Skip to main content

Biochemistry of Steroids

  • Chapter
Lipids and Lipidoses

Abstract

Any discussion of the biochemistry of steroids must, of necessity, center upon the many aspects of the biochemistry of cholesterol. By nature of its prevalence in the mammalian body and its central position as a precursor of bile acids and steroid hormones, cholesterol is, biochemically, the most important steroid. Because of its wide distribution and its involvement in atherosclerotic heart disease and its sequelae, cholesterol has been the most widely studied of all biologically occurring steroids. The ensuing discussion will be concerned primarily with this sterol.

Supported, in part, by a Research Career Award (HE-K 6-734) and a grant (HE-03299) from the National Heart Institute, N. I. H., U. S. P. H. S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agranoff, B. W., H. Eggerer, V. Henning, and F. Lynen: Biosynthesis of terpenes. VII. Isopentenyl pyrophosphate isomerase. J. biol. Chem. 235, 326 (1960).

    PubMed  CAS  Google Scholar 

  • Alexander, G. J., A. M. Gold, and E. Schwenk: The methyl group of methionine as a source of C28 in ergosterol. J. Amer. Chem. Soc. 79, 2967 (1957 a).

    Article  CAS  Google Scholar 

  • Alexander, G. J. and E. Schwenk: Studies on biosynthesis of cholesterol. IX. Zymosterol as a precursor of cholesterol. Arch. Biochem. 66, 381 (1957a).

    Article  PubMed  CAS  Google Scholar 

  • Alexander, G. J. and E. Schwenk: Transfer of the methyl group of methionine to carbon-24 of ergosterol. J. Amer. Chem. Soc. 79, 4554 (1957 b).

    Article  CAS  Google Scholar 

  • Anfinsen jr., C. B., and M. G. Horning: Enzymatic degradation of the cholesterol side chain in cell-free preparations. J. Amer. Chem. Soc. 75, 1511 (1953).

    Article  CAS  Google Scholar 

  • Anker, H. S.: Some aspects of the metabolism of pyruvic acid in the intact animal. J. biol. Chem. 176, 1337 (1948).

    PubMed  CAS  Google Scholar 

  • Anker, H. S. and K. Bloch: On the metabolism of Δ 4,5-cholestenone. J. biol. Chem. 178, 971 (1949).

    PubMed  CAS  Google Scholar 

  • Avigan, J., D. S. Goodman, and D. Steinberg: Studies of cholesterol biosynthesis. IV. Reduction of lanosterol to 24,25-dihydrolanosterol by rat liver homogenates. J. biol. Chem. 238, 1283 (1963).

    PubMed  CAS  Google Scholar 

  • Avigan, J., D. Steinberg, H. E. Vroman, M. J. Thompson, and E. Mosettig: Studies of cholesterol biosynthesis. I. The identification of desmosterol in serum and tissues of animals and man treated with MER-29. J. biol. Chem. 235, 3123 (1960).

    PubMed  CAS  Google Scholar 

  • Baggett, B., L. L. Engel, K. Savard, and R. I. Dorfman: Conversion of testosterone-3-C14 to C14-Estradiol by human ovarian tissue. J. biol. Chem. 221, 931 (1956).

    PubMed  CAS  Google Scholar 

  • Baisted, D. J., E. Capstack jr., and W. R. Nes: The biosynthesis of β-Amyrin and β-Sitosterol in germinating seeds of Pisum sativum. Biochemistry 1, 537 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Bergström, S.: The formation of bile acids from cholesterol in the rat. Kungl. Fysiograf. Sällskap. Lund. Forh. 22, 1 (1952).

    Google Scholar 

  • Bergström, S.: Formation and metabolism of bile acids. Rec. Chem. Progr. 16, 63 (1955).

    Google Scholar 

  • Bergström, S.: Bile acids: formation and metabolism. In: The Biosynthesis of Terpenes and Sterols, ed. G. E. W. Wolstenholme and M. O’Connor, p. 185. London: Churchill 1959.

    Chapter  Google Scholar 

  • Bergström, S., H. Danielsson, and B. Samuelsson: Formation and metabolism of bile acids. In: Lipide Metabolism, ed. K. Bloch, p. 291. New York: Wiley 1960.

    Google Scholar 

  • Bergström, S. and S. Lindstedt: The formation of cholic acid from 3α, 7α-dihydroxycoprostane in the rat. Biochim. biophys. Acta (Amst.) 19, 556 (1956).

    Article  Google Scholar 

  • Beumer, I. I., & F. Lehmann: Über die Cholesterinbildung im Tierkörper. Z. ges. exp. Med. 37, 274 (1923).

    Article  CAS  Google Scholar 

  • Beyer, K. F., and L. T. Samuels: Distribution of steroid-3β-ol-dehydrogenase in cellular structures of the adrenal gland. J. biol. Chem. 219, 69 (1956).

    PubMed  CAS  Google Scholar 

  • Bhattathiry, E. P. M., and M. D. Siperstein: Feedback control of cholesterol synthesis in man. J. clin. Invest. 42, 1613 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Biggs, M. W., D. Kritchevsky, D. Colman, J. W. Gofman, H. B. Jones, F. T. Lindgren, G. Hyde, and T. P. Lyon: Observations on the fate of ingested cholesterol in man. Circulation 6, 359 (1952).

    PubMed  CAS  Google Scholar 

  • Biggs, M. W., R. M. Lemmon, and F. T. Pierce jr.: Observations on Δ 7-cholesterol metabolism in the rabbit. Arch. Biochem. 51, 155 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Bloch, K.: The biological conversion of cholesterol to pregnanediol. J. biol. Chem. 157, 661 (1945).

    CAS  Google Scholar 

  • Bloch, K.: Über die Herkunft des Kohlenstoff-atoms 7 in Cholesterin. Ein Beitrag zur Kenntnis der Biosynthese der Steroide. Helv. chim. Acta. 36, 1611 (1953).

    Article  CAS  Google Scholar 

  • Bloch, K., B. N. Berg, and D. Rittenberg: The biological conversion of cholesterol to cholic acid. J. biol. Chem. 149, 511 (1943).

    CAS  Google Scholar 

  • Bloch, K., S. Chaykin, A. H. Phillips, and A. de Waard: Mevalonic acid pyrophosphate and isopentenylpyrophosphate. J. biol. Chem. 234, 2595 (1959).

    PubMed  CAS  Google Scholar 

  • Bloch, K., L. C. Clark, and I. Harary: Utilization of branched chain acids in cholesterol synthesis. J. biol. Chem. 211, 687 (1954).

    PubMed  CAS  Google Scholar 

  • Bloch, K. and D. Rittenberg: The biological formation of cholesterol from acetic acid. J. biol. Chem. 143, 297 (1942a).

    CAS  Google Scholar 

  • Bloch, K. and D. Rittenberg: On the utilization of acetic acid for cholesterol formation. J. biol. Chem. 145, 625 (1942b).

    CAS  Google Scholar 

  • Bloch, K. and D. Rittenberg: Sources of acetic acid in the animal body. J. biol. Chem. 155, 243 (1944).

    CAS  Google Scholar 

  • Blohm, T. R., T. Kariya, and W. M. Laughlin: Effects of MER-29, a cholesterol synthesis inhibitor on mammalian tissue lipids. Arch. Biochem. 85, 250 (1959b).

    Article  PubMed  CAS  Google Scholar 

  • Blohm, T. R. and R. D. MacKenzie: Specific inhibition of cholesterol biosynthesis by a synthetic compound (MER-29). Arch. Biochem. 85, 245 (1959a).

    Article  PubMed  CAS  Google Scholar 

  • Bondzynski, S., & V. Humnicki: Über das Schicksal des Cholesterins im tierischen Organismus. Z. physiol. Chem. 22, 396 (1896).

    Article  Google Scholar 

  • Bonner, J., and B. Arreguin: The biochemistry of rubber formation in the guayule. I. Rubber formation in seedlings. Arch. Biochem. 21, 109 (1949).

    PubMed  CAS  Google Scholar 

  • Brady, R. O., and S. Gurin: The biosynthesis of radioactive fatty acids and cholesterol. J. biol. Chem. 186, 461 (1950).

    PubMed  CAS  Google Scholar 

  • Brady, R. O., and S. Gurin: The synthesis of radioactive cholesterol and fatty acids in vitro. J. biol. Chem. 189, 371 (1951).

    PubMed  CAS  Google Scholar 

  • Breuer, H., u. P. Grill: Bildung von Formaldehyd bei der Aromatisierung neutraler Steroide zu phenolischen Steroiden. Hoppe-Seylers Z. physiol. Chem. 324, 254 (1961).

    Article  CAS  Google Scholar 

  • Briggs, T., M. W. Whitehouse, and E. Staple: Formation of bile acids from cholesterol in the alligator. Arch. Biochem. 85, 275 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Briggs, T., M. W. Whitehouse, and E. Staple: Metabolism of trihydroxycoprostanic acid: formation from cholesterol in the alligator and conversion to cholic acid and carbon dioxide in vitro by rat liver mitochondria. J. biol. Chem. 236, 688 (1961).

    CAS  Google Scholar 

  • Brodie, J. D., G. Wasson, and J. W. Porter: The participation of malonyl coenzyme A in the biosynthesis of mevalonic acid. J. biol. Chem. 238, 1294 (1963).

    PubMed  CAS  Google Scholar 

  • Bucher, N. L. R., and K. McGarrahan: The biosynthesis of cholesterol from acetate-1-C14 by cellular fractions of rat liver. J. biol. Chem. 222, 1 (1956).

    PubMed  CAS  Google Scholar 

  • Bucher, N. L. R., and K. McGarrahan, E. Gould, and A. V. Loud: Cholesterol biosynthesis in preparations of liver from normal, fasting, x-irradiated, cholesterol-fed, triton, or Δ 4-cholesten-3-one treated rats. J. biol. Chem. 234, 262 (1959).

    PubMed  CAS  Google Scholar 

  • Butenandt, A., & H. Kudszus: Über Androstendion, einen hochwirksam männlichen Prägungsstoff. Ein Beitrag zur Genese der Keimdrüsenhormone. Hoppe-Seylers Z. physiol. Chem. 237, 75 (1935).

    Article  CAS  Google Scholar 

  • Byers, S. O., and M. W. Biggs: Cholic acid and cholesterol: studies concerning possible intraconversion. Arch. Biochem. 39, 301 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Calvin, H. I., and S. Lieberman: Evidence that steroid sulfates serve as biosynthetic intermediates. II. In vitro conversion of pregnenolone-3H-sulfate-35S to 17a hydroxypregnenolone-3H-sulfate-35S. Biochemistry 3, 259 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Calvin, H. I., R. L. Vande Wiele, and S. Lieberman: Evidence that steroid sulfates serve as biosynthetic intermediates: in vivo conversion of pregnenolone-sulfate-S35 to dehydroisoandrosterone-sulfate-S35. Biochemistry 2, 648 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Caspi, E., R. I. Dorfman, B. T. Khan, G. Rosenfeld, and W. Schmid: Degradation of corticosteroids. VI. Origin of the carbon atoms of steroid hormones biosynthesized in vitro in the bovine adrenal from acetate-1-C14. J. biol. Chem. 237, 2085 (1962).

    PubMed  CAS  Google Scholar 

  • Caspi, E., G. Rosenfeld, and R. I. Dorfman: Degration of cortisol-C14 and corticosterone-C14 biosynthesized from acetate-1-C14. J. org. Chem. 21, 814 (1956).

    Article  CAS  Google Scholar 

  • Caspi, E., F. Ungar, and R. I. Dorfman: Degradation of 3a, 17a, 21-trihydroxypregnan-20-one-C14 biosynthesized from acetate-1-C14 by a Cushing’s patient. J. org. Chem. 22, 326 (1957).

    Article  CAS  Google Scholar 

  • Chaikoff, I. L., M. D. Siperstein, W. G. Dauben, H. L. Bradlow, J. F. Eastham, G. M. Tomkins, J. R. Meier, R. W. Chen, S. Hotta, and P. A. Srere: C14-Cholesterol. II. Oxidation of carbons 4 and 26 to carbon dioxide by the intact rat. J. biol. Chem. 194, 413 (1952).

    PubMed  CAS  Google Scholar 

  • Channon, H. J.: The biological significance of the unsaponifiable matter of oils. I. Experiments with the unsaturated hydrocarbon squalene. Biochem. J. 20, 400 (1926).

    PubMed  CAS  Google Scholar 

  • Channon, H. J., and G. R. Tristram: The effect of the administration of squalene and other hydrocarbons on cholesterol metabolism in the rat. Biochem. J. 31, 738 (1937).

    PubMed  CAS  Google Scholar 

  • Chaykin, S., J. Law, A. H. Phillips, T. T. Tchen, and K. Bloch: Phosphorylated intermediates in the synthesis of squalene. Proc. Nat. Acad. Sci. (Wash.) 44, 998 (1958).

    Article  CAS  Google Scholar 

  • Chevallier, F.: Application des méthodes isotopiques . l’étude de l’état dynamique des constituants organiques. Ann. Nutr. (Paris) 7, 225 (1953).

    CAS  Google Scholar 

  • Chevallier, F.: L’espace cholestérol du rat. Arch. Sci. physiol. 10, 249 (1956).

    CAS  Google Scholar 

  • Chevallier, F.: Détermination des quantités de stérols excrétés et sécrétes, et de la fraction du cholestérol des parois digestives renouvelé par transfert. Bull. Soc. Chim. biol. (Paris) 42, 1633 (1960).

    Google Scholar 

  • Chobanian, A. V., and W. Hollander: Body cholesterol metabolism in man. I. The equilibration of serum and tissue cholesterol. J. clin. Invest. 41, 1732 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Clayton, R. B.: The utilization of sterols by insects. J. Lipid Res. 5, 3 (1964).

    CAS  Google Scholar 

  • Chobanian, A. V. and K. Bloch: Biological synthesis of lanosterol and agnosterol. J.biol.Chem. 218, 305 (1956 a).

    Google Scholar 

  • Chobanian, A. V. and K. Bloch: The biological conversion of lanosterol to cholesterol. J. biol. Chem. 218, 319 (1956b).

    Google Scholar 

  • Chobanian, A. V. and K. Bloch: Sterol utilization by the hide beetle, Dermestes vulpinus. J. biol. Chem. 238, 586 (1963).

    Google Scholar 

  • Coleman, D. L., and C. A. Baumann: Intestinal sterols. III. Effects of age, sex and diet. Arch. Biochem. 66, 226 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Constantopoulos, G., and T. T. Tchen: Cleavage of cholesterol side chain by adrenal cortex. I. Cofactor requirement and product of cleavage. J. biol. Chem. 236, 65 (1961).

    PubMed  CAS  Google Scholar 

  • Coon, M. J., and S. Gurin: Studies on the conversion of radioactive leucine to acetoacetate. J. biol. Chem. 180, 1159 (1949).

    PubMed  CAS  Google Scholar 

  • Cornforth, J. W., R. H. Cornforth, A. Pelter, M. G. Horning, and G. Popjak: Studies on the biosynthesis of cholesterol. 7. Rearrangements of methyl groups during enzymic cyclisation of squalene. Tetrahedron 5, 311 (1959 b).

    Article  Google Scholar 

  • Cornforth, J. W., I. Y. Gore, and G. Popjak: Studies on the biosynthesis of cholesterol. 4. Degradation of rings C and D. Biochem. J. 65, 94 (1957).

    PubMed  CAS  Google Scholar 

  • Cornforth, J. W., G. D. Hunter, and G. Popjak: Studies of cholesterol biosynthesis. I. A new chemical degradation of cholesterol. Biochem J. 54, 590 (1953).

    PubMed  CAS  Google Scholar 

  • Cornforth, J. W., and G. Popjak: Mechanism of biosynthesis of squalene from sesquiterpenoids. Tetrahedron Letters 19, 29 (1959a).

    Article  Google Scholar 

  • Cottet, J., J. Vignalou, J. Redel et Colas-Belcour: Propriétés hypocholésterolémiantes de acides phényl-éthyl-acétique (22TH) et phényl-méthyl-acétique (4082TH). Bull. mem. Soc. méd. Hôp. (Paris) 69, 903 (1953).

    CAS  Google Scholar 

  • Curran, G. L.: Utilization of acetoacetic acid in cholesterol synthesis by surviving rat liver. J. biol. Chem. 191, 775 (1951).

    PubMed  CAS  Google Scholar 

  • Dam, H.: Über die Cholesterinsynthese im Tierkörper. Biochem. Z. 220, 158 (1930).

    CAS  Google Scholar 

  • Dam, H.: The formation of coprosterol in the intestine. II. The action of intestinal bacteria on cholesterol. Biochem. J. 28, 820 (1934).

    PubMed  CAS  Google Scholar 

  • Danielsson, H.: Present status of research on catabolism and excretion of cholesterol. In: Advanc. Lipid Res. Vol. I, ed. R. Paoletti and D. Kritchevsky, p. 335. New York: Academic Press 1963.

    Google Scholar 

  • Danielsson, H. and K. Bloch: On the origin of C28 in ergosterol. J. Amer. chem. Soc. 79, 500 (1957).

    Article  CAS  Google Scholar 

  • Danielsson, H. and B. Gustafsson: On serum cholesterol levels and neutral fecal sterols in germ free rats. Arch. Biochem. 83, 482 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Dauben, W. G., G. J. Fonken, and G. A. Boswell: The biosynthetic precursor of the extra carbon atom in the side-chain of steroids. J. Amer. chem. Soc. 79, 1000 (1957b).

    Article  CAS  Google Scholar 

  • Dauben, W. G. and T. W. Hutton: The biosynthesis of steroids and triterpenes. The origin of carbons 11 and 12 of ergosterol. J. Amer. chem. Soc. 78, 2647 (1956).

    Article  CAS  Google Scholar 

  • Dauben, W. G. and K. H. Takemura: A study of conversion of acetate to cholesterol via squalene. J. Amer. chem. Soc. 75, 6302 (1953).

    Article  CAS  Google Scholar 

  • Davidson, A. G., E. G. Dulit, and I. D. Frantz jr.: Conversion of tritiated lathosterol to cholesterol by cell-free preparations of rat liver. Fed. Proc. 16, 169 (1957).

    Google Scholar 

  • Dempsey, M. E., J. D. Seaton, G. J. Schroepfer jr., and R. W. Trockman: The intermediary role of Δ 5,7-cholestadien-3β-ol in cholesterol biosynthesis. J. biol. Chem. 239, 1381 (1964).

    PubMed  CAS  Google Scholar 

  • de Waard, A., and G. Popjak: Studies on the biosynthesis of cholesterol. 9. Formation of phosphorylated derivatives of mevalonic acid in liver-enzyme preparations. Biochem. J. 73, 410 (1959).

    Google Scholar 

  • Dezani, S.: Richerche sulla genesi della colesterina. G. Accad. Med. Torino. 19, 149 (1913).

    Google Scholar 

  • Dirscherl, W., u. H. Traut: Zur Frage der Cholesterinbildung im Tierkörper. Hoppe-Seylers Z. physiol. Chem. 262, 61 (1939).

    Article  CAS  Google Scholar 

  • Dorfman, R.I.: Metabolism of androgens, estrogens and corticoids. Amer. J. Med. 21, 679 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Drayer, N. M., K. D. Roberts, L. Bandi, and S. Lieberman: The isolation of cholesterol sulfate from bovine adrenals. J. biol. Chem. 239, PC 3112 (1964).

    CAS  Google Scholar 

  • Durr, I. F., and H. Rudney: The reduction of β-hydroxy-β-methyl-glutaryl coenzyme A to mevalonic acid. J. biol. Chem. 235, 2572 (1960).

    PubMed  CAS  Google Scholar 

  • Dvornik, D., and M. Kraml: Accumulation of 24-dehydrocholesterol in rats treated with 22,25-diazacholestanol. Proc. Soc. exp. Biol. (N. Y.) 112, 1012 (1963).

    CAS  Google Scholar 

  • Dvornik, D., and M. Kraml, J. Dubuc, M. Givner, and R. Gaudry: A novel mode of inhibition of cholesterol biosynthesis. J. Amer. chem. Soc. 85, 3309 (1963).

    Article  CAS  Google Scholar 

  • Eckles, N. E., C. B. Taylor, D. J. Campbell, and R. G. Gould: The origin of plasma cholesterol and the rates of equilibration of liver, plasma and erythrocyte cholesterol. J. Lab. clin. Med. 46, 359 (1955).

    PubMed  CAS  Google Scholar 

  • Ekdahl, P. H., and J. Sjövall: Formation of bile acids from cholesterol in the rabbit. Acta physiol. scand. 34, 329 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Elliott, W. H.: The enzymic synthesis of taurocholic acid: a qualitative study. Biochem. J. 62, 433 (1956).

    PubMed  CAS  Google Scholar 

  • Engel, L. L., B. Baggett, and M. Halla: The formation of 14C-labelled estriol from 16–14C-estradiol-17β by human fetal liver slices. Biochim. biophys. Acta (Amst.) 30, 435 (1958).

    Article  CAS  Google Scholar 

  • Eriksson, S.: Influence of thyroid on excretion of bile acids and cholesterol in the rat. Proc. Soc. exp. Biol. (N. Y.) 94, 582 (1957).

    CAS  Google Scholar 

  • Eriksson, S.: Bile acid pool in the rat. Acta physiol. scand. 48, 439 (1960).

    Article  CAS  Google Scholar 

  • Ferguson, J. J., I. F. Durr, and H. Rudney: The biosynthesis of mevalonic acid. Proc. Nat. Acad. Sci. (Wash.) 45, 499 (1959).

    Article  CAS  Google Scholar 

  • Fieser, L. F.: A companion of cholesterol. J. Amer. chem. Soc. 73, 5007 (1951).

    Article  CAS  Google Scholar 

  • Frantz jr., I. D., and B. T. Hinkelman: Acceleration of hepatic cholesterol synthesis by Triton WR-1339, J exp. Med. 101, 225 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Frantz jr., I. D., M. L. Mobberley, and G. Schroepfer jr.: Effects of MER-29 on the intermediary metabolism of cholesterol. Progr. cardiovasc. Dis. 2, 511 (1960).

    Article  Google Scholar 

  • Frantz jr., I. D., A. T. Sanghvi, and G. J. Schroepfer jr.: Irreversibility of the biogenetic sequence from Δ 7-cholesten-3β-ol through Δ 5,7-cholestadien-3β-ol to cholesterol. J. biol. Chem. 239, 1007 (1964).

    PubMed  CAS  Google Scholar 

  • Fredrickson, D. S.: The conversion of cholesterol-4-C14 to acids and other products by liver mitochondria. J. biol. Chem. 222, 109 (1956a).

    PubMed  CAS  Google Scholar 

  • Fredrickson, D. S. and K. Ono: The in vitro production of 25- and 26-hydroxycholesterol and their in vivo metabolism. Biochim. biophys. Acta (Amst.) 22, 183 (1956b).

    Article  CAS  Google Scholar 

  • Fukushima, D. K., and T. F. Gallagher: Isotopic distribution in cholesterol after platinumcatalyzed hydrogen-deuterium exchange. J. biol. Chem. 198, 861 (1952).

    PubMed  CAS  Google Scholar 

  • Gautschi, F., and K. Bloch: Synthesis of isomeric 4,4-dimethyl-cholestenols and identification of a lanosterol metabolite. J. biol. Chem. 233, 1343 (1958).

    PubMed  CAS  Google Scholar 

  • Gidez, L. L., and H. A. Eder: Cholesterol turnover in man. In: Proc. First Int. Pharmacol. Meeting, Vol. 2, Effects of Drugs on Synthesis and Mobilization of Lipids. eds. E. C. Horning, and P. Lindgren, p. 67. Oxford: Pergamon-Press 1963.

    Google Scholar 

  • Goldstein, F. B.: Studies on aromatic acids in relation to phenylpyruvic oligophrenia. Thesis, McGill University, Montreal (1955).

    Google Scholar 

  • Goldstein, M., M. Gut, and R. I. Dorfman: Conversion of pregnenolone to dehydroepiandrosterone. Biochim. biophys. Acta (Amst.) 38, 190 (1960).

    Article  CAS  Google Scholar 

  • Goodman, D. S., and G. Popjak: Studies on the biosynthesis of cholesterol. XII. Synthesis of allyl pyrophosphates from mevalonate and their conversion into squalene with liver enzymes. J. Lipid Res. 1, 286 (1960).

    PubMed  CAS  Google Scholar 

  • Gordon, S., E. W. Cantrall, W. P. Cekleniak, H. J. Albers, R. Littell, and S. Bernstein: The hypocholesteremic effect of 3β-(β-dimethyl-aminoethoxy)-androst-5-en-17-one and its mechanism of action. Biochem. biophys. Res. Commun. 6, 359 (1961).

    CAS  Google Scholar 

  • Gould, R. G.: Lipid metabolism in arteriosclerosis. Amer. J. Med. 11, 209 (1951).

    Article  PubMed  CAS  Google Scholar 

  • Gould, R. G., D. R. Avoy, and E. A. Swyryd: Effect of α-p-chlorophenoxyisobutyrate (CPIB) on cholesterol (Abstract). Circulation 30, (Suppl. III) 11 (1964).

    Google Scholar 

  • Gould, R. G., G. V. LeRoy, G. T. Okita, J. J. Kabara, P. Keegan, and D. M. Bergenstal: The use of C14-labeled acetate to study cholesterol metabolism in man. J. Lab. clin. Med. 40, 374 (1955).

    Google Scholar 

  • Green, K., and B. Samuelsson: Mechanisms of bile acid biosynthesis studied with 3α-3H and 4β-3H-cholesterol. J. biol. Chem. 239, 2804 (1964).

    PubMed  CAS  Google Scholar 

  • Gustafsson, B., S. Bergström, S. Lindstedt, and A. Norman: Turnover and nature of fecal bile acids in germfree and infected rats fed cholic acid-24-C14. Proc. Soc. exp. Biol. (N. Y.) 94, 467 (1957).

    CAS  Google Scholar 

  • Hagopian, M., and L. K. Levy: The conversion of 16–14C-17β-estradiol to estriol by isolated rat livers. Biochim. biophys. Acta (Amst.) 30, 641 (1958).

    Article  CAS  Google Scholar 

  • Halkerston, I. D. K., J. Eichhorn, and O. Hechter: A requirement for reduced triphosphopyridine nucleotide for cholesterol side chain cleavage by mitochondrial fractions of bovine adrenal cortex. J. biol. Chem. 236, 374 (1961).

    PubMed  Google Scholar 

  • Hanahan, D. J., and S. J. Wakil: The origin of some of the carbon atoms of the side chain of C14-ergosterol. J. Amer. chem. Soc. 75, 273 (1953).

    Article  CAS  Google Scholar 

  • Haslewood, G. A. D.: Comparative studies of “bile salts.” 5. Bile salts of Crocodylidae. Biochem. J. 52, 583 (1952).

    PubMed  CAS  Google Scholar 

  • Haslewood, G. A. D.: Specific comparison as an aid in the study of the process sterols → bile salts. In: The Biosynthesis of Terpenes and Sterols, ed. G. E. W. Wolstenholme, and M. O’Connor, p. 206. London: Churchill 1959.

    Chapter  Google Scholar 

  • Hayano, M., N. Saba, R. I. Dorfman, and O. Hechter: Some aspects of the biogenesis of adrenal steroid hormones. Recent Progr. Hormone Res. 12, 79 (1956).

    Google Scholar 

  • Hechter, O.: Conversion of cholesterol to steroid hormones. In: Cholesterol, ed. R. P. Cook, p. 309. New York: Academic-Press 1958.

    Google Scholar 

  • Hechter, O., M. M. Solomon, A. Zaffaroni, and G. Pincus: Transformation of cholesterol and acetate to adrenal cortical hormones. Arch. Biochem. 46, 201 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Hechter, O., A. Zaffaroni, R. P. Jacobsen, H. Levy, R. W. Jeanloz, V. Schenker, and G. Pincus: The nature and the biogenesis of the adrenal secretory product. Recent Progr. Hormone Res. 6, 215 (1951).

    Google Scholar 

  • Heilbron, I. M., E. D. Kamm, and W. M. Owens: Unsaponifiable matter from the oils of elasmobranch fish. I. Contribution to the study of the constitution of squalene (spinacene). J. chem. Soc. 1926, 1630.

    Google Scholar 

  • Hellman, L., R. S. Rosenfeld, and T. F. Gallagher: Cholesterol synthesis from C14-acetate in man. J. clin. Invest. 33, 142 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Hellström, K., and J. Sjvöall: Conjugation of bile acids in patients with hypothyroidism. J. Atheroscler. Res. 1, 205 (1961).

    Article  PubMed  Google Scholar 

  • Henning, V., E. M. Möslein, and F. Lynen: Biosynthesis of terpenes V. Formation of 5-pyrophosphomevalonic acid by phosphomevalonic kinase. Arch. Biochem. 83, 259 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Holmes, W. L.: Drugs affecting lipid synthesis. In: Lipid Pharmacology, ed. R. Paoletti, p. 131. New York: Academic-Press 1964.

    Google Scholar 

  • Holmes, W. L.: Drugs affecting lipid synthesis. J. Amer. Oil Chem. Soc. 41, 702 (1964 b).

    Article  CAS  Google Scholar 

  • Holmes, W. L. and N. W. Di Tullio: Inhibitors of cholesterol biosynthesis which act at or beyond the mevalonic acid stage. Amer. J. clin. Nutr. 10, 310 (1962).

    PubMed  CAS  Google Scholar 

  • Horning, M. G., D. S. Fredrickson, and C. B. Anfinsen: Studies on the enzymatic degradation of the cholesterol side chain. II. Requirements of the mitochondrial system. Arch. Biochem. 71, 266 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Huff, J. W., and J. L. Gilfillan: Benzmalacene: inhibition of cholesterol biosynthesis and hypocholesteremic effects in rats. Proc. Soc. exp. Biol. (N. Y.) 103, 41 (1960).

    CAS  Google Scholar 

  • Johnson, D. F., B. E. Wright, and E. Heftmann: Biogenesis of Δ 22-Stigmasten-3β-ol in Dictyostelium discoideum. Arch. Biochem. 97, 232 (1962).

    Article  CAS  Google Scholar 

  • Johnston, J. D., and K. Bloch: In vitro conversion of zymosterol and dihydrozymosterol to cholesterol. J. Amer. chem. Soc. 79, 1145 (1957).

    Article  CAS  Google Scholar 

  • Kandutsch, A. A.: Metabolism of cholesta-4,7-diene-3-one and cholesta-4,6-dien-3-one by mouse liver microsomes. J. Lipid Res. 4, 179 (1963).

    PubMed  CAS  Google Scholar 

  • Kandutsch, A. A. and A. E. Russell: Preputial gland tumor sterols. I. The occurrence of 24,25-dihydrolanosterol and a comparison with liver and normal gland. J. biol. Chem. 234, 2037 (1960 a).

    Google Scholar 

  • Kandutsch, A. A. and A. E. Russell: Preputial gland tumor sterols. II. The identification of 4-a-methyl-Δ 8-cholesten-3β-ol. J. biol. Chem. 235, 2253 (1960b).

    PubMed  CAS  Google Scholar 

  • Kandutsch, A. A. and A. E. Russell: Preputial gland tumor sterols. III. A metabolic pathway from lanosterol to cholesterol. J. biol. Chem. 235, 2256 (1960c).

    PubMed  CAS  Google Scholar 

  • Kandutsch, A. A. and A. E. Russell: Intermediates in a pathway from lanosterol to cholesterol. Fed. Proc. 19, 237 (1960d).

    Google Scholar 

  • Kase, N., E. Forchielli, and R.I. Dorfman: In vitro production of testosterone and androst-4-ene-3, 17-dione in a human ovarian homogenate. Acta endocr. (Kbh.) 37, 19 (1961).

    CAS  Google Scholar 

  • Knauss, H. J., J. W. Porter, and G. Wasson: The biosynthesis of mevalonic acid from 1-C14 acetate by a rat liver enzyme system. J. biol. Chem. 234, 2835 (1959).

    PubMed  CAS  Google Scholar 

  • Kritchevsky, D.: Factors influencing the oxidation of cholesterol by rat liver mitochondria. In: Metabolism of Lipids as Related to Atherosclerosis, ed. F. Kummerow, p. 106. Springfield (Ill.): Thomas 1965.

    Google Scholar 

  • Kritchevsky, D., M. C. Cottrell, and S. A. Tepper: Oxidation of cholesterol by rat liver mitochondria: effect of thyroactive compounds. J. Cell. comp. Physiol. 60, 105 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Kritchevsky, D. and I. Gray: Biosynthesis of cholesterol from isobutyrate. Experientia (Basel) 7, 183 (1951).

    Article  CAS  Google Scholar 

  • Kritchevsky, D. and W. L. Holmes: Occurence of desmosterol in developing rat brain. Biochem. biophys. Res. Commun. 7, 128 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Kritchevsky, D. and E. Staple: Oxidation of desmosterol by rat liver mitochondria. Naturwissenschaften 49, 109 (1962).

    Article  CAS  Google Scholar 

  • Kritchevsky, D. and E. Staple and M. W. Whitehouse: Regulation of cholesterol biosynthesis and catabolism. Amer. J. clin. Nutr. 8, 411 (1960).

    PubMed  CAS  Google Scholar 

  • Kritchevsky, D. and E. Staple and M. W. Whitehouse: Oxidation of ergosterol by rat and mouse liver mitochondria. Proc. Soc. exp. Biol. (N. Y.) 106, 704 (1961).

    CAS  Google Scholar 

  • Kritchevsky, D., N. T. Werthessen, and I. Shapiro: Studies on the biosynthesis of lipids in the baboon. Biosynthesis and transport of cholesterol. Clin. chim. Acta 11, 44 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Langdon, R. G., and K. Bloch: The biosynthesis af squalene. J. biol. Chem. 200, 129 (1953a).

    PubMed  CAS  Google Scholar 

  • Langdon, R. G., and K. Bloch: The utilization of squalene in the biosynthesis of cholesterol. J. biol. Chem. 200, 135 (1953b).

    PubMed  CAS  Google Scholar 

  • Langer, L. J., and L. L. Engel: Human placental estradiol-17ß dehydrogenase. I. Concentration, characterization and assay. J. biol. Chem. 233, 583 (1958).

    PubMed  CAS  Google Scholar 

  • Levy, H. R., and G. Popjak: Studies on the biosynthesis of cholesterol. 10. Mevalonic kinase and phosphomevalonic kinase from liver. Biochem. J. 75, 417 (1960).

    PubMed  CAS  Google Scholar 

  • Lindstedt, S.: Turnover of cholic acid in man. Acta physiol. scand. 40, 1 (1957).

    Article  PubMed  Google Scholar 

  • Lindstedt, S., and E. H. Ahrens jr.: Conversion of cholesterol to bile acids in man. Proc. Soc. exp. Biol. (N. Y.) 108, 286 (1961).

    CAS  Google Scholar 

  • Lindstedt, S., and A. Norman: Turnover of bile acids in the rat. Acta physiol. scand. 38, 121 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Little, H. N., and K. Bloch: Studies on the utilization of acetic acid for the biological synthesis of cholesterol. J. biol. Chem. 183, 33 (1950).

    CAS  Google Scholar 

  • Lynen, F., B. W. Agranoff, H. Eggerer, V. Henning and E. M. Möslein: γ,γ-Dimethylallyl-pyrophosphat und Geranyl-pyrophosphat, biologische Vorstufen des Squalens. Angew. Chem. 71, 657 (1959).

    Article  CAS  Google Scholar 

  • Lynen, F., H. Eggerer, V. Henning u. I. Kessell: Farnesyl-pyrophosphat und 3-Methyl-Δ 3-butenyl-1-pyrophosphat, die biologischen Vorstufen des Squalens. Angew. Chem. 70, 738 (1958).

    Article  CAS  Google Scholar 

  • Lynen, F. u. M. Grassl: Zur Biosynthese der Terpene. II. Darstellung von (—) Mevalonsäure durch bakterielle Racematspaltung. Hoppe-Seylers Z. physiol. Chem. 313, 291 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Lynn jr., W. S., and R. Brown: Mechanism of in vitro steroid oxidation. Biochim. biophys. Acta (Amst.) 21, 403 (1956).

    Article  CAS  Google Scholar 

  • Marsh, J. B., and D. L. Drabkin: Metabolic channeling in experimental nephrosis. V. Lipide metabolism in the early stages of the disease. J. biol. Chem. 230, 1083 (1958).

    PubMed  CAS  Google Scholar 

  • Maudgal, R. K., T. T. Tchen, and K. Bloch: 1,2-methyl shifts in the cyclization of squalene to lanosterol. J. Amer. chem. Soc. 80, 2589 (1958).

    Article  CAS  Google Scholar 

  • Mendelsohn, D., and E. Staple: The in vitro catabolism of cholesterol: formation of 3α, 7α, 12α-trihydroxycoprostane from cholesterol in rat liver. Biochemistry 2, 577 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Meyer, A. S.: 19-hydroxylation of 4-androstene-3, 17-dione and dehydroepiandrosterone by bovine adrenal glands. Experientia (Basel) 11, 99 (1955a).

    Article  CAS  Google Scholar 

  • Meyer, A. S.: Conversion of 19-hydroxy-Δ 4-androstene-3,17-dione to estrone by endocrine tissue. Biochim. biophys. Acta (Amst.) 17, 441 (1955b).

    Article  CAS  Google Scholar 

  • Mosbach, E. H., J. Blum, E. Arroyo, and S. Milch: A new method for the determination of dihydrocholesterol in tissues. An. Biochem. 5, 158 (1963).

    Article  CAS  Google Scholar 

  • Nicholas, H. J.: Biosynthesis of β-sitosterol and pentacyclic triterpenes of salvia officinalis. J. biol. Chem. 237, 1476 (1962a).

    PubMed  CAS  Google Scholar 

  • Nicholas, H. J.: Biosynthesis of sclareol, β-sitosterol and oleanolic acid from mevalonic acid-2-C14. J. biol. Chem. 237, 1481 (1962b).

    PubMed  CAS  Google Scholar 

  • Nichols jr., C. W., S. Lindsay, D. D. Chapman, and I. L. Chaikoff: Prolonged Δ 4-cholestenone feeding in birds. Circulation Res. 8, 16 (1960).

    PubMed  Google Scholar 

  • Olson, J. A., M. Lindberg, and K. Bloch: On the demethylation of lanosterol to cholesterol. J. biol. Chem. 226, 941 (1957).

    PubMed  CAS  Google Scholar 

  • Ottke, R. C., E. L. Tatum, I. Zabin, and K. Bloch: Isotopic acetate and isovalerate in the synthesis of ergosterol by neurospora. J. biol. Chem. 189, 429 (1951).

    PubMed  CAS  Google Scholar 

  • Phillips, W. A., and J. Avigan: Inhibition of cholesterol biosynthesis in the rat by 3 β-(-2 diethylaminoethoxy) androst-5-en-17-one hydrochloride. Proc. Soc. exp. Biol. (N. Y.) 112, 233 (1963).

    CAS  Google Scholar 

  • Popjak, G., R. H. Cornforth, and K. Clifford: Inhibition of cholesterol biosynthesis by farnesoic acid and its analogues. Lancet 1960/I, 1270.

    Article  Google Scholar 

  • Portman, O. W., and P. Murphy: Excretion of bile acids and β-hydroxysterols by rats. Arch. Biochem. 76, 367 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz, J. L.: Biosynthesis of radioactive 17β-estradiol. IV. Substrate utilization by testicular homogenates. Atompraxis 5, 1 (1959).

    CAS  Google Scholar 

  • Rabinowitz, J. L. and S. Gurin: Biosynthesis of cholesterol and β-hydroxy-β-methylglutaric acid by extracts of liver. J. biol. Chem. 208, 307 (1954).

    PubMed  CAS  Google Scholar 

  • Ranney, R. W., and R. E. Counsell: An azasterol that inhibits cholesterol synthesis in vitro. Proc. Soc. exp. Biol. (N. Y.) 109, 820 (1962).

    CAS  Google Scholar 

  • Redel, J., et J. Cottet: Action hypocholésterolémiante de quelques acides acétiques disubstitués. C.R. Acad. Sci. (Paris) 236, 2553 (1953).

    CAS  Google Scholar 

  • Rilling, H. C., and K. Bloch: On the mechanism of squalene biogenesis from mevalonic acid. J. biol. Chem. 234, 1424 (1959).

    PubMed  CAS  Google Scholar 

  • Rittenberg, D., and K. Bloch: The utilization of acetic acid for fatty acid synthesis. J. biol. Chem. 154, 311 (1944).

    CAS  Google Scholar 

  • Rittenberg, D., and K. Bloch: The utilization of acetic acid for the synthesis of fatty acids. J. biol. Chem. 160, 417 (1945).

    PubMed  CAS  Google Scholar 

  • Rittenberg, D. and R. Schoenheimer: Deuterium as an indicator in the study of intermediary metabolism XI Further studies on the biological uptake of deuterium into organic substances with special reference to fat and cholesterol formation. J. biol. Chem. 121, 235 (1937).

    CAS  Google Scholar 

  • Roberts, K. D., L. Bandi, H. I. Calvin, W. D. Drucker, and S. Lieberman: Evidence that cholesterol sulfate is a precursor of steroid hormones. J. Amer. chem. Soc. 86, 958 (1964).

    Article  CAS  Google Scholar 

  • Robinson, R.: Structure of cholesterol. J. Soc. chem. Ind. 53, 1062 (1934).

    Article  Google Scholar 

  • Rosenfeld, R. S., and T. F. Gallagher: Further studies of the biotransformation of cholesterol to coprostanol. Steroids 4, 515 (1964).

    Article  CAS  Google Scholar 

  • Rosenfeld, R. S., D. K. Fukushima, L. Hellman, and T. F. Gallagher: The transformation of cholesterol to coprostanol. J. biol. Chem. 211, 301 (1954).

    PubMed  CAS  Google Scholar 

  • Rosenfeld, R. S. and L. Hellman: Excretion of steroid acids in man. Arch. Biochem. 97, 406 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Rosenfeld, R. S. and L. Hellman and T. F. Gallagher: The transformation of cholesterol-3d to coprostanol-d. Location of deuterium in coprostanol. J. biol. Chem. 222, 321 (1956).

    PubMed  CAS  Google Scholar 

  • Rosenheim, O., and T. A. Webster: A dietary factor concerned in coprosterol formation. Biochem. J. 35, 920 (1941).

    PubMed  CAS  Google Scholar 

  • Rosenheim, O., and T. A. Webster: The mechanism of coprosterol formation in vivo. 1. Cholestenone as an intermediate. Biochem. J. 37, 513 (1943).

    PubMed  CAS  Google Scholar 

  • Rudney, H.: The synthesis of β-hydroxy-β-methylglutaric acid in rat liver homogenates. J. Amer. chem. Soc. 76, 2595 (1954).

    Article  CAS  Google Scholar 

  • Rudney, H.: Biosynthesis of β-hydroxy-β-methyl-glutaric acid (HMG). Fed. Proc. 15, 342 (1956).

    Google Scholar 

  • Ryan, K. J., and O. W. Smith: Biogenesis of estrogens by the human ovary. IV. Formation of neutral steroid intermediates. J. biol. Chem. 236, 2207 (1961).

    PubMed  CAS  Google Scholar 

  • Saba, N., and O. Hechter: Cholesterol-4-C14 metabolism in adrenal homogenates. Fed. Proc. 14, 775 (1955).

    PubMed  CAS  Google Scholar 

  • Saba, N., and O. Hechter and D. Stone: Conversion of cholesterol to pregnenolone in bovine adrenal homogenates. J. Amer. chem. Soc. 76, 3862 (1954).

    Article  CAS  Google Scholar 

  • Sakakida, H., C. C. Shediac, and M. D. Siperstein: Effect of endogenous and exogenous cholesterol on the feedback control of cholesterol synthesis. J. clin. Invest. 42, 1521 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Schoenheimer, R., H. v. Behring u. R. Hummel: Untersuchung der Sterine aus verschiedenen Organen auf ihren Gehalt an gesättigten Sterinen. Hoppe-Seylers Z. physiol. Chem. 192, 93 (1930).

    Google Scholar 

  • Schoenheimer, R. and F. Breusch: Synthesis and destruction of cholesterol in the organism. J. biol. Chem. 103, 439 (1933).

    CAS  Google Scholar 

  • Schoenheimer, R., D. Rittenberg, and M. Graff: Deuterium as an indicator in the study of intermediary metabolism. IV. The mechanism of coprosterol formation. J. biol. Chem. 111, 183 (1935).

    CAS  Google Scholar 

  • Schwenk, E., and G. J. Alexander: Biogenesis of yeast sterols. II. Formation of ergosterol in yeast homogenates. Arch. Biochem. 76, 65 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Schwenk, E., and G. J. Alexander, T. H. Stoudt, and C. A. Fish: Studies on the biosynthesis of cholesterol. VII. Formation of cholesterol precursors by yeast. Arch. Biochem. 55, 274 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Schwenk, E. and N. T. Werthessen: Studies on the biosynthesis of cholesterol. III. Purification of C14-cholesterol from perfusions of livers and other organs. Arch. Biochem. 40, 334 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Schwenk, E. and N. T. Werthessen: Studies on the biosynthesis of cholesterol. IV. Higher counting substances accompnying C14-cholesterol in the intact rat. Arch. Biochem. 42, 91 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Shefer, S., S. Milch, and E. H. Mosbach: Biosynthesis of 5α-cholestan-3β-ol in the rabbit and guinea pig. J. biol. Chem. 239, 1731 (1964).

    PubMed  CAS  Google Scholar 

  • Shimizu, K., M. Gut, and R.I. Dorfman: 20α, 22ξ-dihydroxycholesterol, an intermediate in the biosynthesis of pregnenolone (3β-hydroxypregn-5-en-20-one) from cholesterol. J. biol. Chem. 237, 699 (1962).

    PubMed  CAS  Google Scholar 

  • Siperstein, M. D.: Enzymatic synthesis of bile salts. Fed. Proc. 14, 282 (1955).

    Google Scholar 

  • Siperstein, M. D. and I. L. Chaikoff: C14-cholesterol. III. Excretion of carbons 4 and 26 in feces, urine and bile. J. biol. Chem. 198, 93 (1952).

    PubMed  CAS  Google Scholar 

  • Siperstein, M. D. and V. M. Fagan: Inhibition of mevalonate synthesis by dietary cholesterol. Fed. Proc. 21, 300 (1962).

    Google Scholar 

  • Siperstein, M. D. and M. J. Guest: Studies on the site of feedback control of cholesterol biosynthesis. J. clin. Invest. 39, 642 (1960).

    Article  PubMed  CAS  Google Scholar 

  • Siperstein, M. D., M. E. Jayko, I. L. Chaikoff, and W. G. Dauben: Nature of the metabolic products of C14-cholesterol excreted in bile and feces. Proc. Soc. exp. Biol. (N. Y.) 81, 720 (1952).

    CAS  Google Scholar 

  • Siperstein, M. D. and A. W. Murray: Cholesterol metabolism in man. J. clin. Invest. 34, 1449 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Slaunwhite jr., W. R., and L. T. Samuels: Progesterone as a precursor of testicular androgens. J. biol. Chem. 220, 341 (1956).

    PubMed  CAS  Google Scholar 

  • Smith, P. F.: Relation of sterol structure to utilization in pleuro-pneumonia-like organisms. J. Lipid Res. 5, 121 (1964).

    Google Scholar 

  • Snog-Kjaer, A., I. Prange, and H. Dam: On the formation of coprosterol in the intestine. Experientia (Basel) 11, 316 (1955).

    Article  CAS  Google Scholar 

  • Snog-Kjaer, A., I. Prange, and H. Dam: Conversion of cholesterol into coprosterol by bacteria in vitro. J. gen. Microbiol. 14, 256 (1956).

    PubMed  CAS  Google Scholar 

  • Solomon, S., A. C. Carter, and S. Lieberman: The conversion in vivo of 17α-hydroxypregnenolone to dehydroisoandrosterone and other 17-ketosteroids. J. biol. Chem. 235, 351 (1960).

    PubMed  CAS  Google Scholar 

  • Sonderhoff, R., u. H. Thomas: Die enzymatische Dehydrierung der Trideutero-Essigsäure. Ann. 530, 195 (1937).

    CAS  Google Scholar 

  • Stanley, M. M., and S. H. Cheng: Cholesterol exchange in the gastrointestinal tract in normal and abnormal subjects. Gastroenterology 30, 62 (1956).

    PubMed  CAS  Google Scholar 

  • Staple, E., and S. Gurin: The incorporation of radioactive acetate into biliary cholesterol and cholic acid. Biochim. biophys. Acta (Amst.) 15, 372 (1954).

    Article  CAS  Google Scholar 

  • Staple, E., W. S. Lynn jr., and S. Gurin: An enzymatic cleavage of the cholesterol side chain. J. biol. Chem. 219, 845 (1956).

    PubMed  CAS  Google Scholar 

  • Steinberg, D., and J. Avigan: Studies of cholesterol biosynthesis. II. The role of desmosterol in the biosynthesis of cholesterol. J. biol. Chem. 235, 3127 (1960).

    CAS  Google Scholar 

  • Steinberg, D. and D. S. Fredrickson: Inhibitors of cholesterol biosynthesis and the problem of hypercholesterolemia. Ann. N. Y. Acad. Sci. 64, 579 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Stevenson, E., and E. Staple: Oxidation of various simple steroids by the cholesterol oxidase system. Arch. Biochem. 97, 485 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Stokes, W. M., W. A. Fish, and F. C. Hickey: The fate of injected cholestenone in the intact rat. J. biol. Chem. 213, 325 (1955).

    PubMed  CAS  Google Scholar 

  • Stokes, W. M., W. A. Fish, and F. C. Hickey: Metabolism of cholesterol in the chick embryo. II. Isolation and chemical nature of two companion sterols. J. biol. Chem. 220, 415 (1956).

    PubMed  CAS  Google Scholar 

  • Stokes, W. M., F. C. Hickey, and W. A. Fish: Sterol metabolism. 1. The occurrence of desmosterol (24-dehydrocholesterol) in rat skin and its conversion in vivo to cholesterol. J. biol. Chem. 232, 347 (1958).

    PubMed  CAS  Google Scholar 

  • Suld, H. M., E. Staple, and S. Gurin: Mechanism of formation of bile acids from cholesterol: Oxidation of 3β-cholestane-3α, 7α, 12α-triol and formation of propionic acid from the side chain by rat liver mitochondria. J. biol. Chem. 237, 338 (1962).

    PubMed  CAS  Google Scholar 

  • Sweat, M. L., D. L. Berliner, M. J. Bryson, C. Nabors jr., J. Haskell, and E. G. Holmström: The synthesis and metabolism of progesterone in the human and bovine ovary. Biochim. biophys. Acta (Amst.) 40, 289 (1960).

    Article  CAS  Google Scholar 

  • Tavormina, P. A., and M. H. Gibbs: The metabolism of ß, γ-dihydroxy-ß-methylvaleric acid by liver homogenates. J. Amer. chem. Soc. 78, 6210 (1956).

    Article  CAS  Google Scholar 

  • Tavormina, P. A., M. H. Gibbs, and J. W. Huff: The utilization of ß-hydroxy-ßmethyl-γ,δ-valerolactone in cholesterol biosynthesis. J. Amer. chem. Soc. 78, 4498 (1956).

    Article  CAS  Google Scholar 

  • Tchen, T. T.: Mevalonic kinase: purification and properties. J. biol. Chem. 233, 1100 (1958).

    PubMed  CAS  Google Scholar 

  • Tchen, T. T. and K. Bloch: On the mechanism of enzymatic cyclization of squalene. J. biol. Chem. 226, 931 (1957).

    PubMed  CAS  Google Scholar 

  • Thorp, J. M., and W. S. Waring: Modification of metabolism and distribution of lipids by ethyl chlorophenoxyisobutyrate. Nature (Lond.) 194, 948 (1962).

    Article  CAS  Google Scholar 

  • Wells, W. W., and C. L. Lorah: The incorporation of acetate-1-C14 into methostenol of rat tissue and the conversion of synthetic methostenol-4-C14 to cholesterol in vivo. J. biol. Chem. 235, 978 (1960).

    PubMed  CAS  Google Scholar 

  • Werbin, H., I. L. Chaikoff, and M. R. Imada: 5α-cholestan-3β-ol: Its distribution in tissues and its synthesis from cholesterol in the guinea pig. J. biol. Chem. 237, 2072 (1962).

    PubMed  CAS  Google Scholar 

  • Werbin, H., I. L. Chaikoff, and M. R. Imada and B. P. Phillips: Conversion of cholesterol to 5α-cholestan-3β-ol in germfree guinea pigs. Biochemistry 3, 1558 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Werbin, H. and G. V. LeRoy: Cholesterol — A precursor of tetrahydrocortisone in man. J. Amer. chem. Soc. 76, 5260 (1954).

    Article  CAS  Google Scholar 

  • Werbin, H. and G. V. LeRoy: Cholesterol — A precursor of tetrahydrocortisone (THF) and 11-ketoetiocholanolone in man. Fed. Proc. 14, 303 (1955).

    Google Scholar 

  • Werbin, H., J. Plotz, G. V. LeRoy, and E. M. Davis: Cholesterol — A precursor of estrone in vivo. J. Amer. chem. Soc. 79, 1012 (1957).

    Article  CAS  Google Scholar 

  • Whitehouse, M. W., E. Staple, and S. Gurin: Catabolism in vitro of cholesterol. I. Oxidation of the terminal methyl groups of cholesterol to carbon dioxide by rat liver preparations. J. biol. Chem. 234, 276 (1959).

    PubMed  CAS  Google Scholar 

  • Whitehouse, M. W., E. Staple, and S. Gurin: Catabolism in vitro of cholesterol. II. Further studies on the oxidation of cholesterol by rat liver mitochondria. J. biol. Chem. 236, 68 (1961a).

    PubMed  CAS  Google Scholar 

  • Wilson, J. D.: Studies on the regulation of cholesterol synthesis in the skin and preputial gland of the rat. Adv. in Biology of Skin, IV, eds. W. Montagna, R. A. Ellis, and A. F. Silver, p. 148. London: Pergamon 1963.

    Google Scholar 

  • Wilson, J. D.: The quantification of cholesterol excretion and degradation in the isotopic steady state in the rat: the influence of dietary cholesterol. J. Lipid Res. 5, 409 (1964).

    PubMed  CAS  Google Scholar 

  • Woodward, R. B., and K. Bloch: The cyclization of squalene in cholesterol biosynthesis. J. Amer. chem. Soc. 75, 2023 (1953).

    Article  CAS  Google Scholar 

  • Wüersch, J. R., R. L. Huang, and K. Bloch: The origin of the isooctyl side chain of cholesterol. J. biol. Chem. 195, 439 (1952).

    PubMed  Google Scholar 

  • Zabin, I., and W. F. Barker: The conversion of cholesterol and acetate to cholic acid. J. biol. Chem. 205, 633 (1953).

    PubMed  CAS  Google Scholar 

  • Zabin, I. and K. Bloch: The formation of ketone from isovaleric acid. J. biol. Chem. 185, 117 (1950).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

G. Schettler

Rights and permissions

Reprints and permissions

Copyright information

© 1967 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Kritchevsky, D. (1967). Biochemistry of Steroids. In: Schettler, G. (eds) Lipids and Lipidoses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87367-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87367-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87369-0

  • Online ISBN: 978-3-642-87367-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics