Advertisement

Nonlinear Interpolation Theory in H

  • Joseph A. Ball
  • Ciprian Foias
  • J. William Helton
  • Allen Tannenbaum
Part of the NATO ASI Series book series (volume 34)

Abstract

Recently there has been an interesting cross-fertilisation between the areas of mathematical interpolation theory, operator theory and control theory which has led to new results in all areas. In particular the Sarason-Sz. Nagy Foias commutant lifting theorem provides a very broad framework for generalized Nevalinna-Pick interpolation which in turn gives a solution to the H-optimal weighted sensitivity problem in control theory. In this paper we give a generalization of this “commutant lifting theorem” for certain classes of nonlinear analytic operators and discuss some possible applications.

Keywords

Hankel Operator Interpolation Theory Fading Memory Feedback Compensator Commutant Lift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. M. Adamjan, D. Z. Arov, and M. G. Krein, “Analytic properties of Schmidt pairs for a Hankel operator and the generalized Schur-Takagi problem”, Math. USSR Sbornik, 15 (1971), pp. 31–73.CrossRefGoogle Scholar
  2. [2]
    V. M. Adamjan, D. Z. Arov, and M. G. Krein, “Infinite block Hankel matrices and related extension problems”, AMS Translations 111 (1978), pp. 133–156.Google Scholar
  3. [3]
    V. Anantharam and C. A. Desoer, “On the stabilization of nonlinear systems”, IEEE Trans. Auto. Cont. AC-29 (1984), pp. 569–573.MathSciNetCrossRefGoogle Scholar
  4. [4]
    J. A. Ball and J. W. Helton, “A Beurling-Lax theorem for the Lie group U(m, n) which contains most classical interpolation theory”, J. Operator Theory 9 (1983), pp. 107–142.MathSciNetMATHGoogle Scholar
  5. [5]
    J. A. Ball and A. C. M. Ran, “Optimal Hankel norm model reductions and Wiener-Hopf factorizations I: the canonical case”, SIAM J. Control and Opt., to appear.Google Scholar
  6. [6]
    S. Boyd and L. Chua, “Fading memory and the problem of approximating nonlinear operators with Volterra series”, IEEE Trans. Circuits and Systems CAS-32 (1985), pp. 1150–1161.MathSciNetCrossRefGoogle Scholar
  7. [7]
    J. W. Evans and J. W. Helton, “Applications of Pick-Nevanlinna theory to retention-solubility studies in the lungs”, Math. Biosci. 63 (1983), pp. 215–240.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    C. Foias, “Contractive intertwining dilations and waves in layered media”, Proceedings of International Congress of Mathematicians, Helsinki (1978), vol. 2, pp. 605–613.Google Scholar
  9. [9]
    C. Foias and A. Tannenbaum, “On the Nehari problem for a certain class of L-functions appearing in control theory”, J. Functional Analysis, to appear.Google Scholar
  10. [10]
    B. A. Francis, A Course in H Control Theory, Lecture Notes in Control and Inf. Sci., Springer-Verlag, to appear, 1986.Google Scholar
  11. [11]
    K. Glover, “All optimal Hankel-norm approximations of linear multivariable systems and their L-error bounds”, Int. J. Control 39 (1984), pp. 1115–1193.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    J. W. Helton, “Broadbanding: gain equalization directly from data”, IEEE Trans. on Circuits and Systems CAS-28 (1981), pp. 1125–1137.MathSciNetCrossRefGoogle Scholar
  13. [13]
    J. W. Helton, “Worst case analysis in the frequency domain: an H-approach to control”, IEEE Trans. Auto. Control AC-30 (1985), pp. 1154–1170.MathSciNetCrossRefGoogle Scholar
  14. [14]
    E. Hille and R. S. Phillips, Functional Analysis and Semigroups, AMS Colloquium Publications, vol. XXXI, Providence, Rhode Island, 1957.Google Scholar
  15. [15]
    H. Kimura, “Robust stabilization for a class of transfer functions”, IEEE Trans. Auto. Cont. AC-29 (1984), pp. 788–793.CrossRefGoogle Scholar
  16. [16]
    Z. Nehari, “On bounded bilinear forms”, Annals of Mathematics 65 (1957), pp. 153–162.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    S. C. Power, Hankel Operators on Hilbert Space, Pitman Advanced Publishing Program, Boston, 1982.MATHGoogle Scholar
  18. [18]
    M. Rosenblum and J. Rovnyak, Hardy Classes and Operator Theory, Oxford University Press, New York, 1985.MATHGoogle Scholar
  19. [19]
    W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.MATHGoogle Scholar
  20. [20]
    D. Sarason, “Generalized interpolation in H ”, Trans. AMS 127 (1967), pp. 179–203.MathSciNetMATHGoogle Scholar
  21. [21]
    B. Sz. -Nagy and C. Foias, “Dilation des commutants d’operateurs”, C.R. Acad. Sci. Paris, série A, 265 (1968), pp. 493–495.Google Scholar
  22. [22]
    B. Sz. -Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland Publishing Comapny, Amsterdam, 1970.MATHGoogle Scholar
  23. [23]
    A. Tannenbaum, Invariance and System Theory: Algebraic and Geometric Aspects, Lecture Notes in Mathematics, vol. 845, Springer-Verlag, New York, 1981.Google Scholar
  24. [24]
    D. C. Youla and M. Saito, “Interpolation with positive real functions”, J. of Franklin Institute 284 (1967), pp. 77–108.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    G. Zames, “Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses”, IEEE Trans. Auto. Cont. AC-26 (1981), pp. 301–320.MathSciNetCrossRefGoogle Scholar
  26. [26]
    G. Zames and B. A. Francis, “Feedback, minimax sensitivity, and optimal robustness”, IEEE Trans. Auto. Cont. AC-28 (1983), pp. 585–601.MathSciNetCrossRefGoogle Scholar
  27. [27]
    J. A. Bail, C. Foias, J. W. Helton, and A. Tannenbaum, “On a local nonlinear commutant lifting theorem”, Technical Report, Department of Electrical Engineering, University of Minnesota, October 1986, submitted for publication.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Joseph A. Ball
    • 1
  • Ciprian Foias
    • 2
  • J. William Helton
    • 3
  • Allen Tannenbaum
    • 4
    • 5
  1. 1.Department of MathematicsVirginia Polytechnic InstituteBlacksburgUSA
  2. 2.Department of MathematicsIndiana UniversityBloomingtonUSA
  3. 3.Department of MathematicsUniversity of California at San DiegoLa JollaUSA
  4. 4.Department of Electrical EngineeringUniversity of MinnesotaMinneapolisUSA
  5. 5.Department of MathematicsBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations