Progress in modern plant physiology has been largely dependent upon the development of new analytical methods. Each increase in analytical sensitivity has been accompanied by a wave of discoveries which were not observable before the new method was devised. To gain a deeper insight into the secrets of the plant’s life, microanalytical methods are being employed through which the complex physiological and biochemical processes may be studied at the molecular level. In simple terms — what one really wants is to learn more and more about less and less. That the use of radioisotopes in autoradiography at the light and electron microscope level did contribute effectively to such progress has been demonstrated in the preceding chapters of this book.


Electron Probe Electron Probe Microanalysis Biological Specimen Plant Specimen Accelerate Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aei Scientific Apparatus Inc.: EMMA4 — electron microscopy/x-ray microanalysis. Science 169 A, 155A (1970).Google Scholar
  2. Albright, J., Lewis, R.: Preparation of biological specimens for electron-beam micro-analyzer. J. appl. Phys. 36, 2615 (1965).Google Scholar
  3. Andersen, C. A.: An introduction to the electron probe microanalyzer and its application to biochemistry. Meth. biochem. Anal. 15, 147–270 (1967).Google Scholar
  4. Andersen, C. A., Hasler, M. F.: Extension of electron microprobe techniques to biochemistry by the use of long wavelength x-rays. In: X-ray optics and microanalysis, R. Castaing, P. Deschamps and J. Philibert, eds., p. 310–327. Paris: Herrmann 1966.Google Scholar
  5. Appleton, T. C.: Ultra-thin frozen sections for electron microscopy. LKB Instruments, Inc., Preliminary Report (1968).Google Scholar
  6. Bajaj, Y. P., Rasmussen, H. P., Adams, M. W.: Electron microprobe analysis of isolated plant cells. J. Exp. Bot. 22, 749–752 (1971).Google Scholar
  7. Bayard, M.: Microprobes. Amer. Lab. 1, 8–12 (1969a).Google Scholar
  8. Bayard, M.: Computer interfacing the electron microprobe. Microsc. 17, 169–177 (1969b).Google Scholar
  9. Biddulph, S. F.: Visual indications of S35 and P32 translocation in the phloem. Amer. J. Bot. 43, 143–148 (1956).Google Scholar
  10. Birks, L. S.: Electron probe microanalysis. New York-London: Interscience Publ. 1963.Google Scholar
  11. Böck, P.: Elektronenmikroskopischer Nachweis von Na+, Ca++ und Cl- in der lactierenden Milchdrüse des Meerschweinchens. Cytobiologie 2, 68–82 (1970).Google Scholar
  12. Branton, D., Jacobson, L.: Freeze-drying of plant material. Exp. Cell Res. 22, 559–568 (1961).Google Scholar
  13. Campbell, A. J., Gibbons, R.: Specimen contamination in the electron microprobe. In: The electron microprobe, T. D. McKinley, K. F. J. Heinrich and D. B. Wittry, eds., p. 75–82. New York: Wiley and Sons 1966.Google Scholar
  14. Carroll, K. G., Spinelli, F. R., Goyer, R. A.: Electron probe microanalyzer localization of lead in kidney tissue of poisoned rats. Nature 227, 1056 (1970).PubMedGoogle Scholar
  15. Castaing, R.: Application des sondes électroniques a une méthode d’analyse ponctuelle chimique et cristallographique. Thèse science, Paris (1951).Google Scholar
  16. Castaing, R.: Electron probe microanalysis. Adv. Electronics and Electron Phys. 13, 317–386 (1960).Google Scholar
  17. Castaing, R., Slodzian, G.: Microanalyse par émission ionique secondaire. J. Microsc. 1, 395–410 (1962).Google Scholar
  18. Cescas, M. P., Tyner, E. H., Gray, L. J.: The electron microprobe x-ray analyzer and its use in soil investigations. Adv. Agron. 20, 153–198 (1968).Google Scholar
  19. Chandler, J. A., Chou, C. K.: Subcellular elemental analysis with the analytical electron microscope. Proc. 28th ann. meet. electron microsc. soc. amer., Houston, 1970, C. J. Arceneaux, ed., p. 74–75. Baton Rouge: Claitor’s Publ. Div. 1970.Google Scholar
  20. Chase, G. D., Rabinowitch, J. L.: Principles of radioisotope methodology, 2nd ed. Minneapolis: Burgess 1962.Google Scholar
  21. Chayen, J., Cunningham, G. J., Gahan, P. B., Silcox, A. A.: Life-like preservation of cytoplasmic detail in plant cells. Nature 186, 1068–1069 (1960).PubMedGoogle Scholar
  22. Clarkson, D. T., Sanderson, J.: A critical review of certain autoradiographic techniques. Agricult. Res. Council ARCRL. 20, 68–73 (1970).Google Scholar
  23. Constantin, L. L., Franzini-Armstrong, C., Podolsky, R. J.: Localization of calcium-accumulating structures in striated muscle fibers. Science 147, 158–160 (1965).Google Scholar
  24. Cooke, G. J., Openshaw, I. K.: Combined high resolution electron microscopy and x-ray microanalysis. Proc. 28th ann. meet, electron. microsc. soc. amer., Houston, 1970, C. J. Arceneaux, ed., p. 552–553. Baton Rouge: Claitor’s Publ. Div. 1970.Google Scholar
  25. Cosslett, V. E., Duncumb, P.: Microanalysis by a flying-spot x-ray method. Nature 177, 1172–1173 (1956).Google Scholar
  26. Crossett, R. N.: Autoradiography of 32P in maize roots. Nature 213, 312–313 (1967).Google Scholar
  27. Davidson, E., Neuhaus, H.: Sample image displays for qualitative microprobe analysis. 1st natl. conf. on electron probe microanalysis, College Park, Maryland, 1966.Google Scholar
  28. Duncumb, P.: Precipitation studies with EMMA — a combined electron microscope and x-ray microanalyzer. In: The electron microprobe, T. D. McKinley, K.F.J. Heinrich and D. B. Wittry, eds., p. 490–499. New York: Wiley and Sons 1966.Google Scholar
  29. Engel, W. K., Resnick, J. S., Martin, E.: The electron probe in enzyme histochemistry. J. Histochem. Cytochem. 16, 273–275 (1968).PubMedGoogle Scholar
  30. Engström, A.: X-ray methods in histochemistry. Physiol. Rev. 33, 190–201 (1953).PubMedGoogle Scholar
  31. Epstein, E.: Dual pattern of ion absorption by plant cells and by plants. Nature 212, 1324–1327 (1966).Google Scholar
  32. Epstein, E.: Mineral nutrition of plants: principles and perspectives. New York: Wiley and Sons (1972).Google Scholar
  33. Eschrich, W.: Translokation 14C-markierter Assimilate im Licht und im Dunkeln bei Vicia faba. Planta 70, 99–124 (1966).Google Scholar
  34. Feder, N., O’Brien, T. P.: Plant microtechnique: some principles and new methods. Amer. J. Bot 55, 123–142 (1968).Google Scholar
  35. Gahan, P. B., Greenoak, G. C., James, D.: Preparation of ultra-thin frozen sections of plant tissues for electron microscopy. Histochemie 24, 230–235 (1970).Google Scholar
  36. Gahan, P. B., McLean, J., Kalina, M., Sharma, W.: Freezing-sectioning of plant tissues: the technique and its use in plant histochemistry. J. Exp. Bot. 18, 151–159 (1967).Google Scholar
  37. Galle, P.: Cytochimie sur coupes ultrafines par spectrographie des rayons x. In: 6th int. congr. electron microscopy, Kyoto, 1966, p. 79–80. Tokyo: Maruzen 1966.Google Scholar
  38. Galle, P., Blaise, G., Slodzian, G.: Study of distribution of diffusible ions in biological tissues using a secondary ion emission microanalyzer. Proc. 4th natl. conf. electron microprobe analysis, Pasadena, 1969, p. 36. Electron Probe Analysis Society of America, 1969.Google Scholar
  39. Galle, P., Stuve, J.: Analyse par microsonde électronique sur coupes biologiques ultrafines. J. Microsc. 7, 590–592 (1968).Google Scholar
  40. Gielink, A. J., Sauer, G., Ringoet, A.: Histoautoradiographic localization of calcium in oat plant tissues. Stain Technol. 41, 281–286 (1966).PubMedGoogle Scholar
  41. Gleit, C. E., Holland, W. D.: Use of electrically excited oxygen for the low temperature decomposition of organic substances. Anal. Chem. 34, 1454–1457 (1962).Google Scholar
  42. Glick, D.: The laser microprobe: its use for elemental analysis in histochemistry. J. Histochem. Cytochem. 14, 862–868 (1966).PubMedGoogle Scholar
  43. Hale, A. J.: Identification of cytochemical reaction products by scanning x-ray emission microanalysis. J. Cell Biol. 15, 427–435 (1962).PubMedGoogle Scholar
  44. Hall, T.: Some aspects of the microprobe analysis of biological specimens. In: Quantitative electron probe microanalysis, K. F. J. Heinrich, ed., Spec. Publ. No. 298, 269–299. Washington: Natl. Bureau of Standards 1968a.Google Scholar
  45. Hall, T.: Electron probe x-ray microanalysis. Proc. Roy. Microsc. Soc. 3, 84–85 (1968b).Google Scholar
  46. Hall, T. A., Hale, A. J., Switsur, V. R.: Some applications of microprobe analysis in biology and medicine. In: The electron microprobe, T. D. McKinley, K.F.J. Heinrich and D. B. Wittry, eds., p. 805–833. New York: Wiley and Sons 1966.Google Scholar
  47. Hall, T. A., Höhling, H. J.: The application of microprobe analysis to biology. In: 5th int. congr. x-ray optics microanalysis, Tübingen, 1968, G. Möllenstedt and K. H. Gaukler, eds., p. 581–591. Berlin-Heidelberg-New York: Springer 1969.Google Scholar
  48. Hall, T. A., Werba, P.: The measurement of total mass per unit area and elemental weight-fractions along line scans in thin specimens. In: 5th int. congr. x-ray optics microanalysis, Tübingen, 1968, G. Möllenstedt and K. H. Gaukler, eds., p. 93–98. Beríin-Heidelberg-New York: Springer 1969.Google Scholar
  49. Heinrich, K. F. J.: Electron probe microanalysis: a review. Appl. Spectrosc. 22, 395–403 (1968).Google Scholar
  50. Hodson, S., Marshall, J.: Ultramicrotomy: a technique for cutting ultrathin sections of unfixed frozen biological tissues for electron microscopy. J. Microsc. 91, 105–117 (1970a).PubMedGoogle Scholar
  51. Hodson, S., Marshall, J.: Tissue sodium and potassium: direct detection in the electron microscope. Experientia 26, 1283–1284 (1970b).PubMedGoogle Scholar
  52. Höhling, H. J., Hall, T. A.: Elektronenstrahlmikroanalyse als quantitative histologische Methode. Naturwissenschaften 56, 622–629 (1969).PubMedGoogle Scholar
  53. Höhling, H. J., Schöpfer, H., Höhling, R. A., Hall, T. A., Gieseking, R.: The organic matrix of developing tibia and femur, and macromolecular deliberations. Naturwissenschaften 57, 357 (1970).PubMedGoogle Scholar
  54. Humble, G. D., Raschke, K.: Stomatal opening quantitatively related to potassium transport. Plant Physiol. 48, 447–453 (1971).PubMedGoogle Scholar
  55. Ingram, F. D.: A small computerized on-line data gathering system for the electron microprobe. Proc. 4th natl. conf. electron microprobe analysis, Pasadena, 1969, p. 27. Electron Probe Analysis Society of America, 1969.Google Scholar
  56. Ingram, M. J., Hogben, C. A. M.: Electrolyte analysis of biological fluids with the electron microprobe. Anal. Biochem 18, 54–57 (1967).Google Scholar
  57. Ingram, M. J., Hogben, C. A. M.: Procedures for the study of biological soft tissue with the electron microprobe. Develop. Appl. Spectrosc. 6, 43–54 (1968).Google Scholar
  58. Jensen, W. A.: Botanical histochemistry. Principles and practice. San Francisco and London: W. H. Freeman 1962.Google Scholar
  59. Kaufmann, P. B., Bigelow, W. C., Petering, L. B., Drogosz, F. B.: Silica in developing epidermal cells of Avena internodes: electron microprobe analysis. Science 166, 1015–1017 (1969).Google Scholar
  60. Keil, K.: The electron microprobe x-ray analyzer and its application in mineralogy. Fortschr. Miner. 44, 4–66 (1967).Google Scholar
  61. Kemp, J. W.: X-ray wavelength tables. Glendale, Calif.: Appl. Res. Lab. 1962.Google Scholar
  62. Kennedy, J. S., Mittler, T. E.: A method of obtaining phloem sap via the mouth parts of aphids. Nature 171, 528 (1953).Google Scholar
  63. Knox, R. B.: Freeze-sectioning of plant tissues. Stain Technol. 45, 265–272 (1970).PubMedGoogle Scholar
  64. Komnick, H.: Elektronenmikroskopische Lokalisation von Na+ und Cl- in Zellen und Geweben. Protoplasma 55, 414–418 (1962).Google Scholar
  65. Komnick, H., Komnick, U.: Elektronenmikroskopische Untersuchungen zur funktionellen Morphologie des Ionentransportes in der Salzdrüse von Larus argentatus, V. Experimenteller Nachweis der Transportwege. Z. Zellforsch. 60, 163–203 (1963).Google Scholar
  66. Krichbaum, R., Lüttge, U., Weigl, J.: Mikroautoradiographische Untersuchung der Auswaschung des „anscheinend freien Raumes” von Maiswurzeln. Ber. dtsch. bot. Ges. 80, 167–176 (1967).Google Scholar
  67. Lambertz, P.: Untersuchungen über das Vorkommen von Plasmodesmen in den Epidermisaußenwänden. Planta 44, 147–190 (1954).Google Scholar
  68. Lane, B. P., Martin, E.: Electron probe analysis of cationic species in pyroantimonate precipitates in epon-embedded tissue. J. Histochem. Cytochem. 17, 102–106 (1969).PubMedGoogle Scholar
  69. Laroche, J.: Localisation de la silice par le microanalyseur à sonde électronique. C. R. Acad. Sc. (Paris) D 265, 1695–1697 (1967).Google Scholar
  70. Läuchli, A.: Cryostat technique for fresh plant tissues and its application in enzyme histochemistry. Planta 70, 13–25 (1966).Google Scholar
  71. Läuchli, A.: Zur Technik der Herstellung biologischer Präparate für die histochemische Untersuchung mit der Röntgen-Mikrosonde. Histochemie 11, 286–288 (1967a).PubMedGoogle Scholar
  72. Läuchli, A.: Nachweis von Calcium-Strontium-Ablagerungen im Fruchtstiel von Pisum sativum mit der Röntgen-Mikrosonde. Planta 73, 221–227 (1967 b).Google Scholar
  73. Läuchli, A.: Untersuchungen über Verteilung und Transport von Ionen in Pflanzengeweben mit der Röntgen-Mikrosonde. I. Versuche an vegetativen Organen von Zea mays. Planta 75, 185–206 (1967c).Google Scholar
  74. Läuchli, A.: Untersuchung des Stofftransports in der Pflanze mit der Röntgen-Mikrosonde. Vortr. Gesamtgeb. Bot. N. F. 2, 58–65 (1968a).Google Scholar
  75. Läuchli, A.: Untersuchungen mit der Röntgen-Mikrosonde über Verteilung und Transport von Ionen in Pflanzengeweben. II. Ionentransport nach den Früchten von Pisum sativum. Planta 83, 137–149 (1968b).Google Scholar
  76. Läuchli, A., Epstein, E.: Lateral transport of ions into the xylem of corn roots. I. Kinetics and energetics. Plant Physiol. 48, 111–117 (1971).PubMedGoogle Scholar
  77. Läuchli, A., Lüttge, U.: Untersuchung der Kinetik der Ionenaufnahme in das Cytoplasma von Mnium-Blattzellen mit Hilfe der Mikroautoradiographie und der Röntgen-Mikrosonde. Planta 83, 80–98 (1968).Google Scholar
  78. Läuchli, A., Schwander, H.: X-ray microanalyzer study on the localization of minerals in native plant tissue sections. Experientia 22, 503–505 (1966).Google Scholar
  79. Läuchli, A., Spurr, A. R., Epstein, E.: Lateral transport of ions into the xylem of corn roots. II. Evaluation of a stelar pump. Plant Physiol. 48, 118–124 (1971).PubMedGoogle Scholar
  80. Läuchli, A., Spurr, A. R., Wittkopp, R. W.: Electron probe analysis of freeze-substituted, epoxy resin embedded tissue for ion transport studies in plants. Planta 95, 341–350 (1970).Google Scholar
  81. Lechene, C.: The use of the electron microprobe to analyse very minute amounts of liquid samples. Proc. 5th natl. conf. electron probe analysis, New York City, 1970, p. 32A–32C. Electron Probe Analysis Society of America, 1970.Google Scholar
  82. Lennep, E. W. van, Komnick, H.: Histochemical demonstration of sodium and chloride in the frog epidermis. Cytobiologie 3, 137–151 (1971).Google Scholar
  83. Libanati, C. M., Tandler, C. J.: The distribution of the water-soluble inorganic ortho-phosphate ions within the cell: accumulation in the nucleus. J. Cell Biol. 42, 754–765 (1969).PubMedGoogle Scholar
  84. Lüttge, U., Weigl, J.: Mikroautoradiographische Untersuchungen der Aufnahme und des Transports von 35SO4 und 45Ca++ in Keimwurzeln von Zea mays L. und Pisum sativum L. Planta 58, 113–126 (1962).Google Scholar
  85. Lüttge, U., Weigl, J.: Zur Mikroautoradiographie wasserlöslicher Substanzen. Planta 64, 28–36 (1965).Google Scholar
  86. MacRobbie, E. A. C.: Fluxes and compartmentation in plant cells. Ann. Rev. Plant Physiol. 22, 75–96 (1971).Google Scholar
  87. Marton, L.: Survey of microanalysis — interpolation and extrapolation. In: Electron probe microanalysis, A. J. Tousimis and L. Marton, eds., p. 1–14. New York: Academic Press 1969.Google Scholar
  88. McKinley, T. D., Heinrich, K. J. F., Wittry, D. B., eds.: The electron microprobe. New York: Wiley and Sons 1966.Google Scholar
  89. Noeske, O., Läuchli, A., Lange, O. L., Vieweg, G. H., Ziegler, H.: Konzentration und Lokalisierung von Schwermetallen in Flechten der Erzschlackenhalden des Harzes. Dtsch. Bot. Ges. N. F., Nr. 4, 67–79 (1970).Google Scholar
  90. Ogilvie, R. E., Sutfin, L. V.: New techniques in scanning electron microscopy. Proc. 28th ann. meet. electron microsc. soc. amer., Houston, 1970, C. J. Arceneaux, ed., p. 348–349. Baton Rouge: Claitor’s Publ. Div. 1970.Google Scholar
  91. Ong, P. S.: Analysis for low atomic number elements with the electron microprobe. In: Electron probe microanalysis, A. J. Tousimis and L. Marton, eds., p. 137–153. New York: Academic Press 1969.Google Scholar
  92. Osmond, C. B., Lüttge, U., West, K. R., Pallaghy, C. K., Shacher-Hill, B.: Ion absorption in Atriplex leaf tissue. II. Secretion of ions to epidermal bladders. Aust. J. Biol. Sci. 22, 797–814 (1969).Google Scholar
  93. Pease, D. C.: Anhydrous ultrathin sectioning and staining for electron microscopy. J. Ultrastruct. Res. 14, 379–390 (1966).PubMedGoogle Scholar
  94. Peppers, N. A., Scribner, E. J., Alterton, L. E., Honey, R. C., Beatrice, E. S., Harding-Barlow, I., Rosan, R. C., Glick, D.: Q-switched ruby laser for emission microspectroscopic elemental analysis. Anal. Chem. 40, 1178–1182 (1968).Google Scholar
  95. Pickering, E. R.: Autoradiography of mobile, C14-labeled herbicides in sections of leaf tissue. Stain Technol. 41, 131–137 (1966).PubMedGoogle Scholar
  96. Podolsky, R. J., Hall, T., Hatchett, S. L.: Identification of oxalate precipitates in striated muscle fibers. J. Cell Biol. 44, 699–702 (1970).PubMedGoogle Scholar
  97. Rains, D.W., Läuchli, A.: Unpublished data (1969).Google Scholar
  98. Rasmussen, H. P.: Entry and distribution of aluminum in Zea mays. Planta 81, 28–37 (1968).Google Scholar
  99. Rasmussen, H. P.: Unpublished data (1969).Google Scholar
  100. Rasmussen, H. P., Shull, V. E., Dryer, H. T.: Determination of element localization in plant tissue with the microprobe. Develop. Appl. Spectrosc. 6, 29–42 (1968).Google Scholar
  101. Robison, W. L., Davis, D.: Determination of iodine concentration and distribution in rat thyroid follicles by electron-probe microanalysis. J. Cell Biol. 43, 115–122 (1969).PubMedGoogle Scholar
  102. Roland, J. C., Bessoles, M.: Mise en évidence du calcium dans les cellules du collenchyme. C. R. Acad. Sc. (Paris) D 267, 589–592 (1968).Google Scholar
  103. Rosan, R. C., Brech, F., Glick, D.: Current problems in laser microprobe analysis. Fed. Proc. 24, S126—S128 (1965).Google Scholar
  104. Rosan, R. C., Healy, M. K., McNary, W. F., Jr.: Spectroscopic ultramicroanalysis with a laser. Science 142, 236–237 (1963).PubMedGoogle Scholar
  105. Rosenstiel, A. V. P., Höhling, H. J., Schermann, J., Kriz, W.: Electron probe microanalysis of electrolytes in kidney slices. Proc. 5th natl. conf. electron probe analysis, New York City, 1970, p. 33 A–33 B. Electron Probe Analysis Society of America, 1970.Google Scholar
  106. Sanui, H., Pace, N.: Application of atomic absorption in the study of Na, K, Mg and Ca binding by cellular membranes. Appl. Spectrosc. 20, 135–141 (1966).Google Scholar
  107. Satter, R. L., Marinoff, P., Galston, A. W.: Phytochrome controlled nyctinasty in Albizzia julibrissin. II. Potassium flux as a basis for leaflet movement. Amer. J. Bot. 57, 916–926 (1970).Google Scholar
  108. Sawhney, B. L., Zelitch, I.: Direct determination of potassium ion accumulation in guard cells in relation to stomatal opening in light. Plant Physiol. 44, 1350–1354 (1969).PubMedGoogle Scholar
  109. Schafer, P. W., Chandler, J. A.: Electron probe x-ray microanalysis of a normal centriole. Science 170, 1204–1205 (1970).PubMedGoogle Scholar
  110. Schönherr, J., Bukovac, M. J.: The nature of precipitates formed in the outer cell wall following fixation of leaf tissue with Gilson solution. Planta 92, 202–207 (1970).Google Scholar
  111. Shone, M. G. T., Clarkson, D. T., Sanderson, J.: The absorption and translocation of sodium by maize seedlings. Planta 86, 301–314 (1969).Google Scholar
  112. Sims, R. T., Hall, T.: X-ray emission microanalysis of proteins and sulphur in rat plantar epidermis. J. Cell Sci. 3, 563–572 (1968).PubMedGoogle Scholar
  113. Sims, R. T., Marshall, D. J.: Location of nucleic acids by electron probe x-ray microanalysis. Nature 212, 1359 (1966).PubMedGoogle Scholar
  114. Spurr, A. R.: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969).PubMedGoogle Scholar
  115. Stumpf, W. E., Roth, L. J.: Thin sections cut at temperatures of —70° to —90°C. Nature 205, 712–713 (1965).PubMedGoogle Scholar
  116. Tandler, C. J., Solari, A. J.: Nucleolar orthophosphate ions. J. Cell Biol. 41, 91–108 (1969).PubMedGoogle Scholar
  117. Tandler, C. J., Libanati, C.M., Sanchis, C. A.: The intracellular localization of inorganic cations with potassium pyroantimonate. J. Cell Biol. 45, 355–366 (1970).PubMedGoogle Scholar
  118. Thomas, R. S.: Microincineration techniques for electron-microscopic localization of biological minerals. Adv. opt. electron microscopy, R. Barer and V. E. Cosslett, eds., 3, 99–154. London-New York: Academic Press 1969.Google Scholar
  119. Thomas, R. S., Corlett, M.: The ash-pattern of DNA-phosphate in Típula iridescent virus. In: 3rd int. biophysics congr., Cambridge, Massachusetts, 1969, p. 211.Google Scholar
  120. Tousimis, A. J.: Electron-probe microanalysis of biological specimens. In: 3rd int. symp. x-ray optics microanalysis, Stanford, 1962, H. H. Pattee, V. E. Cosslett and A. Engström, eds., p. 539–557. New York: Academic Press 1963a.Google Scholar
  121. Tousimis, A. J.: Electron probe x-ray microanalysis of medical and biological specimens. In: Symp. x-ray and electron probe analysis. Special Techn. Publ. No. 349, 193–206.Washington: Amer. Soc. for Testing and Materials 1963b.Google Scholar
  122. Tousimis, A. J.: Scanning electron probe microanalysis of biological specimens. Biomed. Sci. Instr. 1, 249–261 (1963c).Google Scholar
  123. Tousimis, A. J.: Applications of the electron probe x-ray microanalyzer in biology and medicine. Amer. J. Med. Electron. 5, 15–23 (1966).Google Scholar
  124. Tousimis, A. J.: Electron probe microanalysis of biological structures. In: X-ray and electron probe analysis in biomedical research, A. J. Tousimis and K. M. Earle, eds., p. 87–103. New York: Plenum Press 1969a.Google Scholar
  125. Tousimis, A. J.: A combined scanning electron microscopy and electron probe microanalysis of biological soft tissues. Proc. 2nd ann. scanning electron microscope symp., Chicago, 1969, O. Johari, ed., p. 217–229. Chicago: Illinois Inst. of Technol. Res. Inst. 1969 b.Google Scholar
  126. Tousimis, A. J.: Combined scanning electron microscopy and electron probe analysis of biological tissues. Proc. 27th ann. meet. electron microsc. soc. amer. 1969 c.Google Scholar
  127. Tousimis, A. J., Brooks, E. J., Birks, L. S.: Possible biological applications of the electron probe. In: X-ray spectrochemical analysis, L. S. Birks, ed., p. 122–123. New York: Interscience Publ. 1959.Google Scholar
  128. Tousimis, A. J., Marton, L., eds.: Electron probe microanalysis. New York-London: Academic Press 1969.Google Scholar
  129. Waisel, Y., Hoffen, A., Eshel, A.: The localization of aluminium in the cortex cells of bean and barley roots by x-ray microanalysis. Physiol. Plant. 23, 75–79 (1970).Google Scholar
  130. Ziegler, H., Lüttge, U.: Die Salzdrüsen von Limonium vulgare. II. Mitteilung. Die Lokalisierung des Chlorids. Planta 74, 1–17 (1967).Google Scholar

Note added in proof Additional references of papers published after the completion of this chapter: a) Monographs and reviews

  1. Andersen, C. A., Hinthorne, J. R.: Ion microprobe mass analyzer. Science 175, 853 to 860 (1972).PubMedGoogle Scholar
  2. Birks, L. S.: Electron probe microanalysis. 2nd ed. New York: Wiley-Interscience 1971.Google Scholar
  3. Chandler, J. A.: An introduction to analytical electron microscopy. Micron 3, 85–92 (1972).Google Scholar
  4. Hall, T. A.: The microprobe assay of chemical elements. In: Physical Techniques in Biological Research, 2nd ed., G. Oster, ed., Vol. I, Part A, p. 157–275. New York-London: Academic Press 1971.Google Scholar
  5. Läuchli, A.: Investigation of ion transport in plants by electron probe analysis: principles and perspectives. In: Liverpool Workshop on Ion Transport in Plants, W. P. Anderson, ed. London: Academic Press (in press).Google Scholar
  6. Russ, J. C., ed.: Energy dispersion x-ray analysis: x-ray and electron probe analysis. Special Techn. Publ. No. 485. Philadelphia: Amer. Soc. for Testing and Materials 1971.Google Scholar

b) Specimen preparation

  1. Appleton, T. C.: “Dry” ultra-thin frozen sections for electron microscopy and x-ray microanalysis: the cryostat approach. Micron 3, 101–105 (1972).Google Scholar
  2. Fisher, D. B.: Artifacts in the embedment of water-soluble compounds for light microscopy. Plant Physiol. 49, 161–165 (1972).PubMedGoogle Scholar
  3. Fisher, D. B., Housley, T. L.: The retention of watersoluble compounds during freeze-substitution and microautoradiography. Plant Physiol. 49, 166–171 (1972).PubMedGoogle Scholar

c) Microautoradiography and electron probe analysis

  1. Läuchli, A.: Translocation of inorganic solutes. Ann. Rev. Plant Physiol. 23, 197–218 (1972).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1972

Authors and Affiliations

  • André Läuchli
    • 1
    • 2
  1. 1.Department of Plant SciencesTexas A & M UniversityCollege StationUSA
  2. 2.Fachbereich Biologie-BotanikTechnische Hochschule DarmstadtDarmstadtDeutschland

Personalised recommendations