Possible Causes of Glaciations

  • Edward Peter Jacobus van den Heuvel
  • Peter Buurman


Evidence of glaciation in the earth’s history is briefly reviewed and possible cosmic and terrestrial causes of climatic change are discussed. The late Tertiary-Pleistocene glaciations appear to belong to one large Ice Age, with a duration of over 7 million years, which is presently underway. Throughout this Ice Age parts of the polar regions have been continuously glaciated. The duration of this Ice Age resembles that of other large Ice Ages in the earth’s history (cf. Table 1). The only plausible cause of large Ice Ages seems to be a combination of continental uplift, mountain building, and thermal isolation of one or both of the poles, as suggested by Ewing and Donn. The large variations in mid-latitude glaciations during the Pleistocene, on a time scale of about 40,000 years, may have been triggered by insolation variations of the type calculated by Milankovitch. This is evidenced by the observed time correlation between insolation variations, oxygen isotope temperatures, and oscillations in sea level during the Pleistocene. The observed correlation between interglacial high sea levels and the precession on one hand, and the large-amplitude variations in isotopic temperatures and the tilt of the ecliptic plane on the other, seem to confirm theories in which the contributions of precession and tilt are given different weights (Broecker, 1966). A possible physical explanation for these different weights is suggested.


Arctic Ocean Marine Geology Continental Drift Pleistocene Glaciation Mountain Building 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, R. L., W. Hamilton, and G. H. Denton. 1968. Glaciation in Taylor Valley, Antarctica, older than 2.7 million years. Science, 159: 187–189.CrossRefGoogle Scholar
  2. Barghoorn, E. S. 1953. Evidence of climatic change in the geological record of plant life. In: H. Shapley, ed. Climatic Change. Cambridge: Harvard University Press, pp. 234–248.Google Scholar
  3. Barry, R. G. 1966. Meteorological aspects of the glacial history of Labrador-Ungava with special reference to atmospheric vapour transport. Geograph. Bull. Ottawa, 8: 319–340.Google Scholar
  4. Bradley, W. H. 1929. The varves and climate of the Green River. Epoch. In: Shorter Contributions to General Geology. Washington, D.C.: U.S. Geological Survey, pp. 87–119.Google Scholar
  5. Bray, J. R. 1968. Glaciation and solar activity since the fifth century B.c. and the solar cycle. Nature, 220: 672–674.CrossRefGoogle Scholar
  6. Bray, J. R. 1971. Solar-climate relationships in the post-Pleistocene. Science, 171: 1242–1243.CrossRefGoogle Scholar
  7. Broecker, W. S. 1966. Absolute dating and the astronomical theory of glaciation. Science, 151: 299–304.CrossRefGoogle Scholar
  8. Broecker, W. S. 1968. In defense of the astronomical theory of glaciation. Meteorological Monographs, 8(30): 139–141.Google Scholar
  9. Broecker, W. S., D. L. Thurber, J. Godart, T. L. Ku, R. K. Matthews, and K. J. Mesolella. 1968. Milankovitch hypothesis supported by precise dating of coral reefs and deep-sea sediments. Science, 159: 297–300.CrossRefGoogle Scholar
  10. Broecker, W. S., and J. van Donk. 1970. Insolation changes, ice volumes and the 18O record of deep sea cores. Rev. Geophys. Space Phys., 8: 169–198.CrossRefGoogle Scholar
  11. Brooks, C. E. P. 1971. Climate through the ages. New York: Dover, 395 pp.Google Scholar
  12. Cloud, P. 1968. Atmospheric and hydrospheric evolution on the primitive Earth. Science, 160: 729–736.CrossRefGoogle Scholar
  13. Cloud, P., and A. Gibor. 1970. The oxygen cycle. Sci. Am., 223(September): 111–123.Google Scholar
  14. Colbert, E. H. 1953. The record of climatic changes as revealed by vertebrate paleoecology. In: H. Shapley, ed. Climatic Change. Cambridge: Harvard University Press, pp. 248–271.Google Scholar
  15. Curry, R. R. 1966. Glaciation about 3,000,000 years ago in the Sierra Nevada. Science, 154: 770–771.CrossRefGoogle Scholar
  16. Danjon, A. 1954. Albedo, color and polarization of the earth. In: G. P. Kuiper, ed. The Earth as a Planet. Chicago: University of Chicago Press, pp. 726–738.Google Scholar
  17. Dansgaard, W., S. J. Johnsen, J. Moller, and C. Langway. 1969. One thousand centuries of climatic record from Camp Century on the Greenland ice sheet. Science, 166: 377–381.CrossRefGoogle Scholar
  18. Dansgaard, W., and H. Tauber. 1969. Glacier oxygen-18 content and Pleistocene ocean temperatures. Science, 166: 499–502.CrossRefGoogle Scholar
  19. Dansgaard, W., S. J. Johnsen, H. B. Clausen, and C. C. Langway, Jr. 1971. Climatic record revealed by the Camp Century ice core. In: Karl A. Turekian, ed. The Late Cenozoic Glacial Age. New Haven: Yale University Press, pp. 37–56.Google Scholar
  20. Dietrich, G., and K. Kalle. 1957. Allgemeine Meereskunde. Berlin: Geb. Borntraeger, 492 pp.Google Scholar
  21. Dilke, F. W. W., and D. O. Gough. 1972. The solar spoon. Nature, 240: 262–264, 293-294.CrossRefGoogle Scholar
  22. Dunn, P. R., B. P. Thomson, and K. Rankama. 1971. Late Pre-Cambrian glaciation in Australia as a stratigraphic boundary. Nature, 231: 498–502.CrossRefGoogle Scholar
  23. Du Toit, A. L. 1937. Our Wandering Continents. Edinburgh, Scotland: Oliver and Boyd, 366 pp.Google Scholar
  24. Elsässer, W. M. 1950. The earth’s interior and geomagnetism. Rev. Modern Phys., 22: 1–35.CrossRefGoogle Scholar
  25. Emiliani, C. 1961. The temperature decrease of surface sea water in high latitudes and of abyssal-hadal water in open oceanic basins during the past 75 million years. Deep-Sea Res., 8: 144–147.CrossRefGoogle Scholar
  26. Emiliani, C. 1966. Paleotemperature analysis of Caribbean cores P 6304-8 and P 6304-9 and a generalized temperature curve for the past 425,000 years. J. Geol., 74: 109–127.CrossRefGoogle Scholar
  27. Emiliani, C. 1969. Interglacial high sea levels and the control of Greenland ice by the precession of the equinoxes. Science, 166: 1503–1504.CrossRefGoogle Scholar
  28. Emiliani, C., and J. Geiss. 1959. On glaciations and their causes. Geol. Rundschau, 46: 576–601.CrossRefGoogle Scholar
  29. Emiliani, C., and E. Rona. 1969. Caribbean cores P 6304-8 and P 6304-9: new analysis of absolute chronology. A reply. Science, 166: 1551–1552.CrossRefGoogle Scholar
  30. Ewing, M. and W. L. Donn. 1956a. A theory of Ice Ages, I. Science, 123: 1061–1066.CrossRefGoogle Scholar
  31. Ewing, M., and W. L. Donn. 1956b. A theory of Ice Ages, II. Science, 127: 1159–1162.CrossRefGoogle Scholar
  32. Ezer, D., and A. G. W. Cameron. 1972. A mixed-up sun and solar neutrinos. Nature, 240: 178–182.Google Scholar
  33. Flint, R. F. 1971. Glacial and Quaternary Geology. New York: John Wiley and Sons. 892 pp.Google Scholar
  34. Franklin, F. A. 1967. Two-color photoelectric photometry of the earth’s light. J. Geophys. Res., 72: 2963–2967.CrossRefGoogle Scholar
  35. Fritz, S. 1949. The albedo of the planet earth and of clouds. J. Meteorol., 6: 277–282.CrossRefGoogle Scholar
  36. Fritz, S. 1951. Solar radiant energy and its modifications by the earth and its atmosphere. In: T. F. Malone, ed. Compendium of Meteorology, American Meteorology Society, pp. 243–251.Google Scholar
  37. Goldthwait, R. P., A. Dreimanis, J. L. Forsyth, P. F. Karrow, and G. W. White. 1965. Pleistocene deposits of the Erie lobe. In: H. E. Wright, Jr. and D. G. Frey, eds. The Quaternary of the United States. Princeton: Princeton University Press, pp. 85–97.Google Scholar
  38. Gough, D. I. 1970. Did an ice cap break Gondwana-land? J. Geophys. Res., 75: 4475–4477.CrossRefGoogle Scholar
  39. Hammen, T. van der, et al. 1967. Stratigraphy climatic succession and radiocarbon dating of the last glacial in the Netherlands. Geologie en Mijnbouw, 46: 79–94.Google Scholar
  40. Hays, J. D., and N. D. Opdyke. 1967. Antarctic radiolaria, magnetic reversals, and climatic change. Science, 158: 1001–1011.Google Scholar
  41. Herman, Y. 1970. Arctic paleo-oceanography in late Cenozoic time. Science, 169: 474–477.CrossRefGoogle Scholar
  42. Hollin, J. T. 1965. Wilson’s theory of ice ages. Nature, 208: 12–16.CrossRefGoogle Scholar
  43. Holmes, A. 1965. Principles of Physical Geology. London: Nelson, 1288 pp.Google Scholar
  44. Karlstrom, T. N. V. 1955. Late Pleistocene and recent glacial chronology of south-central Alaska. Geol. Soc. Am. Bull., 66: 1581–1582.Google Scholar
  45. Krook, M. 1953. Interstellar matter and the solar constant. In: H. Shapley, ed. Climatic Change. Cambridge: Harvard University Press, pp. 143–146.Google Scholar
  46. Lamb, H. H. 1971. Climate: Present, past and future, 1: Fundamentals and Climate now. London: Murray. 624 pGoogle Scholar
  47. Margolis, S. V., and J. P. Kennett. 1970. Antarctic glaciation during the Tertiary recorded in sub-Antarctic deep-sea cores. Science, 170: 1085–1087.CrossRefGoogle Scholar
  48. McElhinny, M. W., J. C. Briden, D. L. Jones, and A. Brock. 1968. Geological and geophysical implications of paleomagnetic results from Africa. Rev. geophys., 6: 201–238.CrossRefGoogle Scholar
  49. Mercer, J. H. 1969. Glaciation in southern Argentina more than two million years ago. Science, 164: 823–825.CrossRefGoogle Scholar
  50. Milankovitch, M. 1920. Théorie mathématique des phénomènes thermiques produits par la radiation solaire. Paris: Gauthier-Villars, 339 pp.Google Scholar
  51. Milankovitch, M. 1930. Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen. In: W. Köppen and R. Geiger, eds. Handbuch der Klimato-logie. 1(A), 176 pp.Google Scholar
  52. Milankovitch, M. 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Academie Royale Serbie Edition Spéciale, 133 (section des sciences mathématiques et naturelles, 33), 633 pp.Google Scholar
  53. Möller, F. 1950. Der Wärmehaushalt der Atmosphäre. Experientia, 6: 361–367.CrossRefGoogle Scholar
  54. Nairn, A. E. M. 1964. ed. Problems of Paleoclimatology. Proceedings of the NATO Paleoclimates Conference, 1963. London: Interscience, 705 pp.Google Scholar
  55. Newell, N. D. 1972. The evolution of coral reefs. Sci. Am. 226 (June): 54–65.CrossRefGoogle Scholar
  56. Öpik, E. J. 1953a. A climatological and astronomical interpretation of the Ice Ages and of the past variations of terrestrial climate. Armagh Observ. Contrib., 9: 1–79.Google Scholar
  57. Öpik, E. J. 1953b. Disturbances in dwarf stars caused by nuclear reactions and gas diffusion. Mémoires de Société Royale des Sciences de Liège, 8e, 14: 187–199; Armagh Observ. Contrib., 12, 12 pp.Google Scholar
  58. Öpik, E. J. 1965. Climatic change in cosmic perspective. Icarus, 4: 289–307.CrossRefGoogle Scholar
  59. Parker, E. N. 1970. The origin of magnetic fields. Astrophys. J., 160: 383–404.CrossRefGoogle Scholar
  60. Parker, E. N. 1971. The generation of magnetic fields in astrophysical bodies. IV. The solar and terrestrial dynamos. Astrophys. J. 164: 491–509.CrossRefGoogle Scholar
  61. Petterson, O. 1914. Climatic variations in historic and prehistoric time. Svenska hydrografisk-biologiska Kommissionens Skrifter 5.Google Scholar
  62. Roberts, J. D. 1971. Late Precambrian glaciation: an anti-greenhouse effect? Nature, 234: 216.CrossRefGoogle Scholar
  63. Robin, G. de Q. 1962. The ice of the Antarctic. Sci. Am., 207(September): 132–142.CrossRefGoogle Scholar
  64. Runcorn, S. K. 1954. The Earth’s core. Am. Geophys. Union, Trans. 35: 49–63.Google Scholar
  65. Rutten, M. G. and H. Wensink. 1960. Paleomagnetic dating, glaciations and the chronology of the Plio-Pleistocene in Iceland. International Geological Congress Norden, 21st, 4: 62–71.Google Scholar
  66. Schwarzbach, M. 1963. Climates of the Past—An Introduction to Paleoclimatology (transi. by R. O. Muir) London: van Nostrand, 328 pp.Google Scholar
  67. Shapley, H. 1953. ed. Climatic Change. Cambridge: Harvard University Press, 318 pp.Google Scholar
  68. Shaw, D. M., and W. L. Donn. 1968. Milankovitch radiation variations, a quantitative evaluation. Science, 162: 1270–1272.CrossRefGoogle Scholar
  69. Simpson, G. C. 1938. Ice Ages. Nature, 141: 591–598.CrossRefGoogle Scholar
  70. Van den Heuvel, E. P. J. 1966a. On the precession as a cause of Pleistocene variations of the Atlantic Ocean water temperatures. Geophys. J. Royal As-tron. Soc. 11: 323–336.CrossRefGoogle Scholar
  71. Van den Heuvel, E. P. J. 1966b. On climatic change in cosmic perspective. Icarus, 5: 214–215.CrossRefGoogle Scholar
  72. Van den Heuvel, E. P. J. 1966c. On climatic change in cosmic perspective. 2. Icarus, 5: 218–219.CrossRefGoogle Scholar
  73. Van den Heuvel, E. P. J. 1966d. Ice shelf theory of Pleistocene glaciations. Nature, 210: 363–365.CrossRefGoogle Scholar
  74. Van Woerkom, A. J. J. 1953. The astronomical theory of climate change. In: H. Shapley, ed, Climatic Change. Cambridge: Harvard University Press, pp. 147–157.Google Scholar
  75. Vaucouleurs, G. de. 1970. Photometrie des Surfaces Planetaires. In: A. Dolfuss, ed. Surfaces and Interiors of the Planets. London: Academic Press, pp. 225–316.Google Scholar
  76. Veeh, H. H., and J. Chappel. 1970. Astronomical Theory of climatic change: support from New Guinea. Science, 167: 862–865.CrossRefGoogle Scholar
  77. Wegener, A. 1915. Die Entstehung der Kontinente und Ozeane. Braunschweig, Sammlung Vieweg, 23, 94 pp.Google Scholar
  78. Wegener, A. 1924. The origin of the continents and the oceans. London: Methuen, 212 pp.Google Scholar
  79. Wexler, H. 1953. Radiation balance of the Earth as a factor in climatic change. In: H. Shapley, ed. Climatic Change. Cambridge: Harvard University Press, pp. 73–105.Google Scholar
  80. Willett, H. C. 1953. Atmospheric and oceanic circulation as factors in glacial-interglacial changes of climate. In: H. Shapley, ed. Climatic Change. Cambridge: Harvard University Press, pp. 51–71.Google Scholar
  81. Wilson, A. T. 1964. Origin of Ice Ages: an ice shelf theory for Pleistocene glaciation. Nature, 201: 147–149.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1974

Authors and Affiliations

  • Edward Peter Jacobus van den Heuvel
    • 1
    • 3
  • Peter Buurman
    • 2
  1. 1.Sterrewacht “Sonnenborgh”, RijksuniversiteitUtrechtThe Netherlands
  2. 2.Department of Soil Science and GeologyAgricultural UniversityWageningenThe Netherlands
  3. 3.Astrophysical InstituteVrije UniversiteitBrusselsBelgium

Personalised recommendations