Advertisement

Light Scattering from Solid State Plasmas

  • P. A. Wolff

Abstract

Light scattering from plasmas has been extensively studied during the past decade. Initially, this work was concerned with gaseous plasmas, but more recently the technique has been used to study plasmas in solids. Detailed theories of the scattering phenomenon have been developed for the case of the classical plasma[1]. This work indicates that the spectrum of radiation scattered from a plasma should consist of two distinct pieces; a single particle portion and a collective part. Single particle scattering is caused by individual moving electrons in the plasma, and is nearly elastic. This portion of the spectrum directly mirrors the electron velocity distribution, and can be used to determine it. In addition, there is collective mode scattering due to plasma waves in the electron gas.

Keywords

Single Particle Density Fluctuation Gallium Arsenide Scatter Cross Section Collective Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    J.P. Dougherty and D.T. Farley, Proc. Roy. Soc. (London) A259, 79 (1960);Google Scholar
  2. 1b.
    E.E. Salpeter, Phys. Rev. 120, 1528 (1960);CrossRefGoogle Scholar
  3. 1c.
    J.A. Fejer, Can J. Phys. 38, 1114 (1960);CrossRefGoogle Scholar
  4. 1d.
    M.N. Rosenbluth and N. Rostoker, Phys. Fluids 5, 776 (1962).CrossRefGoogle Scholar
  5. 2a.
    K.L. Bowles, Phys. Rev. Letters 1, 454 (1958);CrossRefGoogle Scholar
  6. 2b.
    J.V. Evans and M. Lowenthal, Planetary Space Sci. 12, 915 (1964);CrossRefGoogle Scholar
  7. 2c.
    W.E.R. Davies and S.A. Ramsden, Phys. Letters 8, 179 (1964);CrossRefGoogle Scholar
  8. 2d.
    H.J. Kunze, E. Fünfer, B. Krossast, and W. H. Kegel, Phys. Letters 11, 42 (1964);CrossRefGoogle Scholar
  9. 2e.
    A. W. DeSilva, D.E. Evans, and M.J. Forrest, Nature 203, 1321 (1964);CrossRefGoogle Scholar
  10. 2f.
    B. Krossast, H. Rohr, E. Gloek, H. Zwicher, and E. Funfer, Phys. Rev. Letters 16, 1082 (1966);CrossRefGoogle Scholar
  11. 2g.
    S. Ramsden et al, J. Quant. Elects. QE-2, 8, 267 (1966).CrossRefGoogle Scholar
  12. 3.
    A. L. McWhorter, “Proceedings of the International Conference on the Physics of Quantum Electronics, Puerto Rico 1965,” McGraw-Hill, New York, 1965.Google Scholar
  13. 4.
    P.M. Platzman, Phys. Rev. 139, A379 (1965).CrossRefGoogle Scholar
  14. 5.
    A. Mooradian and G.B. Wright, Phys. Rev. Letters 16, 999 (1966).CrossRefGoogle Scholar
  15. 6.
    A. Mooradian, Phys. Rev. Letters 20, 11.2 (1968).Google Scholar
  16. 7.
    P.A. Wolff, Phys. Rev. 171, 436 (1968). Also see paper D-4 this conference.CrossRefGoogle Scholar
  17. 8.
    C.K.N. Patel and R.E. Slusher, Phys. Rev. 167, 413 (1968).CrossRefGoogle Scholar
  18. 9.
    P.M. Platzman and N. Tzoar, Phys. Rev. 136, All (1964).Google Scholar
  19. 10.
    L. Van Hove, Phys. Rev. 95, 249 (1954). Also see Ref. [9].CrossRefGoogle Scholar
  20. 11.
    W.E. Gordon, Proc. Inst. Radio Engrs. 46, 1824 (1958).Google Scholar
  21. 12.
    D.N. Zubarev, Sov. Phys. Uspekhi 3, 320 (1960).CrossRefGoogle Scholar
  22. 13.
    See, for example, David Pines and Philippe Nozieres, “The Theory of Quantum Liquids,” I, W.A. Benjamin Inc., New York, 1966.Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • P. A. Wolff
    • 1
  1. 1.Bell Telephone LaboratoriesIncorporatedHolmdelUSA

Personalised recommendations