Dimers and Clusters

  • Richard L. Carlin
  • A. J. van Duyneveldt
Part of the Inorganic Chemistry Concepts book series (INORGANIC, volume 2)


Probably the most interesting aspect of magnetochemistry concerns the interactions of magnetic ions. The remainder of this book is largely devoted to this subject, beginning in this chapter with the simplest example, that of a dimer. The principles concerning short range order that evolve here are surprisingly useful for studies on more extended systems.


Exchange Interaction Ising Model Exchange Coupling Exchange Constant Copper Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.L. Martin, “New Pathways in Inorganic Chemistry,” E.A.V. Ebsworth, A.G. Maddock, and A.G. Sharpe, Eds., Cambridge University Press, London, 1968, Chapter 9.Google Scholar
  2. 2.
    P.W. Anderson, “Magnetism,” (ed., G.T. Rado and H. Suhl), Vol. 1, p. 25, New York, Academic Press, Inc., 1963Google Scholar
  3. 2a.
    K.W.H. Stevens, Phys. Reports (Phys. Lett. C) 24C, 1, February, 1976.Google Scholar
  4. 3.
    A. Carrington and A.D. McLachlan, “Introduction to Magnetic Resonance,” Harper and Row, New York, 1967.Google Scholar
  5. 4.
    J.S. Smart, “Magnetism,” (ed. G.T. Rado and Suhl), Vol. III, p. 63, New York: Academic Press, Inc., 1965.Google Scholar
  6. 5.
    S.A. Friedberg and C.A. Raquet, J. Appl. Phys. 39, 1132(1968).CrossRefGoogle Scholar
  7. 6.
    B. Morosin, Acta Cryst. B26, 1203 (1970).Google Scholar
  8. 7.
    L. Berger, S.A. Friedberg, and J.T. Schriempf, Phys. Rev. 132, 1057 (1963).CrossRefGoogle Scholar
  9. 8.
    A.P. Ginsberg, Inorg. Chim. Acta Reviews 5, 45(1971)CrossRefGoogle Scholar
  10. 8a.
    D.J. Hodgson, Prog. Inorg. Chem. 19, 173 (1975)CrossRefGoogle Scholar
  11. 8b.
    R.J. Doedens, Prog. Inorg. Chem. 21, 209 (1976).CrossRefGoogle Scholar
  12. 9.
    B. Bleaney and K.D. Bowers, Proc. Roy. Soc. (London) A214, 451 (1952).Google Scholar
  13. 10.
    B.C. Guha, Proc. Roy. Soc. (London) A206, 353 (1951).Google Scholar
  14. 11.
    J.N. van Niekerk and F.R.L. Schoening, Acta Cryst. 6, 227 (1953).CrossRefGoogle Scholar
  15. 12.
    P. de Meester, S.A. Fletcher, and A.C. Skapsky, J. Chem. Soc. — Dalton 1973, 2575.Google Scholar
  16. 13.
    G.M. Brown and R. Chidambaram, Acta Cryst. B29, 2393 (1973).Google Scholar
  17. 14.
    F.A. Cotton, B.G. De Boer, M.D. La Prade, J.R. Pipal and D.A. Ucko, Acta Cryst. B27, 1664 (1971).Google Scholar
  18. 15.
    G.F. Kokoszka, H.C. Allen Jr., and G. Gordon, J. Chem. Phys. 42, 3693 (1965).CrossRefGoogle Scholar
  19. 16.
    A. Abragam and B. Bleaney, “Electron Paramagnetic Resonance of Transition Ions,” Oxford University Press, Oxford, 1970.Google Scholar
  20. 17.
    B.N. Figgis and R.L. Martin, J. Chem. Soc. 1956, 3837.Google Scholar
  21. 18.
    A.K. Gregson, R.L. Martin and S. Mitra, Proc. Roy. Soc. (London) A320, 473 (1971).Google Scholar
  22. 19.
    E. Kokot and R.L. Martin, Inorg. Chem. 3, 1303 (1964)CrossRefGoogle Scholar
  23. 19a.
    L. Dubicki, C.M. Harris, E. Kokot and R.L. Martin, Inorg. Chem. 5, 93 (1966).CrossRefGoogle Scholar
  24. 20.
    G.A. Barclay and C.H.L. Kennard, J. Chem. Soc. 1961, 5244.Google Scholar
  25. 21.
    A.K. Gregson and S. Mitra, J. Chem. Phys. 51, 5226 (1969)CrossRefGoogle Scholar
  26. 21a.
    L.J. de Jongh and A.R. Miedema, Adv. Phys. 23, 1 (1974).CrossRefGoogle Scholar
  27. 22.
    R. Whyman and W.E. Hatfield, Transition Metal Chemistry 5, 47 (1969).Google Scholar
  28. 23.
    R.C. Komson, A.T. McPhail, F.E. Mabbs, and J.K. Porter, J. Chem. Soc. A1971, 3447.Google Scholar
  29. 24.
    R.W. Jotham, J.C.S. Chem. Comm. 1973, 178.Google Scholar
  30. 25.
    D.B.W. Yawney, J.A. Moreland, and R.J. Doedens, J. Am. Chem. Soc. 95, 1164 (1973).CrossRefGoogle Scholar
  31. 26.
    J.A. Moreland and R.J. Doedens, J. Am. Chem. Soc. 97, 508 (1974).CrossRefGoogle Scholar
  32. 27.
    R.S.P. Coutts, R.L. Martin and P.C. Wailes, Aust. J. Chem. 26, 2101 (1973).CrossRefGoogle Scholar
  33. 28.
    R. Jungst, D. Sekutowski, and G. Stucky, J. Am. Chem. Soc. 96, 8108 (1974).CrossRefGoogle Scholar
  34. 29.
    A.P. Ginsberg, R.L. Martin, R.W. Brookes, and R.C. Sherwood, Inorg. Chem. 11, 2884 (1972).CrossRefGoogle Scholar
  35. 30.
    J.R. Beswick and D.E. Dugdale, J. Phys. C (Solid State) 6, 3326 (1973)CrossRefGoogle Scholar
  36. 30a.
    P.C. Benson and D.E. Dugdale, J. Phys. C (Solid State) 8, 3872 (1975).CrossRefGoogle Scholar
  37. 31.
    A. Earnshaw and J. Lewis, J. Chem. Soc. 1961, 396.Google Scholar
  38. 32.
    O. Kahn and B. Briat, Chem. Phys. Lett. 32, 376 (1975).CrossRefGoogle Scholar
  39. 33.
    E. Sinn, Coordin. Chem. Rev. 5, 313 (1970).CrossRefGoogle Scholar
  40. 34.
    A.P. Ginsberg, R.L. Martin and R.C. Sherwood, Inorg. Chem. 7, 932 (1968).CrossRefGoogle Scholar
  41. 35.
    B.N. Figgis and G.B. Robertson, Nature, Lond. 205, 694 (1965).CrossRefGoogle Scholar
  42. 36.
    A. Earnshaw, B.N. Figgis and J. Lewis, J. Chem. Soc. (A) 1966, 1656 and references therein.Google Scholar
  43. 37.
    N. Uryu and S.A. Friedberg, Phys. Rev. 140, A1803 (1965).CrossRefGoogle Scholar
  44. 38.
    M. Sorai, M. Tachiki, H. Suga and S. Seki, J. Phys. Soc. Japan 30, 750 (1971).CrossRefGoogle Scholar
  45. 39.
    J. Ferguson and H.U. Güdel, Chem. Phys. Lett. 17, 547 (1972).CrossRefGoogle Scholar
  46. 40.
    R.A.D. Wentworth and R. Saillant, Inorg. Chem. 6, 1436 (1967).CrossRefGoogle Scholar
  47. 41.
    H. Kobayashi, I. Tsujikawa and I. Kimura, J. Phys. Soc. Japan 24, 1169 (1968).CrossRefGoogle Scholar
  48. 42.
    C.G. Barraclough, H.B. Gray and L. Dubicki, Inorg. Chem. 7, 844 (1968).CrossRefGoogle Scholar
  49. 43.
    M.T. Flood, R.E. Marsh and H.B. Gray, J. Am. Chem. Soc. 91, 193 (1969).CrossRefGoogle Scholar
  50. 44.
    M.T. Flood, CG. Barraclough and H.B. Gray, Inorg. Chem. 8, 1855 (1969).CrossRefGoogle Scholar
  51. 45.
    M. Sorai and S. Seki, J. Phys. Soc. Japan 32, 382 (1972).CrossRefGoogle Scholar
  52. 46.
    B.M. McCoy and T.T. Wu, “The Two Dimensional Ising Model,” Harvard University Press, Cambridge, Mass., 1973.Google Scholar
  53. 47.
    J.C Bonner, H. Kobayashi, I. Tsujikawa, Y. Nakamura, and S.A. Friedberg, J. Chem. Phys. 63, 19 (1975).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1977

Authors and Affiliations

  • Richard L. Carlin
    • 1
  • A. J. van Duyneveldt
    • 2
  1. 1.Department of ChemistryUniversity of Illinois at Chicago CircleChicagoUSA
  2. 2.Kamerlingh Onnes LaboratoriumUniversity of LeidenThe Netherlands

Personalised recommendations