Skip to main content

Abstract

Evidence of glaciation in the earth’s history is briefly reviewed and possible cosmic and terrestrial causes of climatic change are discussed. The late Tertiary-Pleistocene glaciations appear to belong to one large Ice Age, with a duration of over 7 million years, which is presently underway. Throughout this Ice Age parts of the polar regions have been continuously glaciated. The duration of this Ice Age resembles that of other large Ice Ages in the earth’s history (cf. Table 1). The only plausible cause of large Ice Ages seems to be a combination of continental uplift, mountain building, and thermal isolation of one or both of the poles, as suggested by Ewing and Donn. The large variations in mid-latitude glaciations during the Pleistocene, on a time scale of about 40,000 years, may have been triggered by insolation variations of the type calculated by Milankovitch. This is evidenced by the observed time correlation between insolation variations, oxygen isotope temperatures, and oscillations in sea level during the Pleistocene. The observed correlation between interglacial high sea levels and the precession on one hand, and the large-amplitude variations in isotopic temperatures and the tilt of the ecliptic plane on the other, seem to confirm theories in which the contributions of precession and tilt are given different weights (Broecker, 1966). A possible physical explanation for these different weights is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong, R. L., W. Hamilton, and G. H. Denton. 1968. Glaciation in Taylor Valley, Antarctica, older than 2.7 million years. Science, 159: 187–189.

    Article  Google Scholar 

  • Barghoorn, E. S. 1953. Evidence of climatic change in the geological record of plant life. In: H. Shapley, ed. Climatic Change. Cambridge: Harvard University Press, pp. 234–248.

    Google Scholar 

  • Barry, R. G. 1966. Meteorological aspects of the glacial history of Labrador-Ungava with special reference to atmospheric vapour transport. Geograph. Bull. Ottawa, 8: 319–340.

    Google Scholar 

  • Bradley, W. H. 1929. The varves and climate of the Green River. Epoch. In: Shorter Contributions to General Geology. Washington, D.C.: U.S. Geological Survey, pp. 87–119.

    Google Scholar 

  • Bray, J. R. 1968. Glaciation and solar activity since the fifth century B.c. and the solar cycle. Nature, 220: 672–674.

    Article  Google Scholar 

  • Bray, J. R. 1971. Solar-climate relationships in the post-Pleistocene. Science, 171: 1242–1243.

    Article  Google Scholar 

  • Broecker, W. S. 1966. Absolute dating and the astronomical theory of glaciation. Science, 151: 299–304.

    Article  Google Scholar 

  • Broecker, W. S. 1968. In defense of the astronomical theory of glaciation. Meteorological Monographs, 8(30): 139–141.

    Google Scholar 

  • Broecker, W. S., D. L. Thurber, J. Godart, T. L. Ku, R. K. Matthews, and K. J. Mesolella. 1968. Milankovitch hypothesis supported by precise dating of coral reefs and deep-sea sediments. Science, 159: 297–300.

    Article  Google Scholar 

  • Broecker, W. S., and J. van Donk. 1970. Insolation changes, ice volumes and the 18O record of deep sea cores. Rev. Geophys. Space Phys., 8: 169–198.

    Article  Google Scholar 

  • Brooks, C. E. P. 1971. Climate through the ages. New York: Dover, 395 pp.

    Google Scholar 

  • Cloud, P. 1968. Atmospheric and hydrospheric evolution on the primitive Earth. Science, 160: 729–736.

    Article  Google Scholar 

  • Cloud, P., and A. Gibor. 1970. The oxygen cycle. Sci. Am., 223(September): 111–123.

    Google Scholar 

  • Colbert, E. H. 1953. The record of climatic changes as revealed by vertebrate paleoecology. In: H. Shapley, ed. Climatic Change. Cambridge: Harvard University Press, pp. 248–271.

    Google Scholar 

  • Curry, R. R. 1966. Glaciation about 3,000,000 years ago in the Sierra Nevada. Science, 154: 770–771.

    Article  Google Scholar 

  • Danjon, A. 1954. Albedo, color and polarization of the earth. In: G. P. Kuiper, ed. The Earth as a Planet. Chicago: University of Chicago Press, pp. 726–738.

    Google Scholar 

  • Dansgaard, W., S. J. Johnsen, J. Moller, and C. Langway. 1969. One thousand centuries of climatic record from Camp Century on the Greenland ice sheet. Science, 166: 377–381.

    Article  Google Scholar 

  • Dansgaard, W., and H. Tauber. 1969. Glacier oxygen-18 content and Pleistocene ocean temperatures. Science, 166: 499–502.

    Article  Google Scholar 

  • Dansgaard, W., S. J. Johnsen, H. B. Clausen, and C. C. Langway, Jr. 1971. Climatic record revealed by the Camp Century ice core. In: Karl A. Turekian, ed. The Late Cenozoic Glacial Age. New Haven: Yale University Press, pp. 37–56.

    Google Scholar 

  • Dietrich, G., and K. Kalle. 1957. Allgemeine Meereskunde. Berlin: Geb. Borntraeger, 492 pp.

    Google Scholar 

  • Dilke, F. W. W., and D. O. Gough. 1972. The solar spoon. Nature, 240: 262–264, 293-294.

    Article  Google Scholar 

  • Dunn, P. R., B. P. Thomson, and K. Rankama. 1971. Late Pre-Cambrian glaciation in Australia as a stratigraphic boundary. Nature, 231: 498–502.

    Article  Google Scholar 

  • Du Toit, A. L. 1937. Our Wandering Continents. Edinburgh, Scotland: Oliver and Boyd, 366 pp.

    Google Scholar 

  • Elsässer, W. M. 1950. The earth’s interior and geomagnetism. Rev. Modern Phys., 22: 1–35.

    Article  Google Scholar 

  • Emiliani, C. 1961. The temperature decrease of surface sea water in high latitudes and of abyssal-hadal water in open oceanic basins during the past 75 million years. Deep-Sea Res., 8: 144–147.

    Article  Google Scholar 

  • Emiliani, C. 1966. Paleotemperature analysis of Caribbean cores P 6304-8 and P 6304-9 and a generalized temperature curve for the past 425,000 years. J. Geol., 74: 109–127.

    Article  Google Scholar 

  • Emiliani, C. 1969. Interglacial high sea levels and the control of Greenland ice by the precession of the equinoxes. Science, 166: 1503–1504.

    Article  Google Scholar 

  • Emiliani, C., and J. Geiss. 1959. On glaciations and their causes. Geol. Rundschau, 46: 576–601.

    Article  Google Scholar 

  • Emiliani, C., and E. Rona. 1969. Caribbean cores P 6304-8 and P 6304-9: new analysis of absolute chronology. A reply. Science, 166: 1551–1552.

    Article  Google Scholar 

  • Ewing, M. and W. L. Donn. 1956a. A theory of Ice Ages, I. Science, 123: 1061–1066.

    Article  Google Scholar 

  • Ewing, M., and W. L. Donn. 1956b. A theory of Ice Ages, II. Science, 127: 1159–1162.

    Article  Google Scholar 

  • Ezer, D., and A. G. W. Cameron. 1972. A mixed-up sun and solar neutrinos. Nature, 240: 178–182.

    Google Scholar 

  • Flint, R. F. 1971. Glacial and Quaternary Geology. New York: John Wiley and Sons. 892 pp.

    Google Scholar 

  • Franklin, F. A. 1967. Two-color photoelectric photometry of the earth’s light. J. Geophys. Res., 72: 2963–2967.

    Article  Google Scholar 

  • Fritz, S. 1949. The albedo of the planet earth and of clouds. J. Meteorol., 6: 277–282.

    Article  Google Scholar 

  • Fritz, S. 1951. Solar radiant energy and its modifications by the earth and its atmosphere. In: T. F. Malone, ed. Compendium of Meteorology, American Meteorology Society, pp. 243–251.

    Google Scholar 

  • Goldthwait, R. P., A. Dreimanis, J. L. Forsyth, P. F. Karrow, and G. W. White. 1965. Pleistocene deposits of the Erie lobe. In: H. E. Wright, Jr. and D. G. Frey, eds. The Quaternary of the United States. Princeton: Princeton University Press, pp. 85–97.

    Google Scholar 

  • Gough, D. I. 1970. Did an ice cap break Gondwana-land? J. Geophys. Res., 75: 4475–4477.

    Article  Google Scholar 

  • Hammen, T. van der, et al. 1967. Stratigraphy climatic succession and radiocarbon dating of the last glacial in the Netherlands. Geologie en Mijnbouw, 46: 79–94.

    Google Scholar 

  • Hays, J. D., and N. D. Opdyke. 1967. Antarctic radiolaria, magnetic reversals, and climatic change. Science, 158: 1001–1011.

    Google Scholar 

  • Herman, Y. 1970. Arctic paleo-oceanography in late Cenozoic time. Science, 169: 474–477.

    Article  Google Scholar 

  • Hollin, J. T. 1965. Wilson’s theory of ice ages. Nature, 208: 12–16.

    Article  Google Scholar 

  • Holmes, A. 1965. Principles of Physical Geology. London: Nelson, 1288 pp.

    Google Scholar 

  • Karlstrom, T. N. V. 1955. Late Pleistocene and recent glacial chronology of south-central Alaska. Geol. Soc. Am. Bull., 66: 1581–1582.

    Google Scholar 

  • Krook, M. 1953. Interstellar matter and the solar constant. In: H. Shapley, ed. Climatic Change. Cambridge: Harvard University Press, pp. 143–146.

    Google Scholar 

  • Lamb, H. H. 1971. Climate: Present, past and future, 1: Fundamentals and Climate now. London: Murray. 624 p

    Google Scholar 

  • Margolis, S. V., and J. P. Kennett. 1970. Antarctic glaciation during the Tertiary recorded in sub-Antarctic deep-sea cores. Science, 170: 1085–1087.

    Article  Google Scholar 

  • McElhinny, M. W., J. C. Briden, D. L. Jones, and A. Brock. 1968. Geological and geophysical implications of paleomagnetic results from Africa. Rev. geophys., 6: 201–238.

    Article  Google Scholar 

  • Mercer, J. H. 1969. Glaciation in southern Argentina more than two million years ago. Science, 164: 823–825.

    Article  Google Scholar 

  • Milankovitch, M. 1920. Théorie mathématique des phénomènes thermiques produits par la radiation solaire. Paris: Gauthier-Villars, 339 pp.

    Google Scholar 

  • Milankovitch, M. 1930. Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen. In: W. Köppen and R. Geiger, eds. Handbuch der Klimato-logie. 1(A), 176 pp.

    Google Scholar 

  • Milankovitch, M. 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Academie Royale Serbie Edition Spéciale, 133 (section des sciences mathématiques et naturelles, 33), 633 pp.

    Google Scholar 

  • Möller, F. 1950. Der Wärmehaushalt der Atmosphäre. Experientia, 6: 361–367.

    Article  Google Scholar 

  • Nairn, A. E. M. 1964. ed. Problems of Paleoclimatology. Proceedings of the NATO Paleoclimates Conference, 1963. London: Interscience, 705 pp.

    Google Scholar 

  • Newell, N. D. 1972. The evolution of coral reefs. Sci. Am. 226 (June): 54–65.

    Article  Google Scholar 

  • Öpik, E. J. 1953a. A climatological and astronomical interpretation of the Ice Ages and of the past variations of terrestrial climate. Armagh Observ. Contrib., 9: 1–79.

    Google Scholar 

  • Öpik, E. J. 1953b. Disturbances in dwarf stars caused by nuclear reactions and gas diffusion. Mémoires de Société Royale des Sciences de Liège, 8e, 14: 187–199; Armagh Observ. Contrib., 12, 12 pp.

    Google Scholar 

  • Öpik, E. J. 1965. Climatic change in cosmic perspective. Icarus, 4: 289–307.

    Article  Google Scholar 

  • Parker, E. N. 1970. The origin of magnetic fields. Astrophys. J., 160: 383–404.

    Article  Google Scholar 

  • Parker, E. N. 1971. The generation of magnetic fields in astrophysical bodies. IV. The solar and terrestrial dynamos. Astrophys. J. 164: 491–509.

    Article  Google Scholar 

  • Petterson, O. 1914. Climatic variations in historic and prehistoric time. Svenska hydrografisk-biologiska Kommissionens Skrifter 5.

    Google Scholar 

  • Roberts, J. D. 1971. Late Precambrian glaciation: an anti-greenhouse effect? Nature, 234: 216.

    Article  Google Scholar 

  • Robin, G. de Q. 1962. The ice of the Antarctic. Sci. Am., 207(September): 132–142.

    Article  Google Scholar 

  • Runcorn, S. K. 1954. The Earth’s core. Am. Geophys. Union, Trans. 35: 49–63.

    Google Scholar 

  • Rutten, M. G. and H. Wensink. 1960. Paleomagnetic dating, glaciations and the chronology of the Plio-Pleistocene in Iceland. International Geological Congress Norden, 21st, 4: 62–71.

    Google Scholar 

  • Schwarzbach, M. 1963. Climates of the Past—An Introduction to Paleoclimatology (transi. by R. O. Muir) London: van Nostrand, 328 pp.

    Google Scholar 

  • Shapley, H. 1953. ed. Climatic Change. Cambridge: Harvard University Press, 318 pp.

    Google Scholar 

  • Shaw, D. M., and W. L. Donn. 1968. Milankovitch radiation variations, a quantitative evaluation. Science, 162: 1270–1272.

    Article  Google Scholar 

  • Simpson, G. C. 1938. Ice Ages. Nature, 141: 591–598.

    Article  Google Scholar 

  • Van den Heuvel, E. P. J. 1966a. On the precession as a cause of Pleistocene variations of the Atlantic Ocean water temperatures. Geophys. J. Royal As-tron. Soc. 11: 323–336.

    Article  Google Scholar 

  • Van den Heuvel, E. P. J. 1966b. On climatic change in cosmic perspective. Icarus, 5: 214–215.

    Article  Google Scholar 

  • Van den Heuvel, E. P. J. 1966c. On climatic change in cosmic perspective. 2. Icarus, 5: 218–219.

    Article  Google Scholar 

  • Van den Heuvel, E. P. J. 1966d. Ice shelf theory of Pleistocene glaciations. Nature, 210: 363–365.

    Article  Google Scholar 

  • Van Woerkom, A. J. J. 1953. The astronomical theory of climate change. In: H. Shapley, ed, Climatic Change. Cambridge: Harvard University Press, pp. 147–157.

    Google Scholar 

  • Vaucouleurs, G. de. 1970. Photometrie des Surfaces Planetaires. In: A. Dolfuss, ed. Surfaces and Interiors of the Planets. London: Academic Press, pp. 225–316.

    Google Scholar 

  • Veeh, H. H., and J. Chappel. 1970. Astronomical Theory of climatic change: support from New Guinea. Science, 167: 862–865.

    Article  Google Scholar 

  • Wegener, A. 1915. Die Entstehung der Kontinente und Ozeane. Braunschweig, Sammlung Vieweg, 23, 94 pp.

    Google Scholar 

  • Wegener, A. 1924. The origin of the continents and the oceans. London: Methuen, 212 pp.

    Google Scholar 

  • Wexler, H. 1953. Radiation balance of the Earth as a factor in climatic change. In: H. Shapley, ed. Climatic Change. Cambridge: Harvard University Press, pp. 73–105.

    Google Scholar 

  • Willett, H. C. 1953. Atmospheric and oceanic circulation as factors in glacial-interglacial changes of climate. In: H. Shapley, ed. Climatic Change. Cambridge: Harvard University Press, pp. 51–71.

    Google Scholar 

  • Wilson, A. T. 1964. Origin of Ice Ages: an ice shelf theory for Pleistocene glaciation. Nature, 201: 147–149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag New York Inc.

About this paper

Cite this paper

van den Heuvel, E.P.J., Buurman, P. (1974). Possible Causes of Glaciations. In: Herman, Y. (eds) Marine Geology and Oceanography of the Arctic Seas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87411-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87411-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87413-0

  • Online ISBN: 978-3-642-87411-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics