Skip to main content

Effect of Strain Rate on the Dislocation Substructure in Deformed Niobium Single Crystals

  • Chapter
Mechanical Behavior of Materials under Dynamic Loads

Abstract

This paper describes an investigation of the relationship between mechanical properties and dislocation substructure in the strain rate range 10−4 to 104 sec−1. The relationship between lower yield stress τyield and strain rate ε follows two consecutive semi-logarithmic relationships of the form τyield = α + β log ε with a break at a strain rate of approximately 10 sec−1. The dislocation configurations produced by deformation in these two regions have been investigated at strain rates of 1.2 × 10−4 sec−1 and 1.5 × 103 sec−1 using transmission electron microscopy techniques. The relationship between dislocation density, flow stress, and plastic strain has been determined and is discussed in terms of the dislocation structures observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. R. Rosenfield and G. T. Hahn, Trans. ASM, 56, 962 (1966).

    Google Scholar 

  2. J. E. Dorn and S. Rajnak, Trans. AIME, 230, 1052 (1964).

    Google Scholar 

  3. H. Conrad, J.I.S.I., 198, 364 (1961).

    Google Scholar 

  4. R. N. Orava, Trans. AIME, 230, 1614 (1964).

    Google Scholar 

  5. D. L. Davidson. U. S. Lindholm and L. M. Yeakley. Acta Met., 14, 703 (1966).

    Article  Google Scholar 

  6. G. A. Sargent, P. J. Sherwood and A. A. Johnson, Nature, London, 195, 374 (1962).

    Article  ADS  Google Scholar 

  7. A. Fourdeux and A. Wronski, Acta Met., 11, 1270 (1963).

    Article  Google Scholar 

  8. T. E. Mitchell, R. A. Foxall and P. B. Hirsch, Phil. Mag., 8, 1895 (1963).

    Article  ADS  Google Scholar 

  9. T. E. Mitchell and W. A. Spitzig, Acta Met., 13, 1169 (1965).

    Article  Google Scholar 

  10. J. M. Krafft and J. C. Hahn, U.S. Patent No. 3, 194, 062; 1965.

    Google Scholar 

  11. R. Stickler and R. J. Engle, J. Sci. Inst., 40, 518 (1963).

    Article  ADS  Google Scholar 

  12. F. C. Frank and J. F. Nicholas, Phil. Mag., 44, 1213 (1953).

    MathSciNet  MATH  Google Scholar 

  13. A. K. Head, Phys. Stat. Sol., 20, 505 (1967).

    Article  ADS  Google Scholar 

  14. A. S. Keh, “Direct Observations of Lattice Defects in Crystals,” Inter-science, New York, p. 231 (1961).

    Google Scholar 

  15. R. K. Ham, Phil. Mag., 6, 1183 (1961).

    Article  ADS  Google Scholar 

  16. R. A. Foxall, M. S. Duesbery and P. B. Hirsch, Canadian Journal of Physics, 45, Part 2, 607 (1967).

    Article  ADS  Google Scholar 

  17. C. N. Reid, Acta Met., 14, 13 (1966).

    Article  Google Scholar 

  18. A. S. Keh, “Direct Observations of Imperfections in Crystals,” Inter-science, New York, p. 213 (1962).

    Google Scholar 

  19. A. S. Keh and S. Weissman, “Electron Microscopy and Strength of Crystals,” Interscience, New York, p. 231 (1963).

    Google Scholar 

  20. A. Lawley and H. L. Gaigher, Phil. Mag., 10, 15 (1964).

    Article  ADS  Google Scholar 

  21. J. W. Edington and R. E. Smallman, Acta Met., 12, 1313 (1964).

    Article  Google Scholar 

  22. H. Wiedersich, AIME J. Met., 16, 425 (1964).

    Google Scholar 

  23. G. E. Hollox and R. E. Smallman, J.A.P., 37, 818 (1966).

    Google Scholar 

  24. D. J. Bailey and W. F. Flanagan, Phil. Mag., 15, 43 (1967).

    Article  ADS  Google Scholar 

  25. A. Gilbert, B. A. Wilcox and G. T. Hahn, Phil. Mag., 12, 649 (1965).

    Article  ADS  Google Scholar 

  26. H. Conrad, “High Strength Materials,” Ed. Zackay, Wiley, New York (1965).

    Google Scholar 

  27. D. K. Bowen, J. W. Christian and G. Taylor, Canadian Journal of Physics, 45, 903 (1967).

    Article  ADS  Google Scholar 

  28. A. S. Keh, Phil. Mag., 12, 9 (1965).

    Article  ADS  Google Scholar 

  29. H. D. Guberman, Report ORNL 4020, Oak Ridge National Laboratory, p. 41 (1966).

    Google Scholar 

  30. R. J. Arsenault, Acta Met., 14, 831 (1966).

    Article  Google Scholar 

  31. G. Taylor and J. W. Christian, Phil. Mag., 15, 893 (1967).

    Article  ADS  Google Scholar 

  32. R. J. Arsenault and A. Lawley, Phil. Mag., 15, 549 (1967).

    Article  ADS  Google Scholar 

  33. R. A. Foxall, Private Communication.

    Google Scholar 

  34. F. R. N. Nabarro, Z. S. Basinski and D. B. Holt, Adv. Phys., 13, 193 (1964).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Edington, J.W. (1968). Effect of Strain Rate on the Dislocation Substructure in Deformed Niobium Single Crystals. In: Lindholm, U.S. (eds) Mechanical Behavior of Materials under Dynamic Loads. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87445-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87445-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87447-5

  • Online ISBN: 978-3-642-87445-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics