973). Fed. Proc. 32: 461.Google Scholar
  19. McDowell, M. J., Wolfgang, K. J., Villa-Komaroff, L. and Lodish, H. F. (1972). Proc. Nat. Acad. Sci. USA 69: 2649–2653.CrossRefGoogle Scholar
  20. Mudd, J. A. and Summers, D. F. (1970). Virology 42: 328–340.PubMedCrossRefGoogle Scholar
  21. Nuss, D. L. and Koch, G. (1976a). J. Mol. Biol. (in press).Google Scholar
  22. Nuss, D. L. and Koch, G. (1976b). J. Virol. (in press).Google Scholar
  23. Nuss, D. L. and Koch, G. (1976c). J. Virology (submitted).Google Scholar
  24. Nuss, D. L., Oppermann, H. and Koch, G. (1975). Proc. Nat. Acad. Sci. USA 72: 1258–1262.Google Scholar
  25. Oppermann, H. and Koch, G. (1976a). Arch. of Virol. (in press).Google Scholar
  26. Oppermann, H. and Koch, G. (1976b). J. Gen. Virol. (in press).Google Scholar
  27. Oppermann, H., Saborio, J. L., Zarucki, T. and Koch, G. (1973). Fed. Proc. Fed. Amer. Soc. Exp. Biol. 32: 53.Google Scholar
  28. Pong, S.-S., Nuss, D. L. and Koch, G. (1975).. J. Biol. Chem. 250: 240–245.Google Scholar
  29. Racevskis, J., Kerwar, S. and Koch, G. (1976). J. Gen. Virol. (in press).Google Scholar
  30. Saborio, J. L. and Koch, G. (1973). J. Biol. Chem. 248: 8343–8347.PubMedGoogle Scholar
  31. Saborio, J. L., Pong, S.-S. and Koch, G. (1975). J. Mol. Biol. 85: 195–211.CrossRefGoogle Scholar
  32. Saborio, J. L., Wiegers, K. J. and Koch, G. (1975). Arch. Virol. 49: 81–87.PubMedCrossRefGoogle Scholar
  33. Sefton, B. M. and Rubin, H. (1970). Nature 227: 843–845.PubMedCrossRefGoogle Scholar
  34. Srere, P. A. (1974). In, Seventh Annual Miami Winter Symposia on “Biology and Chemistry of Eucaryotic Cell Surfaces”, 7: 21–47 ( Lee, E. Y. C. and Smith, E. E., ).Google Scholar
  35. Wright, P. J. and Cooper, P. D. (1974). Virology 59: 1–20.PubMedCrossRefGoogle Scholar

Copyright information

© J. F. Lehmanns Verlag München 1976

Authors and Affiliations

  • Gebhard Koch
    • 1
  • Hermann Oppermann
    • 1
  • Patricia Bilello
    • 1
  • Friedrich Koch
    • 1
  • Donald Nuss
    • 1
  1. 1.Roche Institute of Molecular BiologyNutleyUSA

Personalised recommendations