Advertisement

Robot Vision

  • Azriel Rosenfeld
Conference paper
Part of the NATO ASI Series book series (volume 33)

Abstract

This article reviews the basic concepts of computer vision, with emphasis on techniques that have been used, or could be used, in robot vision systems. Sections 2 and 3 discuss two- and three-dimensional vision systems, respectively, while Section 4 briefly discusses some other vision topics. References to basic papers or review papers are given in connection with each topic.

Keywords

Gray Level Surface Orientation Digital Picture Robot Vision Photometric Stereo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. (1).
    G.J. Agin and R.O. Duda, “SRI vision research for advanced industrial automation”, Proceedings of the 2nd USA-Japan Computer Conference, Tokyo, Japan, 1975, 113–117.Google Scholar
  2. (2).
    E.M. Riseman and M.A. Arbib, “Computational techniques in the visual segmentation of static scenes”, Computer Graphics Image Processing 6, 1977, 221–276.CrossRefGoogle Scholar
  3. (3).
    T. Kanade, “Region segmentation: signal vs. semantics”, Computer Graphics Image Processing 13, 1980, 279–297.MathSciNetMATHCrossRefGoogle Scholar
  4. (4).
    A. Rosenfeld and L.S. Davis, “Image segmentation and image models”, Proc. IEEE 67, 1979, 764–772.CrossRefGoogle Scholar
  5. (5).
    A. Rosenfeld, ed., Image Modeling, Academic Press, New York, 1981.Google Scholar
  6. (6).
    J.M.S. Prewitt and M. Mendelsohn, “The analysis of cell images”, Annals N.Y Academy of Sciences 128, 1966, 1035–1053.CrossRefGoogle Scholar
  7. (7).
    C.K. Chow and T. Kaneko, “Boundary detection of radiographic images by a threshold method”, in S. Watanabe, ed., Frontiers of Pattern Recognition, Academic Press, New York, 1972, 61–82.Google Scholar
  8. (8).
    J.S. Weszka, “A survey of threshold selection techniques”, Computer Graphics Image Processing 7, 1978, 259–265.CrossRefGoogle Scholar
  9. (9).
    L.S.G. Kovasznay and H.M. Joseph, “Image processing”, Proc. IRE.48, 1955, 560–570.Google Scholar
  10. (10).
    L.G. Roberts, “Machine perception of three-dimensional solids”, in J.T. Tippett et al., eds., Optical and Electro-Optical Information Processing, MIT Press, Cambridge, MA, 1965, 159–197.Google Scholar
  11. (11).
    K.K. Pingle, “Visual perception by a computer”, in A. Grasselli, ed., Automatic Interpretation and Classification of Images, Academic Press, New York, 1969, 277–284.Google Scholar
  12. (12).
    J.M.S. Prewitt, “Object enhancement and extraction”, in B.S. Lipkin and A. Rosenfeld, eds., Picture Processing and Psychopictorics, Academic Press, New York, 1970, 75–149.Google Scholar
  13. (13).
    M. Hueckel, “An operator which locates edges in digital pictures”, J. ACM 18, 1971, 113–125.MATHCrossRefGoogle Scholar
  14. (14).
    D. Marr and E. Hildreth, “Theory of edge detection”, Proc. Royal Soc. B207, 1980, 187–217.Google Scholar
  15. (15).
    L.S. Davis, “A survey of edge detection techniques”, Computer Graphics Image Processing 4, 1975, 248–270.CrossRefGoogle Scholar
  16. (16).
    R.M. Haralick, “Statistical and structural approaches to texture”, Proc. IEEE 67, 1979, 786–804.CrossRefGoogle Scholar
  17. (17).
    J.K. Hawkins, “Textural properties for pattern recognition”, in B.S. Lipkin and A. Rosenfeld, eds, Picture Processing and Psychopictorics, Academic Press, New York, 1970, 347–370.Google Scholar
  18. (18).
    A. Rosenfeld and M. Thurston, “Edge and curve detection by visual scene analysis”, IEEE Trans. Computers 20, 1971, 562–569.CrossRefGoogle Scholar
  19. (19).
    J. Serra, Image Analysis and Mathematical Morphology, Academic Press, London, 1982.MATHGoogle Scholar
  20. (20).
    S.W. Zucker, “Region growing: childhood and adolescence”, Computer Graphics Image Processing 5, 1976, 382–399.Google Scholar
  21. (21).
    T. Pavlidis, Structural Pattern Recognition, Springer, Berlin, 1977.MATHGoogle Scholar
  22. (22).
    A. Rosenfeld and J.L. Pfaltz, “Sequential operations in digital picture processing”, J. ACM 13, 1966, 471–494.MATHCrossRefGoogle Scholar
  23. (23).
    A. Rosenfeld, “Connectivity in digital pictures”, J. ACM 17, 1970, 146–160.MathSciNetMATHCrossRefGoogle Scholar
  24. (24).
    A. Rosenfeld and J.L. Pfaltz, “Distance functions on digital pictures”, Pattern Recognition 1, 1968, 33–61.MathSciNetCrossRefGoogle Scholar
  25. (25).
    P.E. Danielsson, “Euclidean distance mapping”, Computer Graphics Image Processing 1.4, 1980, 227–248.Google Scholar
  26. (26).
    J. Sklansky, “Recognition of convex blobs”, Pattern Recognition 2, 1970, 3–10.CrossRefGoogle Scholar
  27. (27).
    A. Rosenfeld, “Digital straight line segments”, IEEE Trans. Computers 23, 1974, 1264–1269.MathSciNetMATHCrossRefGoogle Scholar
  28. (28).
    T. Pavlidis, “Algorithms for shape analysis of contours and waveforms”, IEEE Trans. Pattern Analysis Machine Intelligence 2, 1980, 301–312.CrossRefGoogle Scholar
  29. (29).
    T. Pavlidis, “A review of algorithms for shape analysis”, Computer Graphics Image Processing 7, 1978, 243–258.CrossRefGoogle Scholar
  30. (30).
    M.K. Hu, “Visual pattern recognition by moment invariants”, IRE Trans. Information Theory 8, 1962, 179–187.MATHGoogle Scholar
  31. (31).
    H. Freeman, “On the encoding of arbitrary geometric configurations”, IRE Trans. Electronic Computers 10, 1981, 260–268.MathSciNetCrossRefGoogle Scholar
  32. (32).
    H. Freeman, “Computer processing of line-drawing images”, Computing Surveys 6, 1974, 57–97.MATHCrossRefGoogle Scholar
  33. (33).
    H. Blum, “A transformation for extracting new descriptors of shape”, in W. Wathen-Dunn, ed., Models for the Perception of Speech and Visual Form, MIT Press, Cambridge, MA, 1967, 362–380.Google Scholar
  34. (34).
    H. Samet, “The quadtree and related hierarchical data structures”, Computing Surveys 16, 1984, 187–260.MathSciNetCrossRefGoogle Scholar
  35. (35).
    H. Blum and R.N. Nagel, “Shape description using weighted symmetric axis features”, Pattern Recognition 10, 1978, 167–180.MATHCrossRefGoogle Scholar
  36. (36).
    D.H. Ballard, “Strip trees: a hierarchical representation for curves”, Comm. ACM 24, 1981, 310–321.CrossRefGoogle Scholar
  37. (37).
    M.A. Fischler and R.A. Elschlager, “The representation and matching of pictorial structures”, IEEE Trans. Computers 22, 1973, 67–92.CrossRefGoogle Scholar
  38. (38).
    P.V.C. Hough, “Method and means for recognizing complex patterns”, U.S. Patent 3069654, Dec. 18, 1962.Google Scholar
  39. (39).
    R.O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures”, Comm. ACM 15, 1972, 11–15.CrossRefGoogle Scholar
  40. (40).
    D.H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes”, Pattern Recognition 13, 1981, 111–122.MATHCrossRefGoogle Scholar
  41. (41).
    H.G. Barrow, A.P. Ambler, and R.M. Burstall, “Some techniques for recognizing structure in pictures”, in S. Watanabe, ed., Frontiers of Pattern Recognition, Academic Press, New York, 1972, 1–29.Google Scholar
  42. (42).
    K.S. Fu, Syntactic Methods in Pattern Recognition, Academic Press, New York, 1974.MATHGoogle Scholar
  43. (43).
    K.S. Fu, Syntactic Pattern Recognition and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1982.MATHGoogle Scholar
  44. (44).
    H.G. Barrow and J.M. Tenenbaum, “Recovering intrinsic scene characteristics from images”, in A.r. Hanson and E.M. Riseman, eds., Computer Vision Systems, Academic Press, New York, 1978, 3–26.Google Scholar
  45. (45).
    B. Horn, “Obtaining shape from shading information”, in P.H. Winston, ed., The Psychology of Computer Vision, McGraw-Hill, New York, 1975, 115–155.Google Scholar
  46. (46).
    B.K.P. Horn, “Understanding image intensities”, Artificial Intelligence 8, 1977, 201–231.MATHCrossRefGoogle Scholar
  47. (47).
    K. Ikeuchi and B.K.P. Horn, “Numerical shape from shading and occluding boundaries”, Artificial Intelligence 17, 1981, 141–184.CrossRefGoogle Scholar
  48. (48).
    A.P. Witkin, “Recovering surface shape and orientation from texture”, Artificial Intelligence 17, 1981, 17–45.CrossRefGoogle Scholar
  49. (49).
    P.M. Will and K.S. Pennington, “Grid coding: a preprocessing technique for robot and machine vision”, Artificial Intelligence 2, 1971, 319–329.CrossRefGoogle Scholar
  50. (50).
    A. Guzman, “Decomposition of a visual scene into three-dimensional bodies”, in A. Grasselli, ed., Automatic Interpretation and Classification of Images, Academic Press, New York, 1969, 243–276.Google Scholar
  51. (51).
    D. Waltz, “Understanding line drawings of scenes with shadows”, in P.H. Winston, ed., The Psychology of Computer Vision, McGraw-Hill, New York, 1975, 19–91.Google Scholar
  52. (52).
    A.K. Mackworth, “Interpreting pictures of polyhedral scenes”, Artificial Intelligence 4, 1973, 121–137.Google Scholar
  53. (53).
    T. Kanade, “Recovery of the three-dimensional shape of an object from a single view”, Artificial Intelligence 17, 1981, 409–460.CrossRefGoogle Scholar
  54. (54).
    S.W. Draper, “The use of gradient and dual space in line-drawing interpretation”, Artificial Intelligence 17, 1981, 461–508.CrossRefGoogle Scholar
  55. (55).
    K.A. Stevens, “The visual interpretation of surface contours”, Artificial Intelligence 17, 1981, 47–73.CrossRefGoogle Scholar
  56. (56).
    H.G. Barrow and J.M. Tenenbaum, “Interpreting line drawings as three-dimensional surfaces”, Artificial Intelligence 17, 1981, 75–116.CrossRefGoogle Scholar
  57. (57).
    T.O. Binford, “Inferring surfaces from images”, Artificial Intelligence 17, 1981, 205–244.CrossRefGoogle Scholar
  58. (58).
    G.L. Hobrough, “Automation in photogrammetric instruments”, Photogram-metric Engineering 31, 1965, 595–603.Google Scholar
  59. (59).
    S.T. Barnard and M.A. Fischler, “Computational stereo”, Computing Surveys 14, 1982, 553–572.CrossRefGoogle Scholar
  60. (60).
    D. Marr and T. Poggio, “A computational theory of human stereo vision”, Proc. Royal Soc. B204, 1979, 301–328.Google Scholar
  61. (61).
    W.E.L. Grimson, From Images to Surfaces - A Computational Theory of the Human Early Visual System, MIT Press, Cambridge, MA, 1981.Google Scholar
  62. (62).
    J.E.W. Mayhew and J.P. Frisby, “Psychophysical and computational studies towards a theory of human stereopsis”, Artificial Intelligence 17, 1981, 349–385.CrossRefGoogle Scholar
  63. (63).
    R.J. Woodham, “Analysing images of curved surfaces”, Artificial Intelligence 17, 1981, 117–140.Google Scholar
  64. (64).
    Y. Shirai, “Recognition of polyhedrons with a range finder”, Pattern Recognition 4, 1972, 243–250.CrossRefGoogle Scholar
  65. (65).
    D. Nitzan, A.E. Brain, and R.O. Duda, “The measurement and use of registered reflectance and range data in scene analysis”, Proc. IEEE 65, 1977, 206–220.CrossRefGoogle Scholar
  66. (66).
    R.A. Jarvis, “A perspective on range finding techniques for computer vision”, IEEE Trans. Pattern Analysis Machine Intelligence 5, 1983, 122–139.CrossRefGoogle Scholar
  67. (67).
    H.K. Nishihara, “Intensity, visible-surface, and volumetric representations”, Artificial Intelligence 17, 1981, 265–284.CrossRefGoogle Scholar
  68. (68).
    R. Nevatia and T.O. Binford, “Description and recognition of curved objects”, Artificial Intelligence 8, 1977, 77–98.MATHCrossRefGoogle Scholar
  69. (69).
    C.L. Jackins and S.L. Tanimoto, “Oct-trees and their use in representing three-dimensional objects”, Computer Graphics Image Processing 14, 1980, 249–270.CrossRefGoogle Scholar
  70. (70).
    A.A.G. Requicha, “Representations for rigid solids: theory, methods, and systems”, Computing Surveys 12, 1980, 437–464.Google Scholar
  71. (71).
    S.N. Srihari, “Representation of three-dimensional images”, Computing Surveys 13, 1981, 399–424.Google Scholar
  72. (72).
    R.A. Brooks, “Symbolic reasoning among 3-D models and 2-D images”, Artificial Intelligence 17, 1981, 285–348.Google Scholar
  73. (73).
    T.O. Binford, “Survey of model-based image analysis systems”, Intl. J. Robotics Research 1 (1), 1982, 18–64.Google Scholar
  74. (74).
    W.N. Martin and J.K. Aggarwal, “Dynamic scene analysis: a survey”, Computer Graphics Image Processing 7, 1978, 356–374.CrossRefGoogle Scholar
  75. (75).
    J.K. Aggarwal and N.I. Badler, guest eds., Special Issue on Motion and Time-Varying Imagery, IEEE Trans. Pattern Analysis Machine Intelligence 2, (6), November 1980, 493–588.Google Scholar
  76. (76).
    T.S. Huang, ed., Image Sequence Analysis, Springer, Berlin, 1981.MATHGoogle Scholar
  77. (77).
    W.E. Snyder, guest ed., Special Issue on Computer Analysis of Time-Varying Images, Computer 14 (8), August 1981, 7–69.Google Scholar
  78. (78).
    T.S. Huang, ed., Image Sequence Processing and Dynamic Scene Analysis, Springer, Berlin, 1983.Google Scholar
  79. (79).
    J.K. Aggarwal, guest ed., Special Issues on Analysis of Time-Varying Imagery, Computer Vision, Graphics, Image Processing 21 (1,2), January and February 1983, 1–160, 167–293.Google Scholar
  80. (80).
    S. Ullman, The Interpretation of Visual Motion, MIT Press, Cambridge, MA, 1979.Google Scholar
  81. (81).
    E.C. Hildreth, Measurement of Visual Motion, MIT Press, Cambridge, MA, 1984.Google Scholar
  82. (82).
    L. Uhr, “Layered `recognition cone’ networks that preprocess, classify, and describe”, IEEE Trans. Computers 21, 1972, 758–768.MATHCrossRefGoogle Scholar
  83. (83).
    S. Tanimoto and T. Pavlidis, “A hierarchical data structure for picture processing”, Computer Graphics Image Processing 4, 1975, 104–119.CrossRefGoogle Scholar
  84. (84).
    S. Tanimoto and A. Klinger, eds., Structured Computer Vision: Machine Perception through Hierarchical Computational Structures, Academic Press, New York, 1980.Google Scholar
  85. (85).
    A. Rosenfeld, ed., Multiresolution Image Processing and Analysis, Springer, Berlin, 1984.MATHGoogle Scholar
  86. (86).
    L.G. Shapiro, “Data structures for picture processing: a survey”, Computer Graphics Image Processing 11, 1979, 162–184.CrossRefGoogle Scholar
  87. (87).
    A. Rosenfeld, R. Hummel, and S.W. Zucker, “Scene labeling by relaxation operations”, IEEE Trans. Systems, Man, Cybernetics 6, 1976, 420–433.MathSciNetMATHCrossRefGoogle Scholar
  88. (88).
    A. Rosenfeld, “Iterative methods in image analysis”, Pattern Recognition 10, 1978, 181–187.CrossRefGoogle Scholar
  89. (89).
    L.S. Davis and A. Rosenfeld, “Cooperating processes for low-level vision: a survey”, Artificial Intelligence 17, 1981, 245–263.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • Azriel Rosenfeld
    • 1
  1. 1.Center for Automation ResearchUniversity of MarylandCollege ParkUSA

Personalised recommendations