The Spectral Factorization Problem for Siso Distributed Systems

  • F. M. Callier
  • J. Winkin
Conference paper
Part of the NATO ASI Series book series (volume 34)

Abstract

We study spectral factorization for singlevariable linear distributed systems, viz. those modelled by transfer functions (TF’s) in the algebra 0) , [11], [26], where a) stability is guaranteed with a margin |σ0| , and b) delay is allowed in the direct input-output transmission. This enables us to generalize the graph metric, [16], to such systems. The results are particularized to TF’s of exponential order, viz. those in the subalgebra 0) , [14]. The theory is illustrated by an application to robust feedback control.

Keywords

Autocorrelation Convolution Tray Cond Prent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Maisel, L., 1971, Probability, Statistics and Random Processes (NY : Simon and Schuster).MATHGoogle Scholar
  2. [2]
    Kwakernaak, H., and Sivan, R., 1972, Linear Optimal Control Systems (NY : Wiley — Interscience).MATHGoogle Scholar
  3. [3]
    Jonckheere, E.A., and Helton, J.W., 1985, IEEE TAC-30, 1192.Google Scholar
  4. [4]
    Duren, P.L., 1970, Theory of Hp spaces (NY : Academic Press).MATHGoogle Scholar
  5. [5]
    Kreǐn, M.G., 1962, Amer. Math. Soc. Transl., (2) Vol. 22, 163.Google Scholar
  6. [6]
    Callier, F.M., 1985, IEEE TAC-30, 453.Google Scholar
  7. [7]
    Gohberg, I.C., and Fel’dman, I.A., 1972*, Convolution Equations and Projection Methods for their Solution, Vol. 41 (Providence, RI).Google Scholar
  8. [8]
    Rudin, W., 1970, Functional Analysis (NY : McGraw Hill).Google Scholar
  9. [9]
    Willems, J.C., 1971, The Analysis of Feedback Systems, Research Mon. 62 (Cambridge : MIT Press).Google Scholar
  10. [10]
    Corduneanu, C, 1961, Almost Periodic Functions (NY : Interscience).Google Scholar
  11. [11]
    Callier, F.M., and Desoer, C.A., 1978, IEEE CAS-25, 651, (correction : 1979, Ibid., Vol. 26, 360).Google Scholar
  12. [12]
    Marsden, J.E., 1973t Basic Complex Analysis (NY : W.H. Freeman and Co.).MATHGoogle Scholar
  13. [13]
    Gelfand, I.M., Raîkov, D.A., and Shilov, G.E., 1964, Commutative Normed Rings (NY : Chelsea); esp. § 13.Google Scholar
  14. [14]
    Callier, F.M., and Winkin, J., 1986, Int. J. Control, Vol. 43, 1353.MathSciNetMATHCrossRefGoogle Scholar
  15. [15]
    Hille, E., and Phillips, R.S., 1957, Functional Analysis and Semigroups, Vol. 31 (Providence, RI).MATHGoogle Scholar
  16. [16]
    Vidyasagar, M., 1984, IEEE TAC-29, 403.Google Scholar
  17. [17]
    Vidyasagar, M., 1985, Control System Synthesis : A Factorization Approach (Cambridge : MIT Press).MATHGoogle Scholar
  18. [18]
    Rudin, W., 1974, Real and Complex Analysis, 2nd Ed. (NY : McGraw Hill).MATHGoogle Scholar
  19. [19]
    Vidyasagar, M., Schneider, H., and Francis, B.A., 1982, IEEE TAC-27, 880.Google Scholar
  20. [20]
    Curtain, R.F., and Glower, K., 1986, Syst. Control Letter, Vol. 7, 41.Google Scholar
  21. [21]
    Curtain, R.F., and Pritchard, A.J., 1978, Infinite Dimensional Linear System Theory (NY : Springer-Verlag).CrossRefGoogle Scholar
  22. [22]
    Pazy, A., 1983, Semigroups of Linear Operators and Applications to Partial Differential Equations (NY : Springer-Verlag).MATHCrossRefGoogle Scholar
  23. [23]
    Jacobson, C.A., 1984, M.Sc. Thesis, ECSE Dept., Rensselaer Polytechnic Institute, Troy, NY.Google Scholar
  24. [24]
    Jacobson, C.A., 1986, Ph.D. Thesis, ECSE Dept., Ren. Poly. Ins., Troy, NY.Google Scholar
  25. [25]
    Nett, C.N., 1984, M.Sc. Thesis, ECSE Dept., Ren. Poly. Ins., Tray, NY.Google Scholar
  26. [26]
    Callier, F.M., and Desoer, C.A., 1980, IEEE CAS-27, 320.Google Scholar
  27. [27]
    Callier, F.M., and Desoer, C.A., 1980, Ann. Soc. Sc. Bruxelles, Vol. 94, 7.Google Scholar
  28. [28]
    Callier, F.M., and Desoer, C.A., 1982, Multivariable Feedback Systems (NY : Springer-Verlag).CrossRefGoogle Scholar
  29. [29]
    Desoer, C.A., Liu, R.W., Murray, J., and Saeks, R., 1980, IEEE TAC-25, 399.Google Scholar
  30. [30]
    El-Sakkary, A.K., 1985, IEEE TAC-30, 240.Google Scholar
  31. [31]
    Gohberg, I.c., and Kreǐn, M.C., 1960, Amer. Math. Soc. Transl., Vol. 2, 217.Google Scholar
  32. [32]
    Kailath, T., 1980, Linear Systems (Englewood Cliffs : Prentice Hall).MATHGoogle Scholar
  33. [33]
    Kučera, v., 1981, Automatica, Vol. 17, 745.MATHCrossRefGoogle Scholar
  34. [34]
    Vidyasagar, M., and Kimura, H., 1986, Automatica, Vol. 22, 85.MATHCrossRefGoogle Scholar
  35. [35]
    Youla, D.C., and Kazanjian, N.N., 1978, IEEE CAS-25, 57.Google Scholar
  36. [36]
    Bellman, R.E., and Roth, R.S., 1984, The Laplace Transform, Vol. 3 (Singapore : World Scientific).CrossRefGoogle Scholar
  37. [37]
    Banks, S.P., 1983, State-Space and Frequency-Domain Methods in the Control of Distributed Parameter Systems, Vol. 3 (London : Peter Peregrinus).MATHGoogle Scholar
  38. [38]
    Stakgold, I., 1968, Boundary Value Problems of Mathematical Physics, Vol. 2 (London : The McMillan Company).MATHGoogle Scholar
  39. [39]
    Callier, F.M., and Winkin, J., 1985, IEEE CAS-32, 1178, (correction : 1986, Ibid., Vol. 33, 356).Google Scholar
  40. [40]
    Antsaklis, P.J., 1986, IEEE TAC-31, 634.Google Scholar
  41. [41]
    Callier, F.M., and Desoer, C.A., 1972, IEEE TAC-17, 773.Google Scholar
  42. [42]
    Callier, F.M., and Desoer, C.A., 1976, IEEE TAC-21 , 128.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • F. M. Callier
    • 1
  • J. Winkin
    • 1
  1. 1.Department of MathematicsFacultés Universitaires N.D. de la PaixNamurBelgium

Personalised recommendations