Oceanic Turbulent Diffusion of Abiotic and Biotic Species

  • Akira Okubo
Conference paper
Part of the Lecture Notes in Biomathematics book series (LNBM, volume 54)


When a fluid flows in an orderly fashion, the flow is called “laminar.” On the other hand, when the fluid flows in an irregular fashion accompanied with mixing, the flow is called “turbulent.” For a neutrally stratified fluid a Reynolds number, which may be interpreted as the ratio of the inertial forces to the viscous forces, determines that a given flow will be laminar or turbulent. Thus in the upper layer of the ocean, the thickness of which ranges from 10 to 100 meters, a mean flow of 10 cm/sec gives Reynolds numbers ranging from 106 to 107, which are much larger than the critical Reynolds number for transition from a laminar to turbulent flow. This indicates that the flow in the upper layer, where a great many biological activities occur, must be fully turbulent.


Probability Density Function Lagrangian Equation Turbulent Diffusion Eddy Diffusivity Critical Reynolds Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Arnold, L. (1974). Stochastic Differential Equations: Theory and Applications. John Wiley & Sons, New York, 228 pp.MATHGoogle Scholar
  2. Batchelor, G.K. (1952). Diffusion in a field of homogeneous turbulence. II. The relative motion of particles. Proc. Cambridge Philos. Soc. 48: 345–362.MathSciNetMATHCrossRefGoogle Scholar
  3. Batchelor, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press, London-New York, 615 pp.MATHGoogle Scholar
  4. Bowden, K.F. (1965). Horizontal mixing in the sea due to a shearing current. J. Fluid Mech. 21: 83–95.CrossRefGoogle Scholar
  5. Bulsara, A.R., Linderberg, K. and Shuler, K.E. (1982). Spectral analysis of a nonlinear oscillation driven by random and periodic forces. I. Linearized theory. J. Statist. Phys. 27: 787–808.Google Scholar
  6. Caughey, T.K. (1963). Equivalent linearization techniques. J. Acoustical Soc. Am. 35: 1706–1711.MathSciNetCrossRefGoogle Scholar
  7. Chevray, R. and Venkataramani, K.S. (1979). Total dispersion of a scalar quantity in turbulent flow. Phys. Fluids 22: 2284–2288.MATHCrossRefGoogle Scholar
  8. Corrsin, S. (1962). Theories of turbulent dispersion. In: Mécanique de la Turbulence, 27–52. Centre National de la Recherche Scientifique, Paris.Google Scholar
  9. Corrsin, S. (1974). Limitations of gradient transport models in random walks and in turbulence. In: Advances in Geophysics, vol. 18A:25–60. Academic Press, New York.Google Scholar
  10. Csanady, G.T. (1973). Turbulent Diffusion in the Environment. D. Reidel Publishing Co., Dordrecht-Boston, 248 pp.Google Scholar
  11. Imahori, K. and Hori, J. (1951). On the diffusion by turbulent motion. J. Meteorol. Soc. Japan 29: 327–335.Google Scholar
  12. Joseph, J. and Sendner, H. (1958). Uber die horizontale Diffusion im Meere. Deut. Hydrogr. Z. 13: 13–23.Google Scholar
  13. Krasnoff, E. and Peskin, R.L. (1971). The Langevin model for turbulent diffusion. Geuphys. Fluid Dynamics 2: 123–146.CrossRefGoogle Scholar
  14. Lin, C.C. (1960a). On a theory of turbulent dispersion by continuous movements. Proc. Nat. Acad. Sci. USA 46: 566–570.MATHCrossRefGoogle Scholar
  15. Lin, C.C. (1960b). On a theory of turbulent dispersion by continuous movements. II. Stationary anistropic processes. Proc. Nat. Acad. Sci. USA 46: 1147–1150.MATHCrossRefGoogle Scholar
  16. Monin, A.S. (1962). On the Lagrangian equations of the hydrodynamics of an incompressible viscous fluid. J. Appl. Math. and Mech. 26: 458–468.MathSciNetMATHCrossRefGoogle Scholar
  17. Obukhov, A.M. (1959). Description of turbulence in terms of Lagrangian variables. In: Advances in Geophysics, vol. 6:113–116. Academic Press, New York.Google Scholar
  18. Okubo, A. (1966). A note on horizontal diffusion from an instantaneous source in a nonunifrm flow. J. Oceanogr. Soc. Japan 22: 35–40Google Scholar
  19. Okubo, A. (1967). Study of turbulent dispersion by use of Lagrangian diffusion equation. Phys. Fluids, Suppl. 1967: S72–75.Google Scholar
  20. Okubo, A. (1971). Horizontal and vertical mixing in the sea. In: Impingement of Man on the Oceans, 89–168, Hood, D.W. (ed.). John Wiley & Sons, New York.Google Scholar
  21. Okubo, A. (1974). Some speculations on oceanic diffusion diagrams. Rapports et Procès-Verbaux des Réunions, vol. 167:77–85. International Council for the Exploration of the Sea.Google Scholar
  22. Okubo, A. (1980). Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, Berlin-Heidelberg-New York, 254 pp.MATHGoogle Scholar
  23. Ozmidov, R.V. (1958). On the calculation of horizontal turbulent diffusion of the pollutant patches in the sea. Doklady Akad. Nauk SSSR 120: 761–763.MATHGoogle Scholar
  24. Richardson, L.F. (1926). Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. London A 110: 709–727.CrossRefGoogle Scholar
  25. Stommel, H. (1949). Horizontal diffusion due to oceanic turbulence. J. Marine Res. 8: 199–225.Google Scholar
  26. Taylor, G.I. (1921). Diffusion by continuous movements. Proc. London Math. Soc. Ser. 2, 20: 196–211.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Akira Okubo
    • 1
  1. 1.Marine Sciences Research CenterState University of New YorkStony BrookUSA

Personalised recommendations