Imaginary-Axis Zeros in Multivariable H-Optimal Control

  • Michael G. Safonov
Part of the NATO ASI Series book series (volume 34)

Abstract

When a plant has jω-axis zeros or jω-axis poles, algorithms for computing H -optimal control laws fail. Closely related problems arise with strictly proper plants; these plants may be interpreted as having jω-axis zeros at ω = ∞. These intrinsic problems with H arise because the optimal control system has an irrational transfer function with point discontinuities on the jω-axis at the offending jω-axis zeros and poles of the plant. The difficulties with jω-axis poles and zeros are discussed and the methods for perturbing the H-problem to produce near-optimal rational control laws are proposed.

Keywords

Assure Doyle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Y. Chiang and M. G. Safonov, “The LINF Computer Program for L-Controller Design,” USC E.E. Report EECG-0785–1, July 1986.Google Scholar
  2. [2]
    M. G. Safonov, E. Jonckheere, M. Verma, and D.J.N. Limebeer, “Synthesis of Positive Real Multivariable Feedback Systems,” to appear Int. J. Control. Google Scholar
  3. [3]
    J. C. Doyle, “Advances in Multivariable Control,” ONR/Honeywell Workshop, Minneapolis, MN, October 1984,Google Scholar
  4. [4]
    J. C. Doyle, “Synthesis of Robust Controllers and Filters,” Proc. IEEE Conf. on Decision and Control, San Antonio, TX, December 1985.Google Scholar
  5. [5]
    G. Zames, “Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Semi norms, and Approximate Inverses,” IEEE Trans. on Automatic Control, Vol. AC-26, No, 2, pp. 301–320, April 1981.MathSciNetCrossRefGoogle Scholar
  6. [6]
    M. G. Safonov and M. Verma, “Multivariable L-Sensitivity Optimization and Hankel Approximation,” Proc. American Control Conf., San Francisco, CA, June 22–24, 1983;Google Scholar
  7. [6a]
    M. G. Safonov and M. Verma, “Multivariable L-Sensitivity Optimization and Hankel Approximation,” IEEE Trans. on Autom. Contr., AC-30, pp. 279–280, 1985.MathSciNetCrossRefGoogle Scholar
  8. [7]
    B.-C. Chang and J. B. Pearson, “Optimal Disturbance Reduction in Linear Multivariable Systems,” IEEE Trans. on Automatic Control, AC-29, pp. 863–887, 1984.MathSciNetGoogle Scholar
  9. [8]
    G. Zames and B. A. Francis, “Feedback, Minimax Sensitivity and Optimal Robustness,” IEEE Trans. on Automatic Control, Vol. AC-28, pp. 585–600, May 1983.MathSciNetCrossRefGoogle Scholar
  10. [9]
    B. Francis, J. W. Helton, and G. Zames, “H-Optimal Feedback Controllers for Linear Multivariable Systems,” IEEE Trans. on Automatic Control, Vol. AC-29, No. 10, pp. 888–900, Oct. 1984.MathSciNetCrossRefGoogle Scholar
  11. [10]
    H. Kwakernaak, “Robustness Optimization of Linear Feedback Systems,” IEEE Trans. on Automatic Control, Vol. 30, pp. 994, 1985.MathSciNetMATHCrossRefGoogle Scholar
  12. [11]
    M. G. Safonov and M. Verma, “L-Optimization and Hankel Approximation,” IEEE Trans. on Automatic Control, Vol. AC-30, No. 3, pp. 279–280, March 1985.MathSciNetCrossRefGoogle Scholar
  13. [12]
    M. S. Verma and E. A. Jonckheere, “L -Compensation with Mixed Sensitivity as a Broadband Matching Problem,” Systems and Control Letters, 4, pp. 125–129, 1984.MathSciNetMATHCrossRefGoogle Scholar
  14. [13]
    M. G. Safonov and R. Y. Chiang, “CACSD Using the State-Space L- Theory — A Design Example,” Proc. IEEE Conf. in CACSD, Washington, D.C., September 24–26, 1986.Google Scholar
  15. [14]
    T. Kailath, Linear Systems, Englewood Cliffs, NJ: Prentice-Hall, 1980, pp. 448–450.MATHGoogle Scholar
  16. [15]
    G. H. Golub and C. F. Van Loan, Matrix Computations, Baltimore, MD: Johns Hopkins University Press, 1983.MATHGoogle Scholar
  17. [16]
    B. A. Francis and G. Zames, “On H-Optimal Sensitivity Theory for SIS0 Feedback Systems,” IEEE Trans. on Automatic Control, AC-29, pp. 9–16, 1984.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Michael G. Safonov
    • 1
  1. 1.Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations