Skip to main content

Abstract

The aim of the present paper is to discuss the thermodynamic approach to combined treatment of rheologic and plastic phenomena and to construct a thermodynamic theory of non-linear viscoplastic materials which may be used to describe the behavior of metals under dynamic loads.

In the first part of this paper the discussion is given of three different thermodynamic approaches to continuous media. It is shown that the thermodynamic foundations of viscoplasticity may be considered within the framework of the continuum mechanics of materials with memory. A non-linear material with memory is denned by a system of constitutive equations in which some state functions such as the stress tensor, the internal energy, the heat flux, etc., are determined as functional of a function which represents the time history of the local configuration of a material particle.

As a result of simultaneous introduction of elastic, viscous and plastic properties of a material, a description of the actual state functions involves the history of the local configuration expressed as a function of the time and of the path.

The restrictions which impose the second law of thermodynamics and the principle of material objectivity have been analyzed.

In the second part of this paper some particular cases of constitutive equations are discussed. Among others, a viscoplastic material of the rate type and a strain-rate sensitive plastic material are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Meixner, TIP has many faces, IUTAM Symposium on Irreversible Aspects of Continuum Mechanics, Vienna, Austria, June 22–25 (1966).

    Google Scholar 

  2. S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics, North-Holland, Amsterdam (1962).

    Google Scholar 

  3. M. A. Biot, Linear thermodynamics and the mechanics of solids, Proc. Third U.S. National Congress of Applied Mechanics, June 11-14, 1 (1958).

    Google Scholar 

  4. D. C. Drucker, Stress-strain-time relations and irreversible thermodynamics, Proc. Inter. Symposium on Second Order Effects in Elasticity, Plasticity and Fluid Dynamics, Haifa, April 21–29, 1962, Pergamon Press, Oxford, 331 (1964).

    Google Scholar 

  5. H. Ziegler, Thermodynamik and rheologische Probleme, Ing. Arch., 25, 58 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Ziegler, An attempt to generalize Onsager’s principle, and its significance for rheological problems, ZAMP, 9b, 748 (1958).

    Google Scholar 

  7. H. Ziegler, Zwei Extremalprinzipien der irreversiblen Thermodynamik, Ing. Arch., 30, 410 (1961).

    Article  MathSciNet  Google Scholar 

  8. C. Wehrli und H. Ziegler, Einige mit dem Prinzip von der grössten Dissipationsleistung verträgliche Stoffgleichungen, ZAMP, 13, 372 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  9. H. Ziegler, Über ein Prinzip der grössten specifischen Entropie produktion und seine Bedentung für die Rheologie, Rheologica Acta, 2, 230 (1962).

    Article  Google Scholar 

  10. H. Ziegler, Die statistischen Grundlagen der irreversiblen Thermodynamik, Ing. Arch., 31, 317 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Ziegler, Some extremum principles in irreversible thermodynamics, with application to continuum mechanics, Progress in Solid Mechanics, vol. 4, North Holland, Amsterdam, 91 (1963).

    Google Scholar 

  12. H. Ziegler, Thermodynamics aspects of continuum mechanics, CIME Colloquium, Bressanone (1963).

    Google Scholar 

  13. H. Ziegler, Thermodynamic considerations in continuum mechanics, Minta Martin Lecture, Dep. of Aeronautics and Astronautics, MIT, Cambridge, Mass. (1964).

    Google Scholar 

  14. H. Ziegler, Thermodynamik der Deformationen, Applied Mechanics, Proc. of the Eleventh International Congress of Applied Mechanics, Munich 1964, Springer, Berlin, 99 (1966).

    Google Scholar 

  15. A. A. Vakulenko, On stress-strain relations for inelastic bodies, Doklady Akad. Nauk SSSR, 118, 665 (1958).

    MathSciNet  MATH  Google Scholar 

  16. A. A. Vakulenko, Thermodynamic investigation of stress-strain relations in isotropic elasto-plastic bodies, Doklady Akad. Nauk SSSR, 126, 736 (1959).

    MathSciNet  Google Scholar 

  17. A. E. Green and J. E. Adkins, Large Elastic Deformations and Non-Linear Continuum Mechanics, Oxford (1960).

    Google Scholar 

  18. O. W. Dillon, Coupled thermoplasticity, J. Mech. Phys. Solids, 11, 21 (1963).

    Article  ADS  MATH  Google Scholar 

  19. G. A. Kluitenberg, Thermodynamical theory of elasticity and plasticity, Physica, 28, 217 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  20. G. A. Kluitenberg, A note on the thermodynamics of Maxwell bodies, Kelvin bodies /Voigt bodies/, and fluids, Physica, 28, 561 (1962).

    MathSciNet  MATH  Google Scholar 

  21. G. A. Kluitenberg, On rheology and thermodynamics of irreversible processes, Physica, 28, 1173 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. G. A. Kluitenberg, On the thermodynamics of viscosity and plasticity, Physica, 29, 633 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  23. G. A. Kluitenberg, A unified thermodynamic theory for large deformations in elastic media and in Kelvin /Voigt/ media, and for viscous fluid flow, Physica, 30, 1945 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. G. A. Kluitenberg, Application of the thermodynamics of irreversible processes to continuum mechanics, Non-Equilibrium Thermodynamics, Variational Techniques and Stability, Proc. Symposium held at the University of Chicago, May 17–19, 1965, The University of Chicago Press, 91 (1966).

    Google Scholar 

  25. G. A. Kluitenberg, On heat dissipation due to irreversible mechanical phenomena in continuous media, to be published in Physica.

    Google Scholar 

  26. S. L. Koh and A. C. Eringen, On the foundations of non-linear thermoviscoelasticity, Int. J. Engng. Sci., 1, 199 (1963).

    Article  MathSciNet  Google Scholar 

  27. J. Kestin, On the application of the principles of thermodynamics to strained solid materials, Brown University, Report (1966); IUTAM Symposium on Irreversible Aspects of Continuum Mechanics, Vienna, Austria, June 22–25, 1966.

    Google Scholar 

  28. J. F. Besseling, A thermodynamic approach to rheology, IUTAM Symposium on Irreversible Aspects of Continuum Mechanics, Vienna, Austria, June 22–25, 1966.

    Google Scholar 

  29. B. D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Rat. Mech. Anal., 13, 167 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  30. B. D. Coleman and V. J. Mizel, Existence of caloric equations of state in thermodynamics, J. Chemical Physics, 40, 1116 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  31. B. D. Coleman, Thermodynamics of materials with memory, Arch. Rat. Mech. Anal., 17, 1 (1964).

    Google Scholar 

  32. B. D. Coleman, On thermodynamics, strain impulses, and viscoelasticity, Arch. Rat. Mech. Anal., 17, 230 (1964).

    MATH  Google Scholar 

  33. C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics, Encyclopedia of Physics, vol. III/3, Springer, Berlin (1965).

    Google Scholar 

  34. R. M. Christensen and P. M. Naghdi, Linear non-isothermal viscoelastic solids, Acta Mech., 3, 1 (1967).

    Article  MATH  Google Scholar 

  35. A. E. Green and P. M. Naghdi, A general theory of an elastic-plastic continuum, Arch. Rat. Mech. Anal, 18, 251 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  36. A. E. Green and P. M. Naghdi, Plasticity theory and multipolar continuum mechanics, Mathematica, 12, 21 (1965).

    MathSciNet  Google Scholar 

  37. O. W. Dillon, A thermodynamic basis of plasticity, Acta Mech., 3, 182 (1967).

    Article  Google Scholar 

  38. J. Meixner, On the theory of linear viscoelastic behavior, Rheologica Acta, 4, 77 (1965).

    Article  Google Scholar 

  39. J. Meixner, Bemerkungen zur Theorie der Wärmeleitung, Zeitschrift für Phvsik, 193, 366 (1966).

    Article  ADS  Google Scholar 

  40. J. Meixner, Consequences of an inequality in nonequilibrium thermodynamics, J. Appl. Mech., 33, 481 (1966).

    Article  ADS  Google Scholar 

  41. C. Truesdell, Letter to the Participants in the IUTAM Symposium on Thermodynamics at Vienna in June 1966 and Comments on Professor Meixner’s Lecture; October 26, 1966.

    Google Scholar 

  42. C. Truesdell and R. Toupin, The Classical Field Theories, Encyclopedia of Physics, vol. III/1, Springer, Berlin, 226 (1960).

    Google Scholar 

  43. J. Meixner, On the theory of linear passive systems, Arch. Rat. Mech. Anal, 17, 278 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  44. M. E. Gurtin and W. O. Williams, On the Clausius-Duhem Inequality, ZAMP, 17, 626 (1966).

    Article  ADS  Google Scholar 

  45. M. E. Gurtin and W. O. Williams, An axiomatic foundation for continuum thermodynamics, Carnegie Institute of Technology, Report (1967).

    Google Scholar 

  46. W. Noll, A mathematical theory of the mechanical behavior of continuous media, Arch. Rat. Mech. Anal., 2, 117 (1958).

    Article  Google Scholar 

  47. W. Noll, The foundations of classical mechanics in the light of recent advances in continuum mechanics, The Axiomatic Method with Special Reference to Geometry and Physics, Proc. Int. Symposium, University of California, Berkeley, December 26, 1957–January 4, 1958, North-Holland, Amsterdam, 266 (1959).

    Google Scholar 

  48. P. Perzyna, Fundamental problems in viscoplasticity, Advances in Applied Mechanics, 9 (1966).

    Google Scholar 

  49. C.-C. Wang and R. M. Bowen, On the thermodynamics of nonlinear materials with quasi-elastic response, Arch. Rat. Mech. Anal., 22, 79 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  50. M. E. Gurtin, Thermodynamics and the possibility of spatial interaction in elastic materials, Arch. Rat. Mech. Anal., 19, 339 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  51. A. C. Pipkin and R. S. Rivlin, Mechanics of rate-independent materials, ZAMP, 16, 313 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  52. A. E. Green, Hypo-elasticity and plasticity, J. Rat. Mech. Anal., 5, 725 (1956); Proc. Royal Soc. London, 234A, 46 (1956).

    MATH  Google Scholar 

  53. P. Perzyna, On thermodynamics of the rate type material, Bulletin de L’Académie Polon. Scien., Sér. scien. tech., 14, 397 (1966).

    Google Scholar 

  54. P. Perzyna, On thermodynamics of elastic-viscoplastic material, Bulletin de L’Académie Polon. Seien., Sér. seien. tech., 14, 409 (1966).

    Google Scholar 

  55. K. Hohenemser and W. Prager, Über die Ansätze der Mechanik isotroper Kontinua, ZAMM, 12, 216 (1932).

    Article  Google Scholar 

  56. P. Perzyna, The constitutive equations for rate sensitive plastic materials, Quart. Appl. Math., 20, 321 (1963).

    MathSciNet  MATH  Google Scholar 

  57. P. Perzyna, The constitutive equations for work-hardening and rate sensitive plastic materials, Proc. Vibr. Probl., 4, 281 (1963).

    MathSciNet  Google Scholar 

  58. P. Perzyna, On the constitutive equations for work-hardening and rate sensitive plastic materials, Bull. Acad. Polon. Sciences, Sér. seien, tech., 12, 199 (1964).

    Google Scholar 

  59. P. Perzyna and T. Wierzbicki, On temperature dependent and strain sensitive plastic materials, Bull. Acad. Polon. Sciences, Sér. seien. tech., 12, 225 (1964).

    Google Scholar 

  60. P. Perzyna and W. Wojno, On the constitutive equations of elastic/viscoplastic materials and finite strain, Arch. Mech. Stos., 18, 85 (1966).

    MathSciNet  MATH  Google Scholar 

  61. W. Wojno, On thermodynamics of elastic/viscoplastic materials, Thesis, Institute of Basic Technical Research, Polish Academy of Sciences (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Perzyna, P. (1968). On Thermodynamic Foundations of Viscoplasticity. In: Lindholm, U.S. (eds) Mechanical Behavior of Materials under Dynamic Loads. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87445-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87445-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87447-5

  • Online ISBN: 978-3-642-87445-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics