Advertisement

HRTS Time Series Observations: Chromospheric and Coronal Heating

  • Chung-Chieh Cheng

Abstract

We have studied HRTS time series observations of solar network boundaries, cell interiors, sunspot and active regions. The results show that the intensities of C IV, Si II, Fe II and UV continuum in these features fluctuate constantly, sometimes with large amplitudes of a factor of 2 in 30 sec. Downflow velocities are most common in the transition region. The only place where there are noticeable upflows is in the cell interior. Often neighboring emission features show temporal changes independent of each other, implying a “correlation” length of less than 2″. The observations do not show evidence of regular periodic waves. However, there is evidence that temporal variations in the temperature minimum region, the chromosphere, and the transition region follow each other, indicating some “excitation” agent propagating at a speed > 500 km sec-1. The heating occurs irregularly in time, perhaps due to energy releases in locally stressed magnetic fields.

Keywords

Coronal Hole Cell Interior Turbulent Velocity Bright Point Alfven Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, L.S., and Athay, R.G.:1989, Ap. J. 336, 1089.ADSCrossRefGoogle Scholar
  2. Athay, R.G., and White, O.R.:1978, Ap. J. 226, 1135.ADSCrossRefGoogle Scholar
  3. Bartoe, J.-D.F., and Brueckner, G.E.:1975. J. Opt Soc. Am. 65, 13.ADSCrossRefGoogle Scholar
  4. Bartoe, J.-D.F., and Brueckner, G.E.:1983, Ap. J. 272, 329.ADSCrossRefGoogle Scholar
  5. Brueckner, G.E. et al.:1986, in Adv. Space Res., 6, 263.ADSCrossRefGoogle Scholar
  6. Bruner, E.C.:1981, Ap. J. 247, 317.ADSCrossRefGoogle Scholar
  7. Cheng, C.-C., Doschek, G.A., and Feldman, U.:1979, Ap. J. 227, 1037.ADSCrossRefGoogle Scholar
  8. Davila, J.M.:1987, Ap. J. 317, 514.ADSCrossRefGoogle Scholar
  9. Ionson, J.A.:1978, Ap. J. 226, 650.ADSCrossRefGoogle Scholar
  10. Ionson, J.A.:1982, Ap. J. 254, 318.ADSCrossRefGoogle Scholar
  11. Ionson, J.A.:1984, Ap. J. 276, 357.ADSCrossRefGoogle Scholar
  12. Hollweg, J.V.:1985, in Chromosphere Diagnostics and Modelling, ed. B. Lites (Sacremento Peak Observatory).Google Scholar
  13. Hollweg, J.V.:1987a, Ap. J. 312, 880.ADSCrossRefGoogle Scholar
  14. Hollweg, J.V.:1987b, Ap. J. 320, 875.ADSCrossRefGoogle Scholar
  15. Narain, U., and Ulmschneider, P.:1990, Space Sci. Rev., in press.Google Scholar
  16. Parker, E.N.:1982, J. Geophys. Ap. Fluid Dyn. 22, 195.ADSMATHCrossRefGoogle Scholar
  17. Parker, E.N.:1983a, Ap. J. 264, 635.ADSCrossRefGoogle Scholar
  18. Parker, E.N.:1983b, Ap. J. 264, 642.ADSCrossRefGoogle Scholar
  19. Tousey, R., et al.:1973, Solar Phys. 33, 265.ADSGoogle Scholar
  20. Ulmschneider, P.:1986, Adv. Spac. Res. 6, 39.ADSCrossRefGoogle Scholar
  21. Vaiana, G.S., Krieger, A.S., and Timothy, A.F.:1973, Solar Phys. 32, 81.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Chung-Chieh Cheng
    • 1
  1. 1.E.O. Hulburt Center for Space ResearchNaval Research LaboratoryUSA

Personalised recommendations