Biochemistry of Phosphatides

  • R. J. Rossiter


This discussion will be confined to a general description of the biosynthesis and degradation of the glycerophosphatides commonly found in animal tissues. Reference will be made to the glycerophosphatides of plants and bacteria for comparative purposes only. Even with these severe restrictions, it will be possible to refer to no more than a small selection of the many important papers that have appeared on the subject during the past few years.


Phosphatidyl Serine Phosphatidic Acid Penicillium Notatum Phosphatidyl Inositol Phosphatidyl Glycerol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agranoff, B. W., R. M. Bradley, and R. O. Brady: The enzymatic synthesis of inositol phosphatide. J. biol. Chem. 233, 1077–83 (1958).PubMedGoogle Scholar
  2. Ansell, G. B., and B. J. Bayliss: The cytidine diphosphate choline content of rat brain. Biochem. J. 78, 209–13 (1961).PubMedGoogle Scholar
  3. Ansell, G. B., and T. Chojnacki: Incorporation of 1-0-Phosphoryl-2-dimethylaminoethanol and phos-phorylcholine into the phospholipids of brain and fiver dispersions. Nature (Lond.) 196, 545–47 (1962 a).CrossRefGoogle Scholar
  4. Ansell, G. B., and T. Chojnacki: The incorporation of the 0-phosphate esters of N-methylaminoethanols into the phospholipids of brain and liver dispersions. Biochem. J. 85, 21 p–32 p (1962 b).Google Scholar
  5. Ansell, G. B., and J. N. Hawthorne: Phospholipids. Amsterdam: Elsevier 1964.Google Scholar
  6. Ansell, G. B., and S. Spanner: The incorporation of the radioactivity of (3-14C) serine into brain glycero-phospholipids. Biochem. J. 84, 12p–13p (1962).Google Scholar
  7. Ansell, G. B., and S. Spanner: The occurrence of a long-chain ether analogue of phosphatidyl ethanolamine in brain tissue. Biochem. J. 8–8, 56–64 (1963).Google Scholar
  8. Ansell, G. B., and S. Spanner: The enzymic cleavage of the vinyl ether linkage in brain ethanolamine plasmalogen. Biochem. J. 90, 19p–20p (1964).Google Scholar
  9. Artom, C., and A. Wainer: Incorporation of serine into the lipids of liver fractions. Fed. Proc. 22, 415 (1963).Google Scholar
  10. Ballou, C. E., E. Vilkas, and E. Lederer: Structural studies on the myo-inositol phospholipids of Mycobacterium tuberculosis (var. bovis, strain BCG). J. biol. Chem. 238, 69–76 (1963).PubMedGoogle Scholar
  11. Bangham, A. D., and R. M. C. Dawson: The relation between the activity of a lecithinase and the electrophoretic charge of the substrate. Biochem. J. 72, 486–92 (1959).PubMedGoogle Scholar
  12. Bangham, A. D., and R. M. C. Dawson: The physicochemical requirements for the action of Penicillium notatum phospholipase B on unimolecular films of lecithin. Biochem. J. 75, 133–38 (1960).PubMedGoogle Scholar
  13. Bangham, A. D., and R. M. C. Dawson: Electrokinetic requirements for the reaction between CI. Perfringens a-toxin (phospholipase C) and phospholipid substrates. Biochim. biophys. Acta (Amst.) 59, 103–15 (1962).CrossRefGoogle Scholar
  14. Benson, A.A., and B. Maruo: Plant phospholipids. I. Identification of the phosphatidyl glycerols. Biochim. biophys. Acta (Amst.) 27, 189–95 (1958).CrossRefGoogle Scholar
  15. Benson, A.A., and M. Miyano: The phosphatidylglycerol and sulpholipid of plants. Asymmetry of the glycerol moiety. Biochem. J. 81, 31 p (1961).Google Scholar
  16. Benson, A.A., and E. H. Strickland: Plant Phospholipids. III. Identification of diphosphatidyl glycerol. Biochim. biophys. Acta (Amst.) 41, 328–33 (1960).CrossRefGoogle Scholar
  17. Berger, L., and W. T. Gimenez: Crystallization of cytidine diphosphate choline from yeast. Science 124, 81 (1956).PubMedGoogle Scholar
  18. Borkenhagen, L. F., and E. P. Kennedy: The enzymatic synthesis of cytidine diphosphate choline. J. biol. Chem. 227, 951–62 (1957).PubMedGoogle Scholar
  19. Borkenhagen, L. F., E. P. Kennedy, and L. Fielding: Enzymatic formation and decarboxylation of phosphatidylserine. J. biol. Chem. 236, PC28–PC29 (1961).Google Scholar
  20. Brandes, R., J. Olley, and B. Shapiro: Assay of glycerol phosphate acyltransferase in liver particles. Biochem. J. 86, 244–47 (1963).PubMedGoogle Scholar
  21. Brante, G.: Studies on lipids in the nervous system. With special reference to quantitative chemical determination and topical distribution. Acta physiol. scand. 18, Suppl. 63,1–189 (1949).Google Scholar
  22. Bremer, J., and D. M. Greenberg: Methyl transfering enzyme system of microsomes in the biosynthesis of lecithin (phosphatidylcholine). Biochim. biophys. Acta (Amst.) 46, 205–16 (1961).CrossRefGoogle Scholar
  23. Brockerhoff, H., and C. E. Ballou: The structure of the phosphoinositide complex of beef brain. J. biol. Chem. 236, 1907–11 (1961).Google Scholar
  24. Brockerhoff, H., and C. E. Ballou: Phosphate incorporation in brain phosphoinositides. J. biol. Chem. 237, 49–52 (1962a).PubMedGoogle Scholar
  25. Brockerhoff, H., and C. E. Ballou: On the metabolism of the brain phosphoinositide complex. J. biol. Chem. 237, 1764–66 (1962b).PubMedGoogle Scholar
  26. Bitblitz, C., and E. P. Kennedy: Synthesis of phosphatides in isolated mitochondria. III. The enzymatic phosphorylation of glycerol. J. biol. Chem. 211, 951–61 (1954).Google Scholar
  27. Carr, H. G., H. Haerle, and J. J. Eiler: Phospholipid and plasmalogen synthesis in rat-brain homogenates. Biochim. biophys. Acta (Amst.) 70, 205–7 (1963).CrossRefGoogle Scholar
  28. Carter, H. E., R. H. Gigg, J. H. Law, T. Nakayama, and E. Weber: Biochemistry of sphingolipids. XI. Structure of phytoglycolipide. J. biol. Chem. 233, 1309–14 (1958).PubMedGoogle Scholar
  29. Carter, H. E., D. B. Smith, D. N. Jones: A new ethanolamine-containing lipid from egg yolk. J. biol. Chem. 232, 681–94 (1958).PubMedGoogle Scholar
  30. Chargaff, E., and A. S. Keston: The metabolism of aminoethylphosphoric acid, followed by means of the radioactive phosphorus isotope. J. biol. Chem. 134, 515–22 (1940).Google Scholar
  31. Chojnacki, T., T. Korzybski, and G. B. Ansell: The methylation of natural and unnatural analogues of 82P-labelled phosphatidylethanolamine by brain and liver tissue. Biochem. J. 90, 18P–19P (1964).Google Scholar
  32. Chu, H. P.: The lecithinase of Bacillus cereus and its comparison with Clostridium welchii α-toxin. J. gen. Microbiol. 3, 255–73 (1949).PubMedGoogle Scholar
  33. Clark, B., and G. Hübscher: Monoglyceride transacylase of rat-intestinal mucosa. Biochim. biophys. Acta (Amst.) 70, 43–52 (1963).CrossRefGoogle Scholar
  34. Coleman, R., and G. Hübscher: Metabolism of phospholipids. V. Studies of phosphatide acid phosphatase. Biochim. biophys. Acta (Amst.) 56, 479–90 (1962).CrossRefGoogle Scholar
  35. Colodzin, M., and E. P. Kennedy: Biosynthesis of diphosphoinositide in brain. Fed. Proc. 23, 229 (1964).Google Scholar
  36. Condrea, E., C. Klibansky, R. Keret, and A. de Vries: Action of bovine and human pancreatic phospholipase A on lipoprotein-bound phospholipids. Nature (Lond.) 200, 1096–97 (1963).CrossRefGoogle Scholar
  37. Crocken, B. J., and J. F. Nyc: Phospholipid variations in mutant strains of Neurospora crassa. J. biol. Chem. 239, 1727–30 (1964).PubMedGoogle Scholar
  38. Crone, H. D., and R. G. Bridges: Phospholipids of the house fly Musca domestica stable to hydrolysis by mild alkali and acid. Biochem. J. 84, 101P (1962).Google Scholar
  39. Davenport, J. B., and R. M. C. Dawson: The formation of cyclic acetals during the acid hydrolysis of lysoplasmalogens. Biochem. J. 84, 490–96 (1962).PubMedGoogle Scholar
  40. Davidson, F. M., and C. Long: The structure of the naturally occurring phosphoglycerides. 4. Action of cabbage-leaf phospholipase D on ovolecithin and related substances. Biochem. J. 69, 458–66 (1958).PubMedGoogle Scholar
  41. Dawson, R. M. C.: Liver glycerylphosphorylcholine diesterase. Biochem. J. 62, 689–93 (1956a).PubMedGoogle Scholar
  42. Dawson, R. M. C.: The phospholipase B of liver. Biochem. J. 64, 192–96 (1956b).PubMedGoogle Scholar
  43. Dawson, R. M. C.: The identification of two lipid components in liver which enable Penicillium notatum extract to hydrolyse lecithin. Biochem. J. 68, 352–60 (1958 a).PubMedGoogle Scholar
  44. Dawson, R. M. C.: Studies on the hydrolysis of lecithin by a Penicillium notatum phospholipase B preparation. Biochem. J. 70, 559–70 (1958b).PubMedGoogle Scholar
  45. Dawson, R. M. C.: Studies on the enzymic hydrolysis of monophosphoinositide by phospholipase preparations from P. Notatum and ox pancreas. Biochim. biophys. Acta (Amst.) 33, 68–77 (1959).CrossRefGoogle Scholar
  46. Dawson, R. M. C.: On the mechanism of action of phospholipase A. Biochem J. 88, 414–23 (1963).PubMedGoogle Scholar
  47. Dawson, R. M. C., and A. D. Bangham: The activation of surface films of lecithin by amphipathic molecules. Biochem. J. 72, 493–96 (1959).PubMedGoogle Scholar
  48. Dawson, R. M. C., and J. C. Dittmer: Evidence for the structure of brain triphosphoinositide from hydrolytic degradation studies. Biochem. J. 81, 540–45 (1961).PubMedGoogle Scholar
  49. Dawson, R. M. C., and W. Thompson: The triphosphoinositide Phosphomonoesterase of brain tissue. Biochem. J. 91, 244–50 (1964).PubMedGoogle Scholar
  50. De, S. S.: Physico-chemical studies on haemolysin. Part I. Crystalline haemolysin (lecithinase). Ann. Biochem. exp. Med. (Calcutta) 4, 45–56 (1944).Google Scholar
  51. Deenen, L. L. M. van, and G. H. de Haas: The substrate specificity of phospholipase A. Biochim. biophys. Acta (Amst.) 70, 538–53 (1963).CrossRefGoogle Scholar
  52. Dittmer, J. C, and R. M. C. Dawson: The isolation of a new lipid, triphosphoinositide, and monophosphoinositide from ox brain. Biochem. J. 81, 535–40 (1961).PubMedGoogle Scholar
  53. Druzhinina, K. V., and M. G. Kritzman: Biokhimiya 17, 77 (1952).Google Scholar
  54. Edgar, G. W. F., and G. Smits: Alkali-stable phospholipids during the development of the rabbit brain. J. Neurochem. 3, 316–21 (1959).PubMedCrossRefGoogle Scholar
  55. Eichberg, J., and R. M. C. Dawson: Distribution of polyphosphoinositides in tissues and cell fractions. Biochem. J. 93, 23P (1964).Google Scholar
  56. Eichberg, J., V. P. Whittaker, and R. M. C. Dawson: Distribution of lipids in subcellular particles of guinea-pig brain. Biochem. J. 92, 91–100 (1964).PubMedGoogle Scholar
  57. Ellis, R. B., T. Galliard, and J. N. Hawthorne: Phosphoinositides. 5. The inositol lipids of ox brain. Biochem. J. 88, 125–31 (1963).PubMedGoogle Scholar
  58. Ercoli, A.: in F. F. Nord, and R. Weidenhagen: Handbuch der Enzymologie, Vol. 1, p.480. Leipzig: Akademische Verlagsgesellschaft 1940.Google Scholar
  59. Fairbairn, D.: The phospholipase of the venom of the cottonmouth mocassin (Agkistrodon piscivorus L.) J. biol. Chem. 157, 633–44 (1945).Google Scholar
  60. Fairbairn, D.: The preparation and properties of a lysophospholipase from Penicillium notatum. J. biol. Chem. 173, 705–14 (1948).PubMedGoogle Scholar
  61. Fleischer, S., G. Brierley, H. Klouwen, and D. B. Slautterback: The role of phospholipids in electron transfer. J. biol. Chem. 237, 3264–72 (1962).PubMedGoogle Scholar
  62. Folch, J.: Brain diphosphoinositide, a new phosphatide having inositol metadiphosphate as a constituent. J. biol. Chem. 177, 505–19 (1949).PubMedGoogle Scholar
  63. Galliard, T., and J. N. Hawthorne: Metabolism of myo-inositol in mammalian liver. Bio-chem. J. 88, 38P (1963).Google Scholar
  64. Gambal, D., and K. J. Monty: The biosynthesis of plasmalogens. Fed. Proc. 18, 232 (1959).Google Scholar
  65. Gibson, K. D., J. D. Wilson, and S. Udenfriend: The enzymatic conversion of phospholipid ethanolamine to phospholipid choline in rat liver. J. biol. Chem. 236, 673–79 (1961).PubMedGoogle Scholar
  66. Gier, J. de, G. H. de Haas, and L. L. M. van Deenen: Action of phospholipase from Clostridium welchii and Bacillus cereus on red-cell membranes. Biochem. J. 81, 33P–34P (1961).Google Scholar
  67. Gøransson, G.: The incorporation of palmitic acid and oleic acid into liver lipids by the rat. Biochem. J. 92, 41P–42P (1964).Google Scholar
  68. Gottfried, E. L., and M. M. Rapport: I. Isolation and characterization of phosphatidyl choline, a pure native plasmalogen. J. biol. Chem. 237, 329–33 (1962).PubMedGoogle Scholar
  69. Groth, D. P., J. A. Bain, and C. C. Pfeiffer: The comparative distribution of C14-labelled 2-dimethylaminoethanol and choline in the mouse. J. Pharmacol, exp. Ther. 124, 290–95 (1958).Google Scholar
  70. Gurr, M. I., and G. Hübscher: Cytidine diphosphate choline: 1,2-diglyceride choline-phosphotransferase in intestinal mucosa. Biochem. J. 92, 10P (1964).Google Scholar
  71. De Haas, G. H., F. J. M. Daemen, and L. L. M. van Deenen: The site of action of phosphatide acyl-hydrolase (phospholipase A) on mixed-acid phosphatides containing a polyunsaturated fatty acid. Biochim. biophys. Acta (Amst.) 65, 260–70 (1962).CrossRefGoogle Scholar
  72. De Haas, and L. L. M. van Deenen: The sterospecific action of phospholipase A on β-Mecithins. Biochim. biophys. Acta (Amst.) 70, 469–71 (1963).CrossRefGoogle Scholar
  73. Hack, M. H., and V.J. Ferrans: Papierchromatographische analyse von plasmalogenen. Hoppe-Seylers Z. physiol. Chem. 315, 157–62 (1959).PubMedCrossRefGoogle Scholar
  74. Hall, M. O., and J. F. Nyc: The isolation and characterization of phospholipids containing mono- and dimethylethanolamine from Neurospora crassa. J. Lipid Res. 2, 321–27 (1961).Google Scholar
  75. Hanahan, D. J.: The enzymatic degradation of phosphatidyl choline in diethyl ether. J. biol. Chem. 195, 199–206 (1952).PubMedGoogle Scholar
  76. H. Brockerhoff, and E. J. Barron: The site of attack of phospholipase (lecithinase) A. J. biol. Chem. 235, 1917–23 (1960).PubMedGoogle Scholar
  77. H. Brockerhoff, and I. L. Chaikoff: The phosphorus-containing lipides of the carrot. J. biol. Chem. 168, 233–40 (1947).Google Scholar
  78. H. Brockerhoff, M. Rodbell, and L. D. Turner: Enzymatic formation of monopalmitoleyl- and mono-palmitoyllecithin (lysolecithins). J. biol. Chem. 206, 431–41 (1954).Google Scholar
  79. H. Brockerhoff, and R. Watts: The isolation of an a’-alkoxy-β-acyl-α-glycerophosphorylethanolamine from bovine erythrocytes. J. biol. Chem. 236, PC59–PC60 (1961).Google Scholar
  80. Haverkate, F., and L. L. M. van Deenen: The stereochemical configuration of phosphatidyl glycerol. Biochim. biophys. Acta (Amst.) 84, 106–8 (1964).Google Scholar
  81. Hawthorne, J. N., and P. Kemp: The brain phosphoinositides. Adv. Lipid Res. 2, 127–66 (1964).PubMedGoogle Scholar
  82. Hayaishi, O., and A. Kornberg: Metabolism of phospholipides by bacterial enzymes. J. biol. Chem. 206, 647–63 (1954).PubMedGoogle Scholar
  83. Hirschmann, H.: The nature of substrate asymmetry in stereoselective reactions. J. biol. Chem. 235, 2762–67 (1960).PubMedGoogle Scholar
  84. Hoffmann-Ostenhof, O., C. Jungwirth, and I. B. Dawid: Enzymic phosphorylation of myo-inositol by enzyme from yeast. Naturwissenschaften 45, 265 (1958).CrossRefGoogle Scholar
  85. Hokin, M. R., and L. E. Hokin: The synthesis of phosphatide acid from diglyceride and adenosine triphosphate in extracts of brain microsomes. J. biol. Chem. 234, 1381–86 (1959).PubMedGoogle Scholar
  86. Honegger, C. G., and R. Honegger: Volatile amines in brain. Nature (Lond.) 185, 530–32 (1960).CrossRefGoogle Scholar
  87. Hörhammer, L., H. Wagner, and J. Hölzl: über die Inositphosphatide des Rinderhirns. Biochem. Z. 332, 269–76 (1960).Google Scholar
  88. Hörhammer, L., H. Wagner, and G. Richter: Über die Inositphosphatide des Rinderhirns und der Sojabohne. Biochem. Z. 330, 591–94 (1958).PubMedGoogle Scholar
  89. Houtsmuller, U. M. T., and L. L. M. van Deenen: Identification of a bacterial phospholipid as an O-ornithine ester of phosphatidyl glycerol. Biochim. biophys. Acta (Amst.) 70, 211–13 (1963).CrossRefGoogle Scholar
  90. Hübscher, G.: Metabolism of phospholipids. VI. The effect of metal ions on the incorporation of L-serine into phosphatidyl serine. Biochim. biophys. Acta (Amst.) 57, 555–61 (1962).CrossRefGoogle Scholar
  91. Hübscher, G. and J. N. Hawthorne: The isolation of inositol monophosphate from liver. Biochem. J. 67, 523–27 (1957).PubMedGoogle Scholar
  92. Kanfer, J., and E. P. Kennedy: Metabolism and function of bacterial lipids. I. Metabolism of phospholipids in Escherichia coli B. J. biol. Chem. 238, 2919–22 (1963).PubMedGoogle Scholar
  93. Kanfer, J., and E. P. Kennedy: Metabolism and function of bacterial lipids. II. Biosynthesis of phospholipids in Escherichia coli. J. biol. Chem. 239, 1720–26 (1964).PubMedGoogle Scholar
  94. Kates, M.: Hydrolysis of glycerolphosphatides by plastid phosphatidase C. Canad. J. Bio-chem. 34, 967–80 (1956).CrossRefGoogle Scholar
  95. Kates, M.: Effects of solvents and surface-active agents on plastid phosphatidase C activity. Canad. J. Biochem. 35, 127–42 (1957).PubMedCrossRefGoogle Scholar
  96. Kates, M.: in K. Bloch: Lipolytic Enzymes. Lipide Metabolism, p. 165. New York: John Wiley 1960.Google Scholar
  97. Kates, M., P. S. Sastry, and L. S. Yengoyan: Isolation and characterization of a diether analog of phosphatidyl glycerophosphate from Halobacterium cutirubrum. Biochim. biophys. Acta (Amst.) 70, 705–7 (1963).CrossRefGoogle Scholar
  98. Keenan, R. W., J. B. Brown, and B. H. Marks: Plasmalogen and ester phospholipid biosynthesis in dog-heart-lung preparations. Biochim. biophys. Acta (Amst.) 51,226–29 (1961).CrossRefGoogle Scholar
  99. Keenan, R. W., and L. E. Hokin: The enzymatic acylation of lysophosphatidylinositol. J. biol. Chem. 239, 2123–29 (1964).PubMedGoogle Scholar
  100. Kemp, P., G. Hübscher, and J. N. Hawthorne: Phosphoinositides. 3. Enzymic hydrolysis of inositol-containing phospholipids. Biochem. J. 79, 193–208 (1961).PubMedGoogle Scholar
  101. Kennedy, E. P.: Synthesis of phosphatides in isolated mitochondria. J. biol. Chem. 201, 399–412 (1953).PubMedGoogle Scholar
  102. Kennedy, E. P.: Synthesis of phosphatides in isolated mitochondria. II. Incorporation of choline into lecithin. J. biol. Chem. 209, 525–35 (1954).PubMedGoogle Scholar
  103. Kennedy, E. P.: The synthesis of cytidine diphosphate choline, cytidine diphosphate ethanolamine, and related compounds. J. biol. Chem. 222, 185–91 (1956).PubMedGoogle Scholar
  104. Kennedy, E. P.: Biosynthesis of complex lipids. Fed. Proc. 20, 934 (1961).PubMedGoogle Scholar
  105. Kennedy, E. P.: The metabolism and function of complex lipids. Harvey Lect. 57, 143–71 (1962).Google Scholar
  106. Kennedy, E. P., and S. B. Weiss: The function of cytidine co-enzymes in the biosynthesis of phospholipids. J. biol. Chem. 222, 193–214 (1956).PubMedGoogle Scholar
  107. Kiyasu, J. Y., and E. P. Kennedy: The enzymatic synthesis of plasmalogens. J. biol. Chem. 235, 2590–94 (1960).PubMedGoogle Scholar
  108. Kiyasu, J. Y., R. A. Pieringer, H. Paulus, and E. P. Kennedy: The biosynthesis of phosphatidyl-glycerol. J. biol. Chem. 238, 2293–98 (1963).PubMedGoogle Scholar
  109. Klenk, E., and U. W. Hendricks: An inositol phosphatide containing carbohydrate isolated from human brain. Biochim. biophys. Acta (Amst.) 50, 602–3 (1961).CrossRefGoogle Scholar
  110. Korey, S. R., and M. Orchen: Plasmalogens of the nervous system. I. Deposition in developing rat brain and incorporation oìf C14 isotope from acetate and palmitate into the α,β-unsaturated ether chain. Arch. Biochem. 83, 381–89 (1959).PubMedCrossRefGoogle Scholar
  111. Kornberg, A., and W. E. Pricer: Enzymatic synthesis of phosphorus-containing lipides. J. Amer. chem. Soc. 74, 1617 (1952a).CrossRefGoogle Scholar
  112. Kornberg, A., and W. E. Pricer: Studies on the enzymatic synthesis of phospholipids. Fed. Proc. 11, 242 (1952b).Google Scholar
  113. Kornberg, A., and W. E. Pricer: Enzymatic synthesis of the coenzyme A derivatives of long-chain fatty acids. J. biol. Chem. 204, 329–43 (1953a).PubMedGoogle Scholar
  114. Kornberg, A., and W. E. Pricer: Enzymatic esterification of «-glycerophosphate by long chain fatty acids. J. biol. Chem. 204, 345–57 (1953b).PubMedGoogle Scholar
  115. Lands, W. E. M., and I. Merkl: Metabolism of glycerolipids. III. Reactivity of various acyl esters of co-enzyme A with α’-acylglycerophosphorylcholine, and positional specificities in lecithin synthesis. J. biol. Chem. 238, 898–904 (1963).PubMedGoogle Scholar
  116. Law, J. H., H. Zalkin, and T. Kaneshiro: Transmethylation reactions in bacterial lipids. Biochim. biophys. Acta (Amst.) 70, 143–51 (1963).CrossRefGoogle Scholar
  117. Le Cocq, J., and C. E. Ballou: On the structure of cardiolipin. Biochem. 3, 976 (1964).CrossRefGoogle Scholar
  118. Long, C., and I. F. Penny: The structure of the naturally occurring phosphoglycerides. 3. Action of moccasin-venom phospholipase A on ovolecithin and related substances. Biochem. J. 65, 382–89 (1957).PubMedGoogle Scholar
  119. MacFarlane, M. G.: The biochemistry of bacterial toxins. 2. The enzymic specificity of Clostridium welchii lecithinase. Biochem.J. 42, 587–90 (1948).Google Scholar
  120. MacFarlane, M. G.: Structure of cardiolipin. Nature (Lond.) 182, 946 (1958).CrossRefGoogle Scholar
  121. MacFarlane, M. G.: Characterizations of lipoamino-acids as O-aminoacid esters of phosphatidyl-glycerol. Nature (Lond.) 196, 136–38 (1962).CrossRefGoogle Scholar
  122. MacFarlane, M. G.: Phosphatidylglycerols and lipoamino acids. Advanc. Lipid Res. 2, 91–125 (1964a).Google Scholar
  123. MacFarlane, M. G.: in R. M. C. Dawson, and D. N. Rhodes: Lipids of bacterial membranes. Metabolism and Physiological Significance of Lipids, p. 399. London: John Wiley 1964b.Google Scholar
  124. MacFarlane, M. G.: The structure of cardiolipin. Biochem. J. 92, 12C–14C (1964c).PubMedGoogle Scholar
  125. MacFarlane, M. G., and B. C. J. G. Knight: The biochemistry of bacterial toxins. 1. The lecithinase activity of Cl. welchii toxins. Biochem. J. 35, 884–902 (1941).PubMedGoogle Scholar
  126. Magee, W. L.: To be published.Google Scholar
  127. Marinetti, G. V.: Hydrolysis of cardiolipin by snake venom phospholipase A. Biochim. biophys. Acta (Amst.) 84, 55–59 (1964).Google Scholar
  128. McMurray, W. C.: Metabolism of phosphatides in developing rat brain. — I. Incorporation of radioactive precursors. J. Neurochem. 11, 287–99 (1964a).PubMedCrossRefGoogle Scholar
  129. McMurray, W. C.: Metabolism of phosphatides in developing rat brain. — II. Labelling of plasmalogens and other alkali-stable lipids from radioactive cytosine nucleotides. J. Neurochem. 11, 315–26 (1964b).PubMedCrossRefGoogle Scholar
  130. McMurray, W. C., K. P. Strickland, J. F. Berry, and R. J. Rossiter: Incorporation of 32P-labelled intermediates into the phospholipids of cell-free preparations of rat brain. Biochem. J. 66, 634 (1957).PubMedGoogle Scholar
  131. Merkl, I., and W. E. M. Lands: Metabolism of glycerolipids. IV. Synthesis of phosphatidyl-ethanolamine. J. biol. Chem. 238, 905–6 (1963).PubMedGoogle Scholar
  132. Miani, N., and G. Bucciante: La posizione occupata dalla fosforilcolina, citidindifosfato-colina, α-glicerilfosforilcolina e da altri corpi analoghi nel ciclo metabolico di alcuni fosfatidi encefalici. Experientia (Basel) 14, 10 (1958).CrossRefGoogle Scholar
  133. Miras, C. J., J. Mantzos, and G. Levis: Incorporation of L-[3-14C] serine into microsomal phospholipids of human leucocytes. Biochim. biophys. Acta (Amst.) 84, 101–3 (1964).Google Scholar
  134. Oliver, G. L., R. J. Gardiner, and R. J. Rossiter: Distribution of free inositol, phosphatidyl inositol and polyphosphoinositides in tissues. Proc. Canad. Fed. biol. Soc. 7, 27 (1964).Google Scholar
  135. Palmer, F. B., and R. J. Rossiter: A simple procedure for the study of inositol phosphatides in cat brain slices. Canad. J. Biochem. 43, 671–83 (1965).CrossRefGoogle Scholar
  136. Pangborn, M. C.: Isolation and purification of a serologically active phospholipid from beef heart. J. biol. Chem. 143, 247–56 (1942).Google Scholar
  137. Paulus, H., and E. P. Kennedy: The enzymatic synthesis of inositol monophosphatide. J. biol. Chem. 235, 1303–11 (1960).PubMedGoogle Scholar
  138. Pieringer, R. A., and L. E. Hokin: Biosynthesis of lysophosphatidic acid from mono-glyceride and adenosine triphosphate. J. biol. Chem. 237, 653–58 (1962a).PubMedGoogle Scholar
  139. Pieringer, R. A., and L. E. Hokin: Biosynthesis of phosphatide acid from lysophosphatidic acid and palmityl coenzyme A. J. biol. Chem. 237, 659–63 (1962b).PubMedGoogle Scholar
  140. Pietruszko, R., and G. M. Gray: The products of mild alkaline and mild acid hydrolysis of plasmalogens. Biochim. biophys. Acta (Amst.) 56, 232–39 (1962).CrossRefGoogle Scholar
  141. Popjak, G., and H. Munt: In search of a phospholipin precursor. Biochem. J. 46,103–13 (1950).PubMedGoogle Scholar
  142. Possmayer, F., and K. P. Strickland: The role of CMP-containing compounds in the biosynthesis of brain phospholipids. Proc. Canad. Fed. biol. Soc. 7, 33 (1964).Google Scholar
  143. Rapport, M. M., and R. E. Franzl: The structure of plasmalogens. I. Hydrolysis of phos-phatidal choline by lecithinase A. J. biol. Chem. 225, 851–57 (1957 a).PubMedGoogle Scholar
  144. Rapport, M. M., and R. E. Franzl: The structure of plasmalogens. III. The nature and significance of the aldehydogenic linkage. J. Neurochem. 1, 303–10 (1957b).PubMedCrossRefGoogle Scholar
  145. Rapport, M. M., B. Lerner, N. Alonzo, and R. Franzl: The structure of plasmalogens. II. Crystalline lysophosphatidal ethanolamine (acetal phospholipide). J. biol. Chem. 225, 859–867 (1957).PubMedGoogle Scholar
  146. Renkonen, O., and E. L. Hirvisalo: The alkoxy lecithins of ox-heart. Biochem. J. 89, 29P (1963).Google Scholar
  147. Riley, R. F.: Metabolism of phosphorylcholine. II. Partition of phosphorylcholine phosphorus between blood phosphate fractions. III. Partition of phosphorylcholine phosphorus between tissues. IV. Distribution of phosphorylcholine phosphorus in tissue lipids. J. biol. Chem. 153, 535–49 (1944).Google Scholar
  148. Rimon, A., and B. Shapiro: Properties and specificity of pancreatic phospholipase A. Biochem. J. 71, 620–23 (1959).PubMedGoogle Scholar
  149. Rodbell, M., and D. J. Hanattan: Lecithin synthesis in liver. J. biol. Chem. 214, 607–18 (1955).PubMedGoogle Scholar
  150. Rose, H. G.: Studies on the molecular structure in rat liver cardiolipin. Biochim. biophys. Acta (Amst.) 84, 109 (1964).Google Scholar
  151. Rossiter, R. J.: in D.M. Greenberg: Metabolism of phosphatides. Metabolic Pathways: 2nd Edit., Vol. 1, p. 357. New York: Academic Press 1960.Google Scholar
  152. Rossiter, R. J.: in R. M. C. Dawson, and D. N. Rhodes: Biosynthesis of lipids in the nervous system. Metabolism and Physiological Significance of Lipids, p. 511. London: John Wiley 1964.Google Scholar
  153. Rossiter, R. J., and V. Donisch: Formation of phospholipids in Ehrlich ascites tumor. Canad. Fed. biol. Soc. 7, 6 (1964).Google Scholar
  154. Rossiter, R. J., and K. P. Strickland: in K. Bloch: The metabolism and function of phosphatides, p. 69. Lipide Metabolism: New York: John Wiley 1960.Google Scholar
  155. Santiago-Calvo, E., S. Mule, C. M. Redman, M. R. Hokin, and L. E. Hokin: The chromatographic separation of polyphosphoinositides and studies of their turnover in various tissues. Biochim. biophys. Acta (Amst.) 84, 550–62 (1964).Google Scholar
  156. Senior, J. R., and K. J. Isselbacher: Activation of long-chain fatty acids by rat-gut mucosa. Biochim. biophys. Acta (Amst.) 44, 399–400 (1960).CrossRefGoogle Scholar
  157. Senior, J. R., and K. J. Isselbacher: Glyceride synthesis by membranous structures derived from rat-gut epithelial cells. Fed. Proc. 21, 288 (1962).Google Scholar
  158. Shapibo, B.: Purification and properties of a lysolecithinase from pancreas. Biochem. J. 53, 663–66 (1953).Google Scholar
  159. Smith, S. W., S. B. Weiss, and E. P. Kennedy: The enzymatic dephosphorylation of phosphatide acids. J. biol. Chem. 228, 915–22 (1957).PubMedGoogle Scholar
  160. Sbibney, M., and E. P. Kennedy: The enzymatic synthesis of sphingomyelin. J. biol. Chem. 233, 1315–22 (1958).Google Scholar
  161. Stbickland, E. H., and A. A. Benson: Neutron activation paper chromatographic analysis of phosphatides in mammalian cell fractions. Arch. Biochem. 88, 344–48 (1960).CrossRefGoogle Scholar
  162. Strickland, K. P.: Phosphorylation of diglycerides by rat brain. Canad. J. Biochem. 40, 247–59 (1962).PubMedCrossRefGoogle Scholar
  163. Strickland, K. P., D. Subbahmanyam, E. T. Pbitchabd, W. Thompson, and R. J. Rossiteb: Biosynthesis of lecithin in brain. Participation of cytidine diphosphate choline and phosphatide acid. Biochem. J. 87, 128–36 (1963).PubMedGoogle Scholar
  164. Svennebholm, L., and H. Thobin: Isolation of “kephalinB” from cerebral lipids. Biochim. biophys. Acta (Amst.) 41, 371–72 (1960).CrossRefGoogle Scholar
  165. Tattbie, N. H.: Positional distribution of saturated and unsaturated fatty acids on egg lecithin. J. Lipid Bes. 1, 60–5 (1959).Google Scholar
  166. Thompson, G. A., and D.J. Hanahan: Identification of α-glyceryl ether phospholipids as major lipid constituents in two species of terrestrial slug. J. biol. Chem. 238, 2628–31 (1963a).PubMedGoogle Scholar
  167. Thompson, G. A., and D.J. Hanahan: Studies on the nature and formation of α-glyceryl ether lipids in bovine bone marrow. Biochemistry 2, 641–46 (1963b).PubMedCrossRefGoogle Scholar
  168. Thompson, W., and R. M. C. Dawson: The hydrolysis of triphosphoinositide by extracts of ox brain. Biochem. J. 91, 233–36 (1964a).PubMedGoogle Scholar
  169. Thompson, W., and R. M. C. Dawson: The triphosphoinositide phosphodiesterase of brain tissue. Biochem. J. 91, 237–43 (1964b).PubMedGoogle Scholar
  170. Thompson, W., K. P. Stbickland, and R. J. Rossiteb: Biosynthesis of phosphatidyl inositol in rat brain. Biochem. J. 87, 136–42 (1963).PubMedGoogle Scholar
  171. Tsuyuki, H., and D. R. Idleb: The metabolism of inositol in salmon. III. The biochemical reactions of 2-C14-myoinositol in coho liver. Canad. J. Biochem. 39, 1037–42 (1961).PubMedGoogle Scholar
  172. Uziel, M., and D.J. Hanahan: An enzymatic route to L-α-glyceryl-phosphorylcholine. J. biol. Chem. 220, 1–7 (1956).PubMedGoogle Scholar
  173. Vignais, P. M., C. H. Gallagheb, and I. Zabin: Activation and oxidation of long-chain fatty acids by rat brain. J. Neurochem. 2, 283–87 (1958).PubMedCrossRefGoogle Scholar
  174. Vignais, P. V., and I. Zabin: Synthesis and properties of palmityl adenylate palmityl coenzyme A, and palmityl glutathione. Biochim. biophys. Acta (Amst.) 29, 263–69 (1958).CrossRefGoogle Scholar
  175. Wagneb, H., J. Hòlzl, A. Lissau, and L. Höbhammeb: Papierchromatographie von Phosphatiden. III. Mitteilung. Quantitative papierchromatographische Bestimmung von Phosphatiden und Phosphatidsäuren in Rattenorganen. Biochem. Z. 339, 34–45 (1963).Google Scholar
  176. Wagneb, H., A. Lissau, J. Hölzl, and L. Höbhammeb: The incorporation of P32 into the inositol phosphatides of rat brain. J. Lipid. Res. 3, 177–80 (1962).Google Scholar
  177. Waeneb, H. R., and W. E. M. Lands: The metabolism of plasmalogen: Enzymatic hydrolysis of the vinyl ether. J. biol. Chem. 236, 2404–9 (1961).Google Scholar
  178. Websteb, C. R., and R. J. Alpern: Studies on the acylation of lysolecithin by rat brain. Biochem. J. 90, 35–42 (1964).Google Scholar
  179. Weiss, H., H. E. Spiegel, and E. Titus: Isolation of an activator for phospholipase D. Nature (Lond.) 183, 1393–94 (1959).CrossRefGoogle Scholar
  180. Weiss, S. B., E. P. Kennedy, and J. Y. Kiyasu: The enzymatic synthesis of triglycerides. J. biol. Chem. 235, 40–44 (1960).PubMedGoogle Scholar
  181. Weiss, S. B., S. W. Smith, and E. P. Kennedy: The enzymatic formation of lecithin from cytidine diphosphate choline and D-1,2-diglyceride. J. biol. Chem. 231, 53–64 (1958).PubMedGoogle Scholar
  182. Wieland, O., and M. Suyteb: Glycerokinase: Isolierung und Eigenschaften des Enzyms. Biochem. Z. 329, 320–31 (1957).PubMedGoogle Scholar
  183. Williams-Ashman, H. G., and J. Banks: Participation of cytidine coenzymes in the metabolism of choline by seminal vesicle. J. Biol. Chem. 223, 509–21 (1956).PubMedGoogle Scholar
  184. Wilson, J. D., K. D. Gibson, and S. Udenfeiend: Studies on the conversion in vitro of serine to ethanolamine by rat liver and brain. J. biol. Chem. 235, 3539–43 (1960).PubMedGoogle Scholar
  185. Wittenbebg, J., and A. Kobnbeeg: Choline Phosphokinase. J. biol. Chem. 202, 431–44 (1953).Google Scholar
  186. Zamecnik, P. C, L. E. Bbewsteb, and F. Lipmann: A manometric method for measuring the activity of Cl. welchii lecithinase and a description of certain properties of this enzyme. J. exp. Med. 85, 381–94 (1947).PubMedCrossRefGoogle Scholar
  187. Zilversmit, D. B., C. Entenman, and I. L. Chaikoff: The measurement of turnover of the various phospholipids in liver and plasma of the dog and its application to the mechanism of action of choline. J. biol. Chem. 176, 193 (1948).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1967

Authors and Affiliations

  • R. J. Rossiter

There are no affiliations available

Personalised recommendations