Low Frequency Raman Spectra of Ionic Crystals

  • R. S. Krishnan
  • N. Krishnamurthy
  • T. M. Haridasan
  • J. Govindarajan


Several physical phenomena depend on the normal modes of vibration of the crystal. A ferroelectric phase transition in an ionic crystal is explained as due to a vanishing low frequency transverse optical mode at q → 0 (soft mode)[1]. An antiferroelectric transition is due to a vanishing zone boundary phonon[2]. Phase transformations induced by pressure are similarly explained as due to a vanishing transverse acoustic phonon[3]. Order-disorder transformations in alloys are due to coupling of modes which are close in energy and at a phase difference π/2 [4]. These low frequency phonons can be easily observed in Raman spectra, though the far infra-red measurements are very difficult. The ferroelectric soft mode and its frequency variation have been observed by Perry et al[5] in Raman scattering.


Ionic Crystal Ferroelectric Phase Transition Ammonium Dihydrogen Phosphate Light Scattering Spectrum Force Constant Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Cochran, Adv. in Phys. 9, 387 (1960).CrossRefGoogle Scholar
  2. 2.
    W. Cochran, Adv. in Phys. 10, 401 (1961).CrossRefGoogle Scholar
  3. 3.
    J.R. Hardy and A.M. Karo, “Lattice Dynamics,” (R.F. Wallis) p. 195, 1965.Google Scholar
  4. 4.
    G. Gilat, Phys. Lett. 24, 593 (1967).CrossRefGoogle Scholar
  5. 5.
    C.H. Perry and D.W. Hall, Phys. Review Letters 15, 700 (1965).CrossRefGoogle Scholar
  6. 6.
    F. Jona and G. Shirane, “Ferroelectric Crystals,” p. 360, Pergamon Press, 1962.Google Scholar
  7. 7.
    L. Pauling, “Nature of the Chemical Bond,” p. 523, Cornel University Press, 1960.Google Scholar
  8. 8.
    K. Huang, Z. Phy. 171, 213 (1962).CrossRefGoogle Scholar
  9. 9.
    T.M.K. Nedungadi, Proc. Ind. Acad. Sci A8, 398 (1938)Google Scholar
  10. 10.
    R.K. Khanna, Ph.D. Thesis to I.I. Sc., p. 65, 1961.Google Scholar
  11. 11.
    M. Balkanski and M. A. Nuzimovic, Reports of GMR, p. 51, 1966.Google Scholar
  12. 12.
    H.D. Megaw, “Ferroelectricity in Crystals,” p. 45, Methuen & Co., 1957.Google Scholar
  13. 13.
    M.S. Shur, Sov. Phys. Solid State 8, 43 (1966).Google Scholar
  14. 14.
    J. Chappelle, Jour. De. Chemi. Phys. 46, 30 (1949).Google Scholar
  15. 15.
    S.P.S. Porto and J.F. Scott, Phys. Rev. 157, 716 (1967).CrossRefGoogle Scholar
  16. 16.
    M.L. Canut and J. Mendiola, Phys. Stat. Soli 5, 313 (1964).CrossRefGoogle Scholar
  17. 17.
    R.P. Bauman and S. P. S. Porto, Phys. Rev. 161, 842 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • R. S. Krishnan
    • 1
  • N. Krishnamurthy
    • 1
  • T. M. Haridasan
    • 1
  • J. Govindarajan
    • 1
  1. 1.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations