The Chemistry of Mammalian Lipids

  • W. Stoffel

Abstract

Lipids differ significantly from carbohydrates, proteins and nucleic acids because of their molecular heterogeneity. Since the latter groups of compounds occur as oligo- or polymers of a limited number of constituent molecules, they are characterized within their respective group by close structural relationships. In contrary, common solubility properties rather than close structural relationships classify lipids as one group.

Keywords

Cholesterol Hydrolysis Prostaglandin NADPH Deuterium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrens Jr. E. H., and L. C. Craig: The extraction and separation of bile acids. J. biol. Chem. 195, 763 (1952).Google Scholar
  2. Anderson, R. J.: The chemistry of the lipoids of tubercle bacilli. XIV. The occurrence of inosite in the phosphatide from human tubercle bacilli. J. Amer. chem. Soc. 52, 1607 (1930).Google Scholar
  3. Ansell, G. B., and J. N. Hawthorne: Phospholipids, p. 40. Amsterdam: Elsevier Publ. Comp., 1964.Google Scholar
  4. Ansell, G. B., and J. M. Norman: Observations on the acetalphospholipids of brain tissue. J. Neurochem. 1, 32 (1956).PubMedGoogle Scholar
  5. Austin, J. H.: Studies on globoid (Krabbe) Leucodystrophy II. J. Neurochem. 10, 921 (1963).PubMedGoogle Scholar
  6. Baer, E.: Synthesis of enantiomeric α-phosphatidic acids. J. biol. Chem. 189, 235 (1951).PubMedGoogle Scholar
  7. Baer, E., and D. Buchnea: Synthesis of unsaturated α-phosphatidic acids and α-bis-phosphatidic acids. Cardiolipin substituents, IV. Arch. Biochem. 78, 294 (1958).PubMedGoogle Scholar
  8. Baer, E. and H. O. L. Fischer: Studies on acetone-glyceraldehyde. V. Synthesis of optically active glycerides from d(+) acetone glycerol. J. biol. Chem. 128, 475 (1939).Google Scholar
  9. Benson, A.A., and B. Maruo: Plant phospholipids. I. Identification of the phosphatidyl glycerols. Biochem. biophys. Acta (Amst.) 27, 189 (1958).Google Scholar
  10. Benson, A.A., and M. Miyano: The phosphatidyl glycerol and sulfolipid of plants. Biochem. J. 81, 31P (1961).Google Scholar
  11. Bergström, S., and J. Sjövall: The isolation of prostaglandin. Acta chem. scand. 11, 1086 (1957).Google Scholar
  12. Bergström, S., L. A. Carlsson, and L. Orö: Effect of prostaglandins on catecholamine induced changes in the free fatty acids of plasma and in blood pressure in the dog. Acta physiol. scand. 60, 170 (1964).Google Scholar
  13. Bergström, S., H. Danielsson, and B. Samtjelsson: The enzymatic formation of prostaglandin E2 from arachidonic acid. Prostaglandins and related factors 32. Biochim. biophys. Acta (Amst.) 90, 207 (1964).Google Scholar
  14. Bergström, S., R. Ryhage, B. Samuelsson, and J. Sjövall: The structure of prostaglandins E1? Fj,a and F1 ß. J. biol. Chem. 238, 3555 (1963).Google Scholar
  15. Bergström, S., R. Ryhage, B. Samuelsson, and J. Sjövall: The structure of prostaglandin E, F1 and F2. Acta chem. scand. 16, 501 (1962).Google Scholar
  16. Bogoch, S.: Studies on the structure of brain ganglioside. Biochem. J. 68, 319 (1958).PubMedGoogle Scholar
  17. Borgström, B.: Separation of mono-, di- and triglycerides. Acta physiol. scand. 30, 231 (1954).PubMedGoogle Scholar
  18. Brockerhoff, H., and C. E. Ballou: The structure of the phosphoinositide complex of beef brain. J. biol. Chem. 236, 1907 (1961).Google Scholar
  19. Burdzy, K., P. G. Münder, H. Fischer u. O. Westphal: Steigerung der Phagocytose von Peritonealmacrophagen durch Lysolecithin. Z. Naturforsch. 19b, 1118 (1964).Google Scholar
  20. Carroll, K. K.: Separation of lipid classes by chromatography on florisil. J. Lipid. Res. 2, 135 (1961).PubMedGoogle Scholar
  21. Carter, H. E., and F. L. Greenwood: Biochemistry of sphingolipides, VII. Structure of cerebrosides. J. biol. Chem. 199, 283 (1952).PubMedGoogle Scholar
  22. Carter, H. E., F. J. Glick, W. P. Norris, and G. E. Phillips: Biochemistry of sphingolipides. III. Structure of sphingosine. J. biol. Chem. 170, 285 (1947).Google Scholar
  23. Carter, H. E., and C. G. Htjmiston: Biochemistry of sphingolipides, V. The structure of sphingine. J. biol. Chem. 191, 727 (1951).PubMedGoogle Scholar
  24. Carter, H. E., W.P. Norris, F. J. Glick, G. E. Phillips, and R. Harris: Biochemistry of sphingolipides, II. Isolation of dihydrosphingosine from the cerebroside fractions of beef brain and spinal cord. J. biol. Chem. 170, 269 (1947).Google Scholar
  25. Cheese, I. A. F. L., and W. T. J. Morgan: Two serologically active trisaccharides isolated from human blood group A substances. Nature (Lond.) 191, 149 (1961).Google Scholar
  26. Clayton, R. B., and K. Bloch: Biological synthesis of lanosterol and agnosterol. J. biol. Chem. 218, 305 (1956).PubMedGoogle Scholar
  27. Daun, H.: Zur Kenntnis des Folch’schen Strandins. Dissertation Köln, 1952.Google Scholar
  28. Dawson, R. M. C.: The measurement of 32P-labelling of individual cephalins and lecithins in a small sample of tissue. Biochim. biophysic. Acta (Amst.) 14, 374 (1954).Google Scholar
  29. Dawson, R. M. C.: A hydrolytic procedure for the identification and estimation of individual phospholipids in biological samples. Biochem. J. 75, 45 (1960).PubMedGoogle Scholar
  30. Dawson, R. M. C. and J. C. Dittmer: Evidence for the structure of brain triphosphoinositide from hydrolytic degradation studies. Biochem. J. 81, 540 (1961).PubMedGoogle Scholar
  31. Debuch, H.: Beitrag zur chemischen Konstitution der Acetalphosphatide und zur Frage des Vorkommens des Colamin-Kephalins im Gehirn. Hoppe-Seylers Z. physiol. Chem. 304, 109 (1956).PubMedGoogle Scholar
  32. Debuch, H.: Nature of the linkage of the aldehyde residue in natural plasmalogens. Biochem. J. 67, 27P (1957).Google Scholar
  33. Debuch, H.: Nature of the linkage of the aldehyde residue in natural plasmalogens. J. Neurochem. 2, 243 (1958).PubMedGoogle Scholar
  34. Dorp, D. A. v., R. K. Beerthuis, D. H. Nugteren, and H. Vonkeman: The biosynthesis of prostaglandins. Biochim. biophys. Acta (Amst.) 90, 204 (1964).Google Scholar
  35. Eneroth, P.: Thin-layer chromatography of bile acids. J. Lipid Res. 4, 11 (1963).PubMedGoogle Scholar
  36. Euler, U. S. v.: Zur Kenntnis der pharmakologischen Wirkungen von Nativsekreten und Extrakten männlicher accessorischer Geschlechtsdrüsen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 175, 78 (1934).Google Scholar
  37. Euler, U. S. v.: Über die spezifische blutdrucksenkende Substanz des menschlichen Prostata- und Samenblasensekrets. Klin. Wschr. 33, 1182 (1935).Google Scholar
  38. Euler, U. S. v.: On the specific vaso-dilating and plain muscle stimulating substances from accessory genital glands in man and certain animals (prostaglandin and vesiglandin). J. Physiol. (Lond.) 88, 213 (1936).Google Scholar
  39. Feulgen, R., K. Imhäuser u. M. Behrens: Zur Kenntnis des Plasmalogens. Hoppe-Seylers Z. physiol. Chem. 180, 161 (1929).Google Scholar
  40. Fieser, L., u. M. Fieser: Steroide, p. 1–96. Verlag Chemie: Weinheim, Bergstraße 1961.Google Scholar
  41. Fischer, H., u. I. Haupt: Über das cytolysierende Prinzip von Serum-Komplement. Naturwissenschaften 47, 137 (1960).Google Scholar
  42. Folch, J.: Brain cephalin, a mixture of phosphatides. Separation from it of phosphatidyl serine, phosphatidyl ethanolamine, and a fraction containing an inositol phosphatide. J. biol. Chem. 146, 35 (1942).Google Scholar
  43. Folch, J.: The chemical structure of phosphatidyl serine. J. biol. Chem. 174, 439 (1948).PubMedGoogle Scholar
  44. Folch, J.: Complete fractionation of brain cephalin: Isolation from it of phosphatidyl serine, phosphatidyl ethanolamine, and diphosphoinositide. J. biol. Chem. 177, 497 (1949).PubMedGoogle Scholar
  45. Folch, J.: Brain diphosphoinositide, a new phosphatide having inositol metadiphosphate as a constituent. J. biol. Chem. 177, 505 (1949).PubMedGoogle Scholar
  46. Folch, J., S. Arsove, and J. A. Meath: Isolation of brain strandin, a new type of large molecule tissue component. J. biol. Chem. 191, 819 (1954).Google Scholar
  47. Folch, J. and D. W. Wooley: Inositol, a constituent of a brain phosphatide. J. biol. Chem. 142, 963 (1942).Google Scholar
  48. Forssman, J.: Die Herstellung hochwertiger spezifischer Schaf haemolysine ohne Verwendung von Schafblut. Biochem. Z. 37, 78 (1911).Google Scholar
  49. Getz, G. S., and W. Bartley: The intracellular distribution of fatty acids in rat liver. Biochem. J. 78, 307 (1961).PubMedGoogle Scholar
  50. Goldblatt, M. W.: Chem. and Industry 52, 1056 (1933).Google Scholar
  51. Goldblatt, M. W.: Properties of human seminal plasma. J. Physiol. (Lond.) 84, 208 (1935).Google Scholar
  52. Grado, C., and C. E. Ballou: Myo-inositol phosphates obtained by alkaline hydrolysis of beef brain phosphoinositide. J. biol. Chem. 236, 54 (1961).PubMedGoogle Scholar
  53. Graf, L., P. Skipski, and N. F. Alonzo: Immunochemical studies of organ and tumor lipids. VI. Isolation and properties of cytolipin H. Cancer 12, 438 (1959).PubMedGoogle Scholar
  54. Gray, G. M., and M. G. Macfarlane: Separation and composition of the phospholipids of ox heart. Biochem. J. 70, 409 (1958).PubMedGoogle Scholar
  55. Grob, C. A., u. F. Gadient: Die Synthese des Sphingosins und seiner Stereoisomeren. Helv. chim. Acta 40, 1145 (1957).Google Scholar
  56. Grundy, S. M., E. H. Ahrens Jr., and T. A. Miettinen: Quantitative isolation and gas-liquid chromatographic analysis of total fecal bile acids. J. Lipid Res. 6, 397 (1965).PubMedGoogle Scholar
  57. Hanahan, D. J.: The Lecithinases. Prog. Chem. Fats Lipids 4, 141–176 (1957).Google Scholar
  58. Hanahan, D. J.: Lipide Chemistry, p. 114. New York: Wiley and Sons 1960.Google Scholar
  59. Hanahan, D. J.; H. Brockerhoff, and E. J. Barron: The site of attack of phospholipase (lecithinase) A on lecithin: a reevaluation. J. biol. Chem. 235, 1917 (1960).PubMedGoogle Scholar
  60. Hanahan, D. J.; J. C. Dittmer, and E. Warashina: A column chromatographic separation of classes of phospholipides. J. biol. Chem. 228, 685 (1957).PubMedGoogle Scholar
  61. Hanahan, D. J.; and J. N. Olley: Chemical nature of monophosphoinositides. J. biol. Chem. 231, 813(1958).PubMedGoogle Scholar
  62. Hanahan, D. J.; M. B. Turner, and M. E. Yayko: The isolation of egg phosphatidylcholine by adsorption column technique. J. biol. Chem. 192, 623 (1951).PubMedGoogle Scholar
  63. Hanahan, D. J.; and R. Watts: The isolation of an α-alkoxy-ß-acyl-L-α-glycerophosphorylethanolamine from bovine erythrocytes. J. biol. Chem. 236, PC 59 (1961).Google Scholar
  64. Hardegger, E., L. Ruzicka u. E. Tagmann. 202. Untersuchungen über Organextrakte. Zur Kenntnis der unverseifbaren Lipoide aus arteriosklerotischen Aorten. Helv. chim. Acta 26, 2205 (1943).Google Scholar
  65. Haslewood, G. A. D.: Recent development in our knowledge of bile salts. Physiol. Rev. 35, 178 (1955).PubMedGoogle Scholar
  66. Haverkate, F., and L. L. M. van Deenen: The stereochemical configuration of phosphatidyl glycerol. Biochim. biophys. Acta (Amst.) 84, 106 (1964).Google Scholar
  67. Hawthorne, J. N.: The ethanol-insoluble phosphatides of mammalian liver. Biochem. J. 59, II (1955).Google Scholar
  68. Hawthorne, J. N.: The inositol phospholipids. J. Lipid Res. 1, 255 (1960).PubMedGoogle Scholar
  69. Helferich, B., H. Appel u. R. Gootz: Über Emulsin. X. Z. physiol. Chem. 215, 277 (1933).Google Scholar
  70. Hirsch, J., and E. H. Ahrens Jr.: The separation of complex lipid mixtures by the use of silicic acid chromatography. J. biol. Chem. 233, 311 (1958).PubMedGoogle Scholar
  71. Hörhammer, L., H. Wagner u. J. Hölzl: Über die Inositphosphatide des Rinderhirns. Biochem. Z. 332, 269 (1960).Google Scholar
  72. Horning, M. G., E. A. Williams, and E. C. Horning: Separation of tissue cholesterol esters and triglycerides by silicic acid chromatography. J. Lipid. Res 1, 482 (1960).PubMedGoogle Scholar
  73. Houtsmuller, U. M. T., and L. L. M. van Deenen: Identification of a bacterial phospholipid as an O-ornithine ester of phosphatidyl glycerol. Biochim. biophys. Acta (Amst.) 70, 211 (1963).Google Scholar
  74. Jatzkewitz, H.: Zwei Typen von Cerebrosid-Schwefelsäureestern als sog. „Prä“-Lipoide und Speichersubstanzen bei der Leucodystrophie, Typ Scholz (Metachromatische Form der diffusen Sklerose). Hoppe-Seylers Z. physiol. Chem. 311, 279 (1958).PubMedGoogle Scholar
  75. Jatzkewitz, H.: Die Leucodystrophie, Typ Scholz (metachromatische Form der diffusen Sklerose) als Sphinsjolipoidose (Cerebrosid-Schwefelsäureester-Speicherkrankheit). Hoppe-Seylers Z. physiol. Chem. 318, 265 (1960).PubMedGoogle Scholar
  76. Kates, M.: Hydrolysis of lecithin by plant plastid enzymes. Canad. J. Biochem. 33, 575 (1955).PubMedGoogle Scholar
  77. Kishimoto, Y., and N. S. Radin: Structures of the normal unsaturated fatty acids of brain sphingolipids. J. Lipid Res. 4, 437 (1963).PubMedGoogle Scholar
  78. Kiss, J., G. Fodor u. D. Banfi: Zurückführung der Konfiguration des (natürlichen) Sphingosins auf die der D-erythro-2-Amino-3, 4-dioxybuttersäure. Helv. chim. Acta 37,1471 (1954).Google Scholar
  79. Klenk, E.: Über die partiellen Spaltprodukte von Cerebron. Hoppe-Seylers Z. physiol. Chem. 153, 74 (1926).Google Scholar
  80. Klenk, E.: Über Sphingosin. Hoppe-Seylers Z. physiol. Chem. 185, 169 (1929).Google Scholar
  81. Klenk, E.: Beiträge zur Chemie der Lipoidosen. Hoppe-Seylers Z. physiol. Chem. 267, 128 (1948).Google Scholar
  82. Klenk, E.: Zur Biochemie der Haemagglutination. Arigew. Chem. 72, 482 (1960).Google Scholar
  83. Klenk, E. u. P. Böhm: Zur Kenntnis der Kephalinfraktion des Gehirns. Hoppe-Seylers Z. physiol. Chem. 288, 98 (1951).PubMedGoogle Scholar
  84. Klenk, E. u. H. Debuch: Zur Kenntnis der cholinhaltigen Plasmalogene (Acetalphosphatide des Rinderherzmuskels). Hoppe-Seylers Z. physiol. Chem. 299, 66 (1955).PubMedGoogle Scholar
  85. Klenk, E. u. H. Debuch: The Lipides. Ann. Rev. Biochem. 28, 39 (1959).PubMedGoogle Scholar
  86. Klenk, E. u. H. Faillard: Über Sphingosin. Hoppe-Seylers Z. physiol. Chem. 299, 48 (1955).PubMedGoogle Scholar
  87. Klenk, E. u. W. Gielen: Zur Kenntnis der Ganglioside des Gehirns. Hoppe-Seylers Z. physiol. Chem. 319, 283 (1960).PubMedGoogle Scholar
  88. Klenk, E. u. W. Gielen: Untersuchungen über die Konstitution der Ganglioside aus Menschengehirn und die Trennung des Gemisches in die Komponenten. Hoppe-Seylers Z. physiol. Chem. 326, 144 (1961).PubMedGoogle Scholar
  89. Klenk, E., u. W. Gielen: Über ein zweites hexosaminhaltiges Gangliosid aus Menschengehirn Hoppe-Seylers Z. physiol. Chem. 330, 218 (1963).PubMedGoogle Scholar
  90. Klenk, E., u. W. Gielen: Über ein chromatographisch einheitliches, hexosaminfreies Gangliosid aus MenschenGoogle Scholar
  91. Klenk, E., u. W. Gielen: Gehirn. Hoppe Seylers Z. physiol. Chem. 333, 162 (1963).Google Scholar
  92. Klenk, E., u. W. Gielen: Gangliosid A3. Hoppe-Seylers Z. physiol. Chem. (in Vorbereitung).Google Scholar
  93. Klenk, E., u. W. Gielen and G. Padberg: The structure of gangliosides in cerebral Sphingolipoidoses. Symposium on Tay-Sachs Disease and allied Disorders. 1962, p. 301.Google Scholar
  94. Klenk, E., W. Gielen, u. U. W. Hendricks: An inositol phosphatide containing carbohydrate, isolated from human brain. Biochim. biophys. Acta (Amst.) 50, 602 (1961).Google Scholar
  95. Klenk, E., W. Gielen, and L. Hof: Über die Struktur zweier hexosaminhaltiger Ganglioside des menschlichen Gehirns. Dissertation L. Hof, 1965, Cologne. Unpublished.Google Scholar
  96. Klenk, E., u. G. Krickau: Über die Fettsäuren der cholinhaltigen Acetalphosphatide und des Lecithins vom Rinderherzmuskel. Hoppe-Seylers Z. physiol. Chem. 308, 98 (1957).PubMedGoogle Scholar
  97. Klenk, E., u. W. Kunau: Beitrag zur Konstitution der Ganglioside. Hoppe-Seylers Z. physiol. Chem. 335, 275 (1964a).PubMedGoogle Scholar
  98. Klenk, E., u. K. Lauenstein: Über die zuckerhaltigen Lipoide der Formbestandteile des menschlichen Blutes. Hoppe-Seylers Z. physiol. Chem. 288, 220 (1951).PubMedGoogle Scholar
  99. Klenk, E., u. K. Lauenstein: Über die zuckerhaltigen Lipoide des Erythrocytenstromas von Mensch und Rind. Hoppe-Seylers Z. physiol. Chem. 291, 249 (1952).Google Scholar
  100. Klenk, E., U. Liedtke u. W. Gielen: Das Gangliosid bei der infantilen amaurotischen Idiotie vom Typ Tay-Sachs. Hoppe-Seylers Z. physiol. Chem. 334, 186 (1963).PubMedGoogle Scholar
  101. Klenk, E., u. G. Padberg: Über die Ganglioside von Pferdeerythrocyten. Hoppe-Seylers Z. physiol. Chem. 327, 249 (1962).PubMedGoogle Scholar
  102. Klenk, E. u. F. Rennkamp: Über die Reindarstellung von Sphingomyelin aus Gehirn. Hoppe-Seylers Z. physiol. Chem. 267, 145 (1940).Google Scholar
  103. Klenk, E. u. F. Rennkamp: Über die Ganglioside und Cerebroside der Rindermilz. Hoppe-Seylers Z. physiol. Chem. 273, 253 (1942).Google Scholar
  104. Klenk, E. u. R. Sakai: Inositmonophosphorsäure, ein Spaltprodukt der Sojabohnenphosphatide. Hoppe-Seylers Z. physiol. Chem. 258, 33 (1939).Google Scholar
  105. Klenk, E. u. H. Wolter: Über die zuckerhaltigen Lipoide des Erythrocytenstromas vom Pferde. Hoppe-Seylers Z. physiol. Chem. 291, 259 (1952).Google Scholar
  106. Kornberg, A., and W. E. Pricer: Enzymatic esterification of α-glycerophosphate by long chain fatty acids. J. biol. Chem. 204, 345 (1953).PubMedGoogle Scholar
  107. Koscielak, J.: Bloodgroup A specific glycolipids from human erythrocytes. Biochim. biophys. Acta (Amst.) 78, 313 (1963).Google Scholar
  108. Kuhn, R., u. R. Brossmer: Über das durch Viren der Influenza-Gruppe spaltbare Trisaccharid der Milch. Chem. Ber. 92, 1667 (1959).Google Scholar
  109. Kuhn, R., u. H. Egge: Über Ergebnisse der Permethylierung der Ganglioside GI und GII. Chem. Ber. 96, 3338 (1963b).Google Scholar
  110. Kuhn, R., u. H. Wiegandt: Die Konstitution der Ganglio-N-tetraose und des Gangliosids GI. Chem. Ber. 96, 866 (1963a).Google Scholar
  111. Kuhn, R., u. H. Wiegandt: Die Konstitution der Ganglioside GII, GIII und GIV Z. Naturforsch.18b, 541 (1963c).Google Scholar
  112. Kuhn, R., u. H. Wiegandt: Weitere Ganglioside aus Menschenhirn. Z. Naturforsch. 19 b, 256 (1964a).Google Scholar
  113. Levene, P. A.: Sphingomyelin. III. J. biol. Chem. 24, 69 (1916).Google Scholar
  114. Levene, P. A. and W. A. Jacobs: On sphingosine. J. biol. Chem. 11, 547 (1912).Google Scholar
  115. Levene, P. A. and C. J. West: On sphingosine. The oxidation of sphingosine and dihydrosphingosine. J. biol. Chem. 16, 549 (1913/14).Google Scholar
  116. Levene, P. A. and C. J. West: On sphingosine. The oxidation of sphingosine and dihydrosphingosine. J. biol. Chem. 18, 481 (1914).Google Scholar
  117. Levene, P. A. and C. J. West: Sphingosine. Some derivatives of sphingosine and dihydrosphingosine. J. biol. Chem. 24, 63 (1916).Google Scholar
  118. Le Coqc, J., and C. E. Ballou: On the structure of cardiolipin. Biochemistry 3, 976 (1964).Google Scholar
  119. Lipsky, S. R., and R. A. Landowe: The identification of fatty acids by gas chromatography, in Methods in Enzymology, Vol. VI, p. 513. New York: Academic Press 1963.Google Scholar
  120. Long, C., and M. P. Maguire: The structure of naturally occurring phosphoglycerides. Biochem. J. 57, 223 (1954).PubMedGoogle Scholar
  121. Long, C. and D. A. Staples: Chromatographic separation of brain lipids. Biochem. J. 80, 557 (1961).PubMedGoogle Scholar
  122. MacfArlane, M. G.: The biochemistry of bacterial toxins. Biochem. J. 42, 587 (1948).Google Scholar
  123. MacfArlane, M. G.: Characterisation of lipoamino-acids as O-amino-acid esters of phosphatidyl-glycerol. Nature (Lond.) 196, 136 (1962).Google Scholar
  124. MacfArlane, M. G.: The structure of cardiolipin. Biochem. J. 92, 12C (1964).PubMedGoogle Scholar
  125. MacfArlane, M. G. and G. M. Gray: Composition of cardiolipin. Biochem. J. 67, 25P (1957).Google Scholar
  126. MacfArlane, M. G. and L. W. Wheeldon: Fatty acid composition of phospholipids from subcellular particles of rat liver. Biochem. J. 77, 626 (1960).PubMedGoogle Scholar
  127. MacfArlane, M. G. and L. W. Wheeldon: Position of fatty acids in Cardiolipin. Nature (Lond.) 183, 1808 (1955).Google Scholar
  128. Ma Kita, A.: Biochemistry of organ glycolipids. II. Isolation of human kidney glycolipids. J. Biochem. (Tokyo) 55, 269 (1964).Google Scholar
  129. M. Iwanaga, and T. Yamakawa: The chemical structure of human kidney globosides. Biochem. J. (Tokyo) 55, 202 (1964).Google Scholar
  130. M. Iwanaga and T. Yamakawa: Biochemistry of organ glycolypids. Ceramide oligohexosides of human, equine and bovine spleen. J. Biochem. (Tokyo) 51, 124 (1962).Google Scholar
  131. M. Iwanaga and T. Yamakawa: Biochemistry of organ glycolipids. III. The structures of human kidney cerebroside sulfuric ester, ceramide dihexoside and ceramide trihexoside. J. Biochem. (Tokyo) 55, 365 (1964).Google Scholar
  132. Mangold, H. K., E. Stahl: Dünnschichtchromatographie. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  133. Marinetti, G. V., J. Erbland, and E. Stotz: The hydrolysis of lecithins by snake venom phospholipase A. Biochim. biophys. Acta (Amst.) 33, 403 (1959).Google Scholar
  134. Marinetti, G. V. and E. Stotz: Studies on the structure of sphingomyelin. IV. Configuration of the double bond in sphingomyelin and related lipids and a study of their infrared spectra. J. Amer. chem. Soc. 76, 1347 (1954).Google Scholar
  135. Mattson, F. H., and R. A. Volpenhein: Synthesis and properties of glycerides. J. Lipid Res. 3, 281 (1962).Google Scholar
  136. Mattson, F. H., and R. A. Volpenhein: The use of pancreatic lipase for determining the distribution of fatty acids in partial and complete glycerides. J. Lipid Res. 2, 58 (1961).Google Scholar
  137. Miettinen, T. A., E. H. Ahrens Jr., and S. M. Grtjndy: Quantitative isolation and gasliquid chromatographic analysis of total dietary and fecal neutral steroids. J. Lipid Res. 6, 411 (1965).PubMedGoogle Scholar
  138. Mislow, K.: The geometry of sphingosine. J. Amer. chem. Soc. 74, 5155 (1952).Google Scholar
  139. Nakayama, T.: Studies on the conjugated lipids. 1. On the configuration of cerebrosides. J. Biochem. (Tokyo) 37, 309 (1950).Google Scholar
  140. O’Brien, J. S., and G. Rouser: The fatty acid composition of brain sphingolipids: sphingomyelin, ceramide, cerebroside and cerebroside sulfate. J. Lipid Res. 5, 339 (1964).PubMedGoogle Scholar
  141. Pangborn, M. C.: A new serologically active phospholipid from beef heart. Proc. Soc. exp. Biol. (N. Y.) 48, 484 (1941).Google Scholar
  142. Pangborn, M. C.: The composition of cardiolipin. J. biol. Chem. 168, 351 (1947).PubMedGoogle Scholar
  143. Papirmeister, B., and M. F. Mallette: The isolation and some properties of the Forssman hapten from sheep erythrocytes. Arch. Biochem. 57, 94 (1955).Google Scholar
  144. Pietrtjszko, R., and G. M. Gray: Formation of the cyclic acetal phospholipid during alkaline and enzym hydrolysis of choline plasmalogen. Biochem. biophys. Acta (Amst.) 44, 197 (1960).Google Scholar
  145. Plackett, P.: A synthesis of 1,3-Di-O-(glycerol-3′-phosphoryl-) glycerol. Austr. J. Chem. 17, 101 (1964).Google Scholar
  146. Pizer, F. L., and C. E. Ballou: Studies on myo-inositol phosphates of natural origin. J. Amer. chem. Soc. 81, 915 (1959).Google Scholar
  147. Privett, O. S., and M. L. Blank: A new method for the analysis of component mono-, di- and triglycerides. J. Lipid Res. 2, 37 (1961).Google Scholar
  148. Prostenik, M., and B. Majhofer-Orescantin: Occurrence of a new sphingolipid base C20-sphingosine in horse and beef brain. Naturwissenschaften 47, 399 (1960).Google Scholar
  149. Prostenik, M. u. N. Z. Stanacev: Studien in der Reihe der Sphingolipoide über die Struktur der Cerebrin-Base aus Hefe. Chem. Ber. 91, 961 (1958).Google Scholar
  150. Radin, N. S., and J. R. Brown: Cerebrosides. Biochem. Preparations 7, 31 (1959).Google Scholar
  151. Rapport, M. M., L. Graf, and N. F. Alonzo: Immunochemical structures of organ and tumor lipids. V. Lipid hapten of a human epidermoid carcinoma grown in rats. Cancer 11, 1136 (1958).PubMedGoogle Scholar
  152. B. Lerner, N. Alonzo, and R. E. Franzl: The structure of plasmalogens. II. Crystalline lysophosphatidal ethanolamine (Acetalphospholipide). J. biol. Chem. 225, 859 (1957).PubMedGoogle Scholar
  153. H. Schneider, and L. Graf: Immunochemical studies of organ and tumor lipids. J. biol. Chem. 237, 1056 (1962).PubMedGoogle Scholar
  154. Rennkamp, F.: Untersuchungen über das Sphingomyelin und die ätherunlöslichen Glycerin-phosphatide des Gehirns. Hoppe-Seylers Z. physiol. Chem. 284, 215 (1949).Google Scholar
  155. Rosenberg, A., and E. Chargaff: Inhibition of influenza virus haemagglutination by a brain lipid fraction. Nature (Lond.) 177, 234 (1956).Google Scholar
  156. Rosenberg, A., and E. Chargaff: Nitrogenous constituents of an ox brain mucolipid. Biochem. biophys. Acta (Amst.) 21, 588 (1956).Google Scholar
  157. Rouser, G, J. F. Berry, G. Marinetti, and E. Stotz: Studies on the structure of sphingomyelin. I. Oxidation of products of partial hydrolysis. J. Amer. chem. Soc. 75, 310 (1953).Google Scholar
  158. Sambasivarao, K., and R. H. McCluer: Lipid components of gangliosides. J. Lipid Res. 5, 103 (1964).Google Scholar
  159. Sambasivarao, K., and R. H. McCluer, Samuelsson, B.: Die Prostaglandine. Angew. Chemie 77, 445 (1965).Google Scholar
  160. Schiffman, G., E. A. Kabat, and W. Thompson: Immunochemical studies on blood groups XXXII. Immunochemical properties of and possible partial structure for the blood group A, B and H antigenic determinants. Biochemistry 3, 587 (1964).PubMedGoogle Scholar
  161. Scholfield, C. R.: Counter current distribution. J. Amer. Oil Chem. Soc. 38, 562 (1961).Google Scholar
  162. Shapiro, D., and H. M. Flowers: Synthetic studies on sphingolipids. VI. The total syntheses of cerasine and phrenosine. J. Amer. chem. Soc. 83, 3327 (1961).Google Scholar
  163. Shapiro, D., and H. M. Flowers: Studies on sphingolipids. VII. Synthesis and configuration of natural sphingomyelins. J. Amer. chem. Soc. 84, 1047 (1961).Google Scholar
  164. Shapiro, D. and S. Spector-Shefer: Synthetic studies on sphingolipids. III. The synthesis of dihydrosphingomyelin. J. Amer. chem. Soc. 81, 3743 (1959).Google Scholar
  165. Shapiro, D. and S. Spector-Shefer: Synthetic studies on sphingolipids. IV. The synthesis of sphingomyelin. J. Amer. chem. Soc. 81, 4360 (1959).Google Scholar
  166. Shapiro, D. and S. Spector-Shefer: The synthesis of dihydrosphingomyelin. J. Amer. chem. Soc. 80, 2339 (1964).Google Scholar
  167. Shapiro, D., E. S. Rachaman, and T. Sheradsky: Synthetic studies on sphingolipids. X. Synthesis of psychosine. J. Amer. chem. Soc. 86, 4472 (1964).Google Scholar
  168. Sjövall, J., C. R. Meloni, and D. A. Turner: A study of the separation of substituted cholanic acids by gas-liquid chromatography. J. Lipid Res. 2, 317 (1961).Google Scholar
  169. Sperry, W. M.: Quantitative isolation of sterols. J. Lipid Res. 4, 221 (1963).PubMedGoogle Scholar
  170. Steinberg, D., M. Vaughan, P.J. Nestel, and S. Bergström: Effects of prostaglandin E opposing those of catecholamines on blood pressure and on triglyceride breakdown in adipose tissue. Biochem. Pharm. 12, 764 (1963).PubMedGoogle Scholar
  171. Svennerholm, E., and L. Svennerholm: Isolation of blood serum glycolipids. Acta chem. scand. 16, 1282 (1962).Google Scholar
  172. Svennerholm, E., and L. Svennerholm: The separation of neutral blood-serum glycolipids by thin-layer chromatography. Biochim biophys. Acta 70, 432 (1963).PubMedGoogle Scholar
  173. Svennerholm, E., and L. Svennerholm: Neutral glycolipids of human blood serum, spleen and liver. Nature (Lond.) 198, 688 (1963).Google Scholar
  174. Svennerholm, L.: On sialic acid in brain tissue. Acta chem. scand. 10, 694 (1956).Google Scholar
  175. Svennerholm, L.: The gangliosides. J. Lipid Res. 5, 145 (1964).PubMedGoogle Scholar
  176. Svennerholm, L. and H. Thorin: Quantitative isolation of brain sulfatides. J. Lipid Res. 3, 483 (1962).Google Scholar
  177. Sweeley, C. C.: Purification and partial characterization of sphingomyelin from human plasma. J. Lipid Res. 4, 402 (1963).PubMedGoogle Scholar
  178. Sweeley, C. C. and B. Klionsky: Fabry’s disease: Classification as a sphingolipoidosis and partial characterization of a novel glycolipid. J. biol. Chem. 238, PC 3148 (1963).PubMedGoogle Scholar
  179. Tattrie, N. H.: Positional distribution of saturated and unsaturated fatty acids on egg lecithin. J. Lipid Res. 1, 60 (1959).Google Scholar
  180. Thannhauser, S. J., N. F. Boncoddo, and G. Schmidt: Studies of acetal phospholipides of brain. J. biol. Chem. 188, 417, 423, 427 (1951).Google Scholar
  181. Thierfelder, H., u. E. Klenk: Die Chemie der Cerebroside und Phosphatide. S. 128. Berlin: Springer, 1930.Google Scholar
  182. Thudichum, J. L. W.: The chemical constitution of the brain, p. 105. London 1884.Google Scholar
  183. Tomlinson, R. V., and C. E. Ballou: Complete characterization of myo-inositol polyphosphates from beef brain phosphoinositide. J. biol. Chem. 236, 1902 (1961).PubMedGoogle Scholar
  184. Trucco, R. E., and R. Caputto: Neuramin-lactose, a new compound isolated from the mammary gland of rats. J. biol. Chem. 206, 901 (1954).PubMedGoogle Scholar
  185. Vandenheuvel, W. J. A., C. C. Sweeley, and E. C. Horning: Microanalytical separations by gas chromatography in the sex hormone and bile acid series. Biochem. biophys. Res. Commun. 3, 33 (1960).Google Scholar
  186. Wagner, H., L. Hörhammer u. P. Wolff: Dünnschichtchromatographie von Phosphatiden und Glycolipiden. Biochem. Z. 334, 175 (1961).PubMedGoogle Scholar
  187. Warner, H. R., and W. E. M. Lands: The configuration of the double bond in naturally occurring alkenyl-ethers. J. Amer. chem. Soc. 85, 60 (1963).Google Scholar
  188. Webster, G. R.: Studies on the plasmalogens of nervous tissue. Biochim. biophys. Acta (Amst.) 44, 109 (1960).Google Scholar
  189. Windaus, A.: Über die Entgiftung der Saponine durch Cholesterin. Chem. Ber. 42, 238 (1909).Google Scholar
  190. Woodford, F. P., and C. M. van Gent: Gas-liquid chromatography of fatty acid methyl esters: The “carbon-number” as a parameter for comparison of columns. J. Lipid Res. 1, 188 (1960).Google Scholar
  191. Yamakawa, T., and S. Suzuki: The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. I. Concerning the ether-insoluble lipids of lyophilized horse blood stroma. J. Biochem. (Tokyo) 38, 199 (1951).Google Scholar
  192. Yamakawa, T., and S. Suzuki: The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. II. On the structure of haemataminic acid. J. Biochem. (Tokyo) 39, 175 (1952).Google Scholar
  193. Yamakawa, T., and S. Suzuki: The chemistry of the lipids of posthemolytic residue or stroma of erythrocytes. III. Globoside, the sugar containing lipid of human blood stroma. J. Biochem. (Tokyo) 39, 393 (1952).Google Scholar
  194. Yamakawa, T., S. Yokoyama, and N. Handa: Chemistry of lipids of posthemolytic residue or stroma of erythrocytes. XI. Structure of globoside, the main mucolipid of human erythrocytes. Biochem. J. (Tokyo) 53, 28 (1963).Google Scholar
  195. Abraham, S., E. Lorch, and I. L. Chaikoff: Localization of the stimulating effect of isocitrate on fatty acid synthesis by rat liver. Biochem. biophys. Res. Commun. 7, 190 (1960).Google Scholar
  196. Abraham, S., K. J. Matthes, and I. L. Chaikoff: Fatty acid synthesis from acetate by normal and diabetic rat liver homogenate fractions. J. biol. Chem. 235, 2551 (1960).PubMedGoogle Scholar
  197. Alberts, A. W., P. W. Majerus, B. Talamo, and P. R. Vagelos: Acyl-Carrier Protein II. Intermediary Reactions of fatty acid synthesis. Biochemistry 3, 1563 (1964).PubMedGoogle Scholar
  198. Anker, H. S.: On the mechanism of fatty acid synthesis in vivo. J. biol. Chem. 194, 177 (1952).PubMedGoogle Scholar
  199. Annau, E., A. Eperjessy u. O. Felszegly: Biologische Dehydrierung der Lecithine und der Fettsäuren. Hoppe Seylers Z. physiol. Chem. 277, 58 (1942).Google Scholar
  200. Bachhawat, B. K., W. G. Robinson, and M. J. Coon: The enzymatic cleavage of β-hydroxy-ß-methylglutaryl coenzyme A to acetoacetate and acetyl-CoA. J. biol. Chem. 216, 727 (1955)PubMedGoogle Scholar
  201. Bachhawat, B. K., W. G. Robinson, and M. J. Coon: Enzymatic carboxylation of β-Miydroxyisovaleryl-coenzyme A. J. biol. Chem. 219, 539 (1956).PubMedGoogle Scholar
  202. Bernhard, K., J. v. Bülow-Köster u. H. Wagner: Die enzymatische Dehydrierung der Stearinsäure zu Ölsäure. Helv. chim. Acta 42, 152 (1959).Google Scholar
  203. Bernhard, K., M. Rothlin u. H. Wagner: Zur Frage der Hydrierung ungesättigter Fettsäuren im Tierkörper. Helv. chim. Acta 41, 1155 (1958).Google Scholar
  204. Bernhard, K., and R. Schoenheimer: The inertia of highly unsaturated fatty acids in the animal, investigated with deuterium. J. biol. Chem. 133, 707 (1940).Google Scholar
  205. Bernhard, K., H. Steinhauser u. F. Bullet: Fettstoffwechsel-Untersuchungen mit Hilfe von Deuterium als Indikator. I. Zur Frage der lebensnotwendigen Fettsäuren. Helv. chim. Acta 25, 1313 (1942).Google Scholar
  206. Bloomfield, D. K., and K. Bloch: The role of oxygen in the biosynthesis of unsaturated fatty acids. Biochim. biophys. Acta (Amst.) 30, 220 (1958).Google Scholar
  207. Bloomfield, D. K., and K. Bloch: The formation of Δ9-unsaturated fatty acids. J. biol. Chem. 235, 337 (1960).PubMedGoogle Scholar
  208. Bortz, W. M., and F. Lynen: The inhibition of acetyl CoA carboxylase by long chain acyl-CoA derivatives. Biochem. Z. 337, 505 (1963a).PubMedGoogle Scholar
  209. Bortz, W. M., and F. Lynen: Elevation of long chain acyl CoA derivatives in livers of fasted rats. Biochem. Z. 339, 77 (1963b).PubMedGoogle Scholar
  210. Brady, R. O.: The enzymatic synthesis of fatty acids by aldol condensation. Proc. nat. Acad. Sci. (Wash.) 44, 993 (1958).Google Scholar
  211. Brady, R. O.: Biosynthesis of fatty acids. J. biol. Chem. 235, 3099 (1960).Google Scholar
  212. Brady, R. O., A. M. Mamoon, and E. R. Stadtman: The effect of citrate and coenzyme A on fatty acid metabolism. J. biol. Chem. 222, 795 (1956).PubMedGoogle Scholar
  213. Bremer, J.: Carnitine in intermediary metabolism. The metabolism of fatty acid esters of carnitine by mitochondria. J. biol. Chem. 237, 3628 (1962).PubMedGoogle Scholar
  214. Bremer, J.: Carnitine in intermediary metabolism. The biosynthesis of palmityl-carnitine by cell sub-fractions. J. biol. Chem. 238, 2774 (1963).PubMedGoogle Scholar
  215. Burr, G. O., and M. M. Burr: A new deficiency disease produced by the rigid exclusion of fat from the diet. J. biol. Chem. 82, 345 (1929).Google Scholar
  216. Crane, F. L., and H. Beinert: On the mechanism of dehydrogenation of fatty acyl derivatives of coencyme A. II. The electron-transferring flavoprotein. J. biol. Chem, 218, 717 (1956).PubMedGoogle Scholar
  217. Dauben, W. G., E. Hoerger, and J. W. Petersen: Distribution of acetic acid carbon in high fatty acids synthesized from acetic acid by the intact mouse. J. Amer. chem. Soc. 75, 2347 (1953).Google Scholar
  218. Drury, D. R.: The role of insulin in carbohydrate metabolism. Amer. J. Physiol. 131, 536 (1940).Google Scholar
  219. Fritz, I. B., S. K. Schultz, and P.A. Srere: Properties of partially purified carnitine acetyl-transferase. J. biol. Chem. 238, 2509 (1963).PubMedGoogle Scholar
  220. Fritz, I. B. and K. T. N. Yue: Long-chain carnitine acyltransferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine. J. Lipid Res. 4, 279 (1963).PubMedGoogle Scholar
  221. Fulco, A. J., and J. F. Mead: The biosynthesis of lignoceric, cerebronic and nervonic acids. J. biol. Chem. 236, 2416 (1961).PubMedGoogle Scholar
  222. Fulco, A. J., Goldman, P.: Acyl-bound intermediates in fatty acid synthesis. J. biol. Chem. 239, 3663 (1964).Google Scholar
  223. Fulco, A. J., Goldman, P., A. W. Alberts, and P. R. Vagelos: The condensation reaction of fatty acid synthesis. J. biol. Chem. 238, 3579 (1963).Google Scholar
  224. Jacob, A.: Décomposition en ses divers constituants du Système enzymatique de désaturation des acides gras supérieurs. C. R. Soc. Biol. (Paris) 147, 1044 (1953).Google Scholar
  225. Jacob, A.: Rôle de Thypoxanthine dans la désaturation des acides gras supérieurs. C. R. Acad. Sei. (Paris) 242, 2180 (1956).Google Scholar
  226. Kallen, R. G., and J. M. Lowenstein: The stimulation of fatty acid synthesis by isocitrate and malonate. Arch. Biochem. 96, 188 (1962).PubMedGoogle Scholar
  227. Klenk, E.: Über die Bildung der C20- und C22-Polyenfettsäuren im Tierkörper. Naturwissenschaften 41, 68 (1954).Google Scholar
  228. Klenk, E.: Über die Biogenese der C20- und C22-Polyenfettsäuren in der Säugertierleber. Hoppe-Seylers Z. physiol. Chem. 302, 268 (1955).PubMedGoogle Scholar
  229. Klenk, E.: Metabolism of polyunsaturated fatty acids. VI. International Congress of Biochemistry, New York 1964.Google Scholar
  230. Kornberg, A., and W. E. Pricer: Enzymatic synthesis of the coenzyme A derivatives of long chain fatty acids. J. biol. Chem. 204, 329 (1953).PubMedGoogle Scholar
  231. Krebs, H. A., and J. M. Lowenstein: in Metabolic Pathways I, p. 129, edit, by D. M. Greenberg. New York: Academic Press 1960.Google Scholar
  232. Lang, K.: Über die tierische Fettsäuredehydrase und ihre Codehydrase. Hoppe-Seylers Z. physiol. Chem. 261, 240 (1939a).Google Scholar
  233. Lang, K. u. F. Adickes: Über die tierische Fettsäuredehydrase. Hoppe-Seylers Z. physiol. Chem. 262, 123 (1939).Google Scholar
  234. Lang, K. u. H. Mayer: Über die tierische Fettsäuredehydrase und ihre Codehydrase. Hoppe-Seylers Z. physiol. Chem. 261, 249 (1939b).Google Scholar
  235. Langdon, R. G.: The biosynthesis of fatty acids in rat liver. J. biol. Chem. 226, 615 (1959).Google Scholar
  236. Lardy, H. A., and J. Adler: Synthesis of succinate from propionate and ticcubonate by soluble enzymes from liver mitochondria. J. biol. Chem. 219, 933 (1956).PubMedGoogle Scholar
  237. Larrabee, A. L., E. G. Mc Daniel, H. A. Bakerman, P. R. Vagelos: Acylcarrier protein, V. Identification of 4′-phosphopantetheine bound to a mammalian fatty acid synthetase preparation. Proc. Nat. Acad. Sci. (Wash.) 54, 267 (1965).Google Scholar
  238. Le Breton, E., and J. Champotjgny-Clement: La désaturase des acides gras supérieurs. Arch. sci. physiol. 2, 243 (1948).Google Scholar
  239. Lipmann, F., M. E. Jones, S. Black, and R. M. Flynn: Enzymatic pyrophosphorylation of coenzyme A by adenosine triphosphat. J. Amer. chem. Soc. 74, 2384 (1952).Google Scholar
  240. Lynen, F.: Proc. Intern. Symposium on Enzyme Chemistry (Tokyo and Kyoto) 2, 57 (1957).Google Scholar
  241. Lynen, F.: Participation of acyl-CoA in carbon chain biosynthesis. J. cell comp. Physiol. 54, 33 (1959).PubMedGoogle Scholar
  242. Lynen, F., U. Henning, C. Bublitz, B. Sorbo u. L. Kröplin-Rueff: Der chemische Mechanismus der Acetessigsäurebildung in der Leber. Biochem. Z. 330, 269 (1958).PubMedGoogle Scholar
  243. Lynen, F., J. Knappe, E. Lorch, G. Jütting u. E. Ringelmann: Die biochemische Funktion des Biotins. Angew. Chem. 71, 481 (1959).Google Scholar
  244. Lynen, F., and S. Ochoa: Enzymes of fatty acid metabolism. Biochim. biophys. Acta (Amst.) 12, 299 (1953).Google Scholar
  245. Lynen, F., L. Wessely, O. Wieland u. L. Rueff: Zur β-Oxydation der Fettsäuren. Angew. Chem. 64, 687 (1952).Google Scholar
  246. Mahler, H. R., S. Wakil, and R. M. Bock: Studies on fatty acid oxidation. I. Enzymatic activation of fatty acids. J. biol. Chem. 204, 453 (1953).PubMedGoogle Scholar
  247. Majerus, P. W., A. W. Alberts, and P. R. Vagelos: Acyl-carrier-protein, III. An enoylhydrase specific for acyl-carrier protein thioesters. J. biol. Chem. 240, 618 (1965)PubMedGoogle Scholar
  248. Majerus, P. W., A. W. Alberts, and P. R. Vagelos: The acyl-carrier protein of the fatty acid synthesis. Purification, physical properties, and substrate binding site. Proc. Nat. Acad. Sci. (Wash.) 51, 1231 (1964).Google Scholar
  249. Majerus, P. W., A. W. Alberts, and P. R. Vagelos: Acyl-carrier-protein, IV., The identification of 4,-phosphopantetheine as the prosthetic group of the acyLcarrier protein, Proc, Nat. Acad. Sci. (Wash.) 53, 410 (1965).Google Scholar
  250. Mead, J. F.: The metabolism of the essential fatty acids. Distribution of unsaturated fatty acids in rats on fat-free and supplemented diets. J. biol. Chem. 227, 1025 (1957).PubMedGoogle Scholar
  251. Mead, J. F. and D. R. Howton: Metabolism of essential fatty acids. VII. Conversion of y-linolenic acid to arachidonic acid. J. biol. Chem. 229, 575 (1957).PubMedGoogle Scholar
  252. Mead, J. F., G. Steinberg, and D. R. Howton: Metabolism of essential fatty acids. Incorporation of acetate into arachidonic acid. J. biol. Chem. 205, 683 (1953).PubMedGoogle Scholar
  253. Pardee, A. B., and L. L. Ingraham: in Metabolic Pathways I, p. 1, edit, by D. M. Greenberg. New York: Academic Press 1960.Google Scholar
  254. Rudney, H.: The biosynthesis of β-hydroxy-ß-methylglutaric acid. J.biol.Chem. 227, 363 (1957).PubMedGoogle Scholar
  255. Schoenheimer, R., and D. Rittenberg: Deuterium as an indicator in the study of intermediary metabolism. V. The desaturation of fatty acids in the organisms. J. biol. Chem. 113, 505 (1936).Google Scholar
  256. Schroepfer, G. J., and K. Bloch: Enzyme is stereospecific. D-hydrogen removed from C-9 during conversion of stearic to oleic acid. Chem. Engng. News 42, 44 (1964).Google Scholar
  257. Schroepfer, G. J., and K. Bloch: The stereospecific conversion of stearic to oleic acid. J. biol. Chem. 240, 54 (1965).PubMedGoogle Scholar
  258. Segal, H. L., and G. K. K. Menon: Evidence for the formation of acetoacetate by direct deacylation of acetoacetyl-CoA in liver mitochondria. Biochem. biophys. Res. Commun. 3, 406 (1960).PubMedGoogle Scholar
  259. Seubert, W., G. Greull, u. F. Lynen: Die Synthese von Fettsäuren mit gereinigten Enzymen des Fettsäurecyclus. Angew. Chem. 69, 359 (1957).Google Scholar
  260. Srperstein, M. D.: Interrelationships of glucose and lipid metabolism. Amer. J. Med. 26, 685 (1959).Google Scholar
  261. Spencer, A. F., and J. M. Lowenstein: The supply of precursors for the synthesis of fatty acids. J. biol. Chem. 237, 3640 (1962).PubMedGoogle Scholar
  262. Steinberg, G., W. H. Slaton Jr., D. R. Howton, and J. F. Mead: Metabolism of essential fatty acids. IV. Incorporation of linoleate into arachidonic acid. J. biol. Chem. 220, 257 (1956).PubMedGoogle Scholar
  263. Stern, J. R., A. Del Camptllo, and I. Raw: Enzymes of fatty acid metabolism. J. biol. Chem. 218, 971, 985 (1956).PubMedGoogle Scholar
  264. Stetten, D., and G. E. Boxer: Studies in carbohydrate metabolism. III. Metabolic defects in alloxan diabetes. J. biol. Chem. 156, 271 (1940).Google Scholar
  265. Stoffel, W.: Biosynthesis of polyenoic fatty acids. Biochem. biophys. Res. Commun. 6, 270 (1961).PubMedGoogle Scholar
  266. Stoffel, W. u. K. L. Ach: Der Stoffwechsel der ungesättigten Fettsäuren. II. Eigenschaften des kettenverlängernden Enzyms. Zur Frage der Biohydrogenierung der ungesättigten Fettsäuren. Hoppe-Seylers Z. physiol. Chem. 337, 123 (1964).PubMedGoogle Scholar
  267. Stoffel, W. u. H. Caesar: Der Stoffwechsel der ungesättigten Fettsäuren. V. Zur β-Oxydation der Mono- und Polyenfettsäuren. Der Mechanismus der enzymatischen Reaktionen an cis-α, β-Enoyl-CoA-Verbindungen. Hoppe-Seylers Z. physiol. Chem. 341, 76 (1965).PubMedGoogle Scholar
  268. Stoffel, W., R. Ditzer u. H. Caesar: Der Stoffwechsel der ungesättigten Fettsäuren. III. Zur β-Oxydation der Mono- und Polyenfettsäuren. Der Mechanismus der enzymatischen Reaktionen an eis ß, γ-Enoyl-Co A-Verbindungen. Hoppe-Seylers Z. physiol. Chem. 339, 167 (1964).PubMedGoogle Scholar
  269. Stoffel, W. and H. G. Schiefer: Der Stoffwechsel der ungesättigten Fettsäuren. IV. Zur β-Oxydation der Mono- und Polyenfettsäuren. Untersuchungen in vivo und in vitro mit doppelt (3H,14C)-und l-14C-markierten Mono- und Polyenfettsäuren. Hoppe-Seylers Z. physiol. Chem. 341, 84 (1965).Google Scholar
  270. Vagelos, P. R., A. W. Alberts, and D. B. Martin: Activation of acetyl-CoA carboxylase and associated alteration of sedimentation characteristics of the enzyme. Biochem. biophys. Res. Commun. 8, 4 (1962).PubMedGoogle Scholar
  271. Vagelos, P. R., A. W. Alberts, and D. B. Martin: Studies on the mechanism of activation of acetyl-coenzyme A carboxylase by citrate. J. biol. Chem. 238, 533 (1963).PubMedGoogle Scholar
  272. Wakil, S. J.: Studies on the fatty acid oxidizing system of animal tissues. IX. Stereospecificity of unsaturated acyl CoA hydrase. Biochim. biophys. Acta (Amst.) 19, 497 (1956).Google Scholar
  273. Wakil, S. J. and H. R. Mahler: Studies on the fatty oxidizing system of animal tissues. V. Unsaturated fatty acyl-coenzyme A hydrase. J. biol. Chem. 207, 125 (1954).PubMedGoogle Scholar
  274. Wakil, S. J., E. L. Pugh, and F. Sauer: The mechanism of fatty acid synthesis. Proc. Nat. Acad. Sci. (Wash.) 52, 106 (1964).Google Scholar
  275. Wakil, S. J., E. B. Titchener, and D. M. Gibson: Evidence for the participitation of biotin in the enzymic synthesis of fatty acids. Biochim. biophys. Acta (Amst.) 29, 225 (1958).Google Scholar
  276. Wakil, S. J., E. B. Titchener, and D. M. Gibson: Studies on the mechanism of fatty acid synthesis. Biochim. biophys. Acta (Amst.) 34. 227 (1959).Google Scholar
  277. Wieland, O., and L. Weiss: Increase in liver acetyl-coenzyme A during ketosis. Biochem. biophys. Res. Commun. 10, 333 (1963a).PubMedGoogle Scholar
  278. Wieland, O., and L. Weiss: Inhibition of citrate-synthase by palmityl-coenzyme A, Biochem. biophys. Res, Commun. 13, 26 (1963b).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1967

Authors and Affiliations

  • W. Stoffel

There are no affiliations available

Personalised recommendations