Skip to main content

Optical Probing of Magnetoelastic Waves

  • Conference paper
Light Scattering Spectra of Solids
  • 876 Accesses

Abstract

The use of an optical probe to observe magnetoelastic (ME) waves in yttrium iron garnet gives new information not obtainable by other methods. The interaction of the light with the elastic and magnetic parts of a transverse ME wave gives rise to some unusual polarization properties, which are explained by a simple theory of the diffraction. For the laser polarized parallel or perpendicular to the plane of diffraction, a relation is found between the laser polarization giving maximum diffracted intensity and the sign of the frequency shift of the diffracted light. For a frequency shift of given sign, the optimum laser polarization is reversed for waves on the quasielastic portions of the upper and lower branches of the ME dispersion curves. When the spin-wave component is larger (near the turning points in the bar), the optimum polarization is the same on both branches, contrary to the theory. This anomaly is probably due to the large amplitude of the ME signals used in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.W. Smith, Phys. Rev. Letters 20, 334 (1968).

    Article  Google Scholar 

  2. A.W. Smith, IEEE Transactions on Sonics and Ultrasonics SU-15, 161 (1968). On p. 164 of this paper, second column, the words perpendicular and parallel on lines 7 and 4, respectively, from the bottom should be interchanged.

    Google Scholar 

  3. J.H. Collins and D.A. Wilson, Appl. Phys. Letters 12, 331 (1968).

    Article  Google Scholar 

  4. C. Kittel, Phys. Rev. 110, 836 (1958).

    Article  Google Scholar 

  5. J.F. Nye, “Physical Properties of Crystals”, Oxford University Press, London, 1957.

    Google Scholar 

  6. B.A. Auld and D.A. Wilson, J. Appl. Phys. 38, 3331 (1967).

    Article  CAS  Google Scholar 

  7. E.I. Gordon, Proc. IEEE 54, 1391 (1966).

    Article  Google Scholar 

  8. W. Strauss, Proc. IEEE 53, 1485 (1965).

    Article  Google Scholar 

  9. E. Schlömann, R.I. Joseph, and T. Kohane, Proc. IEEE 53, 1495 (1965).

    Article  Google Scholar 

  10. R. W. Dixon, J. Appl. Phys. 38, 3634 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this paper

Cite this paper

Smith, A.W. (1969). Optical Probing of Magnetoelastic Waves. In: Wright, G.B. (eds) Light Scattering Spectra of Solids. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87357-7_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87357-7_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87359-1

  • Online ISBN: 978-3-642-87357-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics