Skip to main content

The Speed of Ductile-Crack Propagation and the Dynamics of Flow in Metals

  • Chapter

Abstract

In this paper the connection between the speed of ductile-crack propagation and the dynamic-flow properties of metals is examined. A theoretical analysis based on a dynamic solution for the Dugdale crack model and employing descriptions of 1) the strains within the plastic zone, 2) the rate dependence of the flow stress, and 3) a simple criterion for ductile fracture is developed. The calculations are found to compare favorably with observed crack speeds of 1.6 to 410 ft/sec in 0.00175-in.-thick steel foil. It is concluded that ductile-crack speed is limited by the increased resistance to plastic flow at high strain rates. The key factors determined in the analysis are used to show that flow stress data for strain rates exceeding 104 sec−1 can be extracted from ductile-crackpropagation experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. S. Dugdale, J. Mech. Phys. Solids, 8, 100 (1960).

    Article  ADS  Google Scholar 

  2. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, p. 340, Noordhoff, Gronigen (1953).

    Google Scholar 

  3. G. T. Hahn and A. R. Rosenfield, Acta Met., 13, 293 (1965).

    Article  Google Scholar 

  4. J. N. Goodier and F. A. Field, Fracture of Solids (Edited by Drucker and Gilman), Interscience, New York, p. 103 (1963).

    Google Scholar 

  5. A. R. Rosenfield, P. K. Dai and G. T. Hahn, Proc. First Int. Conf. Fracture, 1, 223 (1966).

    Google Scholar 

  6. A. S. Kobayashi and W. L. Engstrom, “Transient Analysis in Fracturing Aluminum Plate,” Technical Report No. 3, Contract Nonr-477(39), (November 1966).

    Google Scholar 

  7. J. R. M. Radok, Quart. Appl. Math., 14, 289 (1956).

    MathSciNet  MATH  Google Scholar 

  8. I. N. Sneddon, Crack Problems in the Mathematical Theory of Elasticity, North Carolina State College, Raleigh, North Carolina, p. 121 (1961).

    Google Scholar 

  9. J. W. Craggs, and A. M. Roberts, Jour. Appl. Mech., 34, 207 (1967).

    Article  ADS  MATH  Google Scholar 

  10. H. Kolsky, Stress Waves in Solids, Dover (1963).

    Google Scholar 

  11. G. T. Hahn, M. F. Kanninen, A. K. Mukherjee and A. R. Rosenfield, “Plane Stress Crack Extension in Steel Foil,” to be published.

    Google Scholar 

  12. A. R. Rosenfield and G. T. Hahn, Trans. ASM, 59, 962 (1966).

    Google Scholar 

  13. J. Krafft, Paper presented to Subcommittee III of ASTM, E24 (February 1966).

    Google Scholar 

  14. J. Krafft, Appl. Mat’ls Res., 3, 88 (1964).

    Google Scholar 

  15. M. J. Manjoine, Trans. ASME, 66, A–211 (1944).

    Google Scholar 

  16. J. Winlock, Trans. AIME, 197, 797 (1953).

    Google Scholar 

  17. G. I. Taylor, J. Inst. Civ. Eng., 26, 486 (1946).

    Article  Google Scholar 

  18. J. D. Chalupnik, Ph.D. Thesis, University of Texas (1964).

    Google Scholar 

  19. C. H. Mok, and J. Duffy, Technical Report Nonr 562(20), (1964).

    Google Scholar 

  20. P. C. Johnson, B. A. Stein, and R. S. Davis, Technical Report No. WAL TR 111.2/20-6, to U.S. Army Materials Research Agency (1962).

    Google Scholar 

  21. J. Harding, J. Mech. Eng. Sci., 7, 163 (1965).

    Article  Google Scholar 

  22. National Physical Laboratory, Metallurgy Division, “Report for the Year 1963,” p. 167.

    Google Scholar 

  23. F. S. Minshall, J. Appl. Phys., 26, 463 (1955).

    Article  ADS  Google Scholar 

  24. J. D. Campbell and J. Harding, Response of Metals to High Velocity Deformation, Shewmon and Zackay (editors), Interscience, New York, p. 51 (1961).

    Google Scholar 

  25. B. M. Butcher and C. H. Karnes, J. Appl. Phys., 37, 402 (1966).

    Article  ADS  Google Scholar 

  26. C. H. Karnes and E. A. Ripperger, J. Mech. Phys. Solids, 14, 75 (1966).

    Article  ADS  Google Scholar 

  27. U. S. Lindholm, J. Mech. Phys. Solids, 12, 317 (1964).

    Article  ADS  Google Scholar 

  28. W. G. Ferguson, A. Kumar and J. E. Dorn, J. Appl. Phys., 38, 1863 (1967).

    Article  ADS  Google Scholar 

  29. S. Yoshida and N. Nagata, Trans. (Japan) Nat. Res. Inst. Met., 9, 20 (1967).

    Google Scholar 

  30. J. D. Embury, A. S. Keh and R. M. Fisher, Trans. AIME, 236, 1252 (1966).

    Google Scholar 

  31. F. A. McClintock, S. M. Kaplan and C. A. Berg, Int. J. of Fracture Mech., 2, 614 (1966).

    Google Scholar 

  32. M. Isida, Proceedings Fourth U.S. Congress on Appl. Mech. (1962), see also P. C. Paris and G. Sih, ASTM STP 381, p. 41 (1965).

    Google Scholar 

  33. A. L. Tichener and M. B. Bever, Progress in Met. Phys., 7, 247 (1954).

    Article  ADS  Google Scholar 

  34. A. L. Tichener and M. B. Bever, Trans. AIME, 215, 326 (1959).

    Google Scholar 

  35. A. K. Mukherjee, W. G. Ferguson, W. L. Barmore and J. E. Dorn, J. Appl. Phvs.,37, 3707 (1966).

    Google Scholar 

  36. J. I. Bluhm and R. J. Morrissey, Proceedings First Int. Conf. Fracture, 3, 1739 (1966).

    Google Scholar 

  37. G. T. Hahn and A. R. Rosenfield, “Sources of Fracture Toughness: The Relation Between K1c and the Ordinary Tensile Properties of Metals.” Presented at the ASTM Symposium on Applications Related Phenomena in Titanium and Its Alloys, April 1967, and to be published in an ASTM STP.

    Google Scholar 

  38. M. F. Kanninen, to be published.

    Google Scholar 

  39. J. W. Craggs, J. Mech. Phys. Solids, 8, 99 (1960).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Kanninen, M.F., Mukherjee, A.K., Rosenfield, A.R., Hahn, G.T. (1968). The Speed of Ductile-Crack Propagation and the Dynamics of Flow in Metals. In: Lindholm, U.S. (eds) Mechanical Behavior of Materials under Dynamic Loads. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87445-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87445-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87447-5

  • Online ISBN: 978-3-642-87445-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics