Advertisement

Prediction of Elastic-Plastic Wave Profiles in Aluminum 1060-0 Under Uniaxial Strain Loading

  • A. H. Jones
  • C. J. Maiden
  • S. J. Green
  • H. Chin

Abstract

In an ideally elastic-perfectly plastic material, in which the elastic moduli are constant, a high intensity wave propagating from the impact interface of two flat plates has a two-wave structure as shown in Fig. 1. The elastic wave propagates at velocity
$$\sqrt {{{{\rm{\lambda + 2\mu }}} \over {\rm{\rho }}}} $$
(1)
with intensity
$${{{\rm{\lambda + 2\mu }}} \over {{\rm{2\mu }}}}Y$$
(2)
where Y is the yield stress of the material in a uniaxial stress test, λ and μ are Lame’s constants, and p is the material density. This is followed by the higher intensity plastic wave travelling at a slower velocity
$$\sqrt {{{{\rm{\lambda + }}\left( {{2 \over 3}} \right){\rm{\mu }}} \over {\rm{\rho }}}} $$
(3)

Keywords

Wave Profile Plastic Strain Rate Uniaxial Strain Artificial Viscosity Plastic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. L. Holt, S. G. Babcock, S. J. Green and C. J. Maiden, Trans. ASM, 60 (1967).Google Scholar
  2. 2.
    C. H. Karnes, “Symposium on the Mechanical Behavior of Materials Under Dynamic Loads,” San Antonio, Texas, September 1967.Google Scholar
  3. 3.
    D. S. Clark and D. S. Wood, Proc. A.S.T.M., 49 (1949).Google Scholar
  4. 4.
    J. D. Campbell and K. J. Marsh, Phil. Mag., 7 (1962).Google Scholar
  5. 5.
    C. J. Maiden and S. J. Green, J. Appl. Mech., 33 (1966).Google Scholar
  6. 6.
    C. J. Maiden and J. D. Campbell, Phil. Mag., 3 (1958).Google Scholar
  7. 7.
    H. Kolsky, Proc. Phys. Soc, Series 3, 62 (1949).Google Scholar
  8. 8.
    A. Seeger, in Dislocations and Mechanical Properties of Crystals, Wiley and Sons, N.Y. (1956).Google Scholar
  9. 9.
    A. Kumar, Ph.D. Thesis, College of Engineering, University of California, Berkeley (1967).Google Scholar
  10. 10.
    S. Voshida and N. Xagata, Trans. J.I.M., 8 (1967).Google Scholar
  11. 11.
    C. H. Karnes and E. A. Ripperger, J. Mech. Phys. Solids, 14 (1966).Google Scholar
  12. 12.
    W. G. Ferguson, A. Kumar and J. E. Dorn, J. Appl. Phys., 38 (1967).Google Scholar
  13. 13.
    M. L. Wilkins, Methods of Computational Physics, Academic Press, Inc., New York (1964).Google Scholar
  14. 14.
    G. E. Duvall, IUTAM Symposium on Stress Waves in Anelastic Solids, held at Brown University, April 1963, Springer-Verlag (1964).Google Scholar
  15. 15.
    J. J. Gilman and X. G. Johnston, in Dislocation and Mechanical Properties of Crystals, John Wiley and Sons, Inc., New York (1957).Google Scholar
  16. 16.
    J. W. Taylor. J. Appl. Phys., 36 (1965).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1968

Authors and Affiliations

  • A. H. Jones
    • 1
  • C. J. Maiden
    • 1
  • S. J. Green
    • 1
  • H. Chin
    • 1
  1. 1.General Motors Technical CenterWarrenUSA

Personalised recommendations