Raman Scattering by Polaritons in Polyatomic Crystals

  • E. Burstein
  • S. Ushioda
  • A. Pinczuk
  • J. F. Scott


Polaritons participate in first order Raman scattering via atomic displacement and macroscopic electric field induced changes in the electric susceptibility, \[{\chi _\pi }^{\left( 1 \right)}\,\overrightarrow {\left( u \right)} \] and χ Π (1) (E), respectively. In polyatomic crystals, polaritons correspond to photons coupled to all of the q ≈ 0 IR active TO phonons. \[{\chi _\pi }^{\left( 1 \right)}\,\overleftarrow {\left( u \right)} \] is accordingly expressed in terms of the atomic displacement vector \[\overrightarrow {{u_j}} \left( {{\omega _\pi }} \right)\] and the atomic displacement susceptibility tensor a. of the q ≈ 0 TO phonons. χ Π (1) (E) is expressed in terms of the macroscopic electric field of the polariton mode \[\overrightarrow {{E_T}} \left( {{\omega _\pi }} \right)\], and the macroscopic electro-optic coefficient, b, of the crystal. \[\overrightarrow {{u_j}} \left( {{\omega _\pi }} \right)\] is expressed in terms of \[\overrightarrow {{E_T}} \left( {{\omega _\pi }} \right)\] by means of the coupled equations of motion and \[\overrightarrow {{E_T}} \left( {{\omega _\pi }} \right)\] is obtained from the expressions for the energy density of electromagnetic radiation in a dispersive medium and the frequency dependent dielectric constant ε (ω). The use of polariton scattering spectra to obtain ω vs q polariton dispersion curves and ε (ω) is illustrated for the A1 symmetry polaritons in tetragonal BaTiO3.


Atomic Displacement Polariton Mode Order Band Scatter Wave Vector Macroscopic Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.H. Henry and J.J. Hopfield, Phys. Rev. Letters 15, 964 (1965).CrossRefGoogle Scholar
  2. 2.
    S.P.S. Porto, B. Tell, and T.C. Damen, Phys. Rev. Letters 16, 450 (1966).CrossRefGoogle Scholar
  3. 3.
    W. L. Faust and C.H. Henry, Phys. Rev. Letters 17, 1265 (1966).CrossRefGoogle Scholar
  4. 4.
    E. Burstein, A. Pinczuk and Y. Sawada, Bull. Am. Phys. Soc. 12, No. 3, 421 (1967).Google Scholar
  5. 5.
    R. Loudon, Proc. Phys. Soc. 82, 393 (1963). This paper was the first to derive expressions for the Raman scattering efficiency of polaritons. See also the paper by Loudon, A-2, this conference.CrossRefGoogle Scholar
  6. 6.
    A.S. Barker, Jr., Phys. Rev. 165, 917 (1968).CrossRefGoogle Scholar
  7. 7.
    S. Ushioda, A. Pinczuk, W. Taylor, and E. Burstein, “Proc. Int. Conf. on II–VI Compound Semiconductors,” 1185, D.G. Thomas, (ed.) W.A. Benjamin, 1968.Google Scholar
  8. 8.
    A. Pinczuk, E. Burstein, and S. Ushioda, Solid State Communications (in press).Google Scholar
  9. 9.
    E. Burstein, S. Ushioda, and A. Pinczuk, Solid State Commun. 6, 407 (1968).CrossRefGoogle Scholar
  10. 10.
    Similar expressions apply for polaritons propagating along the principal axes of ε (ω) in optically anistropic crystals having trigonal, tetragonal, hexagonal, and orthorhombic structures. The dispersion relations are somewhat more complicated in crystals of lower symmetry in which the orientations of two (or all three) principal axes are functions of frequency and the polaritons are quasi-transverse modes.Google Scholar
  11. 11.
    The TO phonons are characterized by the normal coordinates uj. The definitions of ej and mj follow from the expressions for the electric moment, Mj = ej uj, and the energy density, < W> = (N/V)mjωj 2<uj 2>.Google Scholar
  12. 12.
    H.E. Puthoff, R.H. Pantell, B.G. Huth, and M.A. Chacon, J. Appl. Phys. 39, 2144 (1968)CrossRefGoogle Scholar
  13. 13.
    A.A. Maradudin and A.E. Fein, Phys. Rev. 128, 2568 (1962).CrossRefGoogle Scholar
  14. 14.
    R. Loudon, Adv. in Phys. 13, 423 (1964).CrossRefGoogle Scholar
  15. 15.
    E. Burstein, A. Pinczuk, and S. Iwasa, Phys. Rev. 157, 611 (1967).CrossRefGoogle Scholar
  16. 16.
    H. Pelzer, Proc. Roy. Soc. (London) 208, 365 (1961).Google Scholar
  17. 17.
    J. F. Scott and S. Ushioda, paper A-4 this conference.Google Scholar
  18. 18.
    A. Pinczuk, W. Taylor, E. Burstein, and I. Lefkowitz, Solid State Commun. 5, 429 (1967).CrossRefGoogle Scholar
  19. 19.
    J. L. Parsons and J. L. Rimai, Solid State Commun. 5, 423 (1967).CrossRefGoogle Scholar
  20. 20.
    M. DiDomenico, Jr., S. H. Wemple, S. P.S. Porto, and R.P. Bauman, Phys. Rev. (in press).Google Scholar
  21. 21.
    G. Shirane, B.C. Frazer, V.J. Minkiewzcz, J.A. Leake, and A. Linz, Phys. Rev. Letters 19, 234 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • E. Burstein
    • 1
  • S. Ushioda
    • 1
  • A. Pinczuk
    • 1
  • J. F. Scott
    • 2
  1. 1.Laboratory for Research on the Structure of Matter and Department of PhysicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Bell Telephone LaboratoriesIncorporatedHolmdelUSA

Personalised recommendations