Advertisement

H — Optimal Control, LQG Polynomial Systems Techniques and Numerical Solution Procedures

  • M. Saeki
  • M. J. Grimble
  • E. Kornegoor
  • M. A. Johnson
Conference paper
Part of the NATO ASI Series book series (volume 34)

Abstract

The introductory material first relates the general background of the robustness problem. This is followed by more specific material giving the context for the LQG and polynomial systems approach to the problem of H optimal control design.

Keywords

Cost Function Optimal Control Problem Polynomial System Spectral Factorization Dual Criterion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notation

set of real numbers

n

n-tuple of real numbers

nxm

nxm — tuple of real numbers

ℙ(.)

set of polynomials with real coefficients

ℝ(.)

set of ratios a(.)/b(.) where a,b ε ℙ(.)

Toep(A)

Toeplitz matrix formed from A ε ℙ (.)

Toep(A) Δ
where A = a0 + a1z-1 +...+ anz-n ε ℙ(z-1) and dimensions α, β depend on the order of the polynomial multiplication being represented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horowitz, I., ‘Synthesis of Feedback Systems’, Academic Press, New York, 1963.Google Scholar
  2. 2.
    Safonov M.G., and Athans, M., ‘Gain and phase margin for multiloop LQG regulators’, IEEE Trans, on Automatic Control, Vol. AC-22, No. 2, pp. 173–179, 1977.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Doyle, J.G., ‘Guaranteed margins for LQG regulators’, IEEE Trans. Automatic Control, Vol. AC-23, No. 4, pp. 756–757, 1978.CrossRefGoogle Scholar
  4. 4.
    Doyle J.C., and Stein, G., ‘Robustness with observers’, IEEE Trans. Automatic Control, Vol. AC-24, No. 4, pp. 607–611, August 1979.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Moore, J.B. and Blight, J.D., ‘Performance and robustness trade-offs in LQG regulator design’, IEEE CDC Conference, San Diego, USA, pp. 1191–1200, 1981.Google Scholar
  6. 6.
    Grimble, M.J., ‘Robustness of combined state and state-estimate feedback control schemes’, IEEE Trans. Automatic Control, Vol. AC-29, No. 7, pp. 667–669, July 1984.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Safonov, M.G., Laub, A.J., and Hartmann, G.L., ‘Feedback properties of multivariable systems: The role and use of the return difference matrix’, IEEE Trans. Automatic Control, Vol. AC-26, pp. 47–65, 1981.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Grimble, M.J., ‘Robust LQG design of discrete systems using a dual criterion’, IEEE CDC Conference, San Antonio, Texas, 1983.Google Scholar
  9. 9.
    Zaraes, G., 1981, ‘Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses’, IEEE Trans. Automatic Control Vol. AC-26, No. 2, pp. 301–320, 1981.Google Scholar
  10. 10.
    Freudenberg J.S. and Looze, D.P., ‘An analysis of H-optimization design methods’, Research Report, Co-ordinated Science Laboratory University of Illinois, 1983.Google Scholar
  11. 11.
    Zames, G., and Francis, B.A., ‘A new approach to classical frequency methods: Feedback and minimax sensitivity’, IEEE CDC Conference, San Diego, California, 1981.Google Scholar
  12. 12.
    Kwakernaak, H., ‘Optimal robustness of linear feedback systems’, Research Report, Mem. Nr.395, Dept. of Appl. Maths, Twente University of Tech. Enschede, The Netherlands, July, 1982.Google Scholar
  13. 13.
    Kwakernaak, H., ‘Robustness optimization of linear feedback systems’, 22nd IEEE CDC Conference, San Antonio, Texas, Dec. 1983.Google Scholar
  14. 14.
    Kwakernaak, H., ‘Minimax frequency domain optimization of multivariable linear feedback systems’, IFAC World Congress, Budapest, Hungary, 1984.Google Scholar
  15. 15.
    Kwakernaak, H., ‘Minimax frequency domain performance and robustness optimization of linear feedback systems’, IEEE Trans. Automatic Control, AC-30, No. 10, pp. 994–1004, 1985.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Grimble, M.J., ‘Controller for LQG self-tuning applications with coloured measurement noise and dynamic costing’, Proc. IEE Pt. D, Vol. 133, No. 1, Jan. 1986.Google Scholar
  17. 17.
    Grimble, M.J., ‘Optimal H -robustness and the relationship to LQG design problems’, Int. J. of Control, Vol. 43, No. 2, pp. 351–372, January 1986.MATHCrossRefGoogle Scholar
  18. 18.
    Saeki, M., ‘Polynomial approach to H — optimal control problem for a discrete time system’. Report ICU/103/1986, Industrial Control Unit, University of Strathclyde, Glasgow, Scotland, UK, (Submitted for Publication).Google Scholar
  19. 19.
    Saeki, M., and Kornegoor, E., ‘Numerical algorithm for solving a polynomial equation in an H -optimization problems’ Report ICU/121 /1986, Industrial Control Unit, University of Strathclyde, Glasgow, Scotland, UK.Google Scholar
  20. 20.
    Grimble, M.J., ‘LQG design of discrete systems using a dual criterion’, IEE Proc. Vol. 132, No. 2, pp. 612–68, 1985.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • M. Saeki
    • 1
  • M. J. Grimble
    • 2
  • E. Kornegoor
    • 3
  • M. A. Johnson
    • 2
  1. 1.Institute of Information Sciences and ElectronicsUniversity of TsukubaNiiharigun, Ibaraki, 305Japan
  2. 2.Industrial Control UnitUniversity of StrathclydeGlasgowScotland, UK
  3. 3.Department of Applied MathematicsTwente University of TechnologyEnschedeThe Netherlands

Personalised recommendations