Zusammenfassung

Bisher betrachteten wir im wesentlichen das Verhalten alternativer Merkmalsunterschiede zwischen verschiedenen Menschen, die sich entsprechenden Unterschieden in den Erbanlagen eindeutig zuordnen ließen. Dabei taten wir so, als ob das Merkmal unmittelbar mit der Erbanlage zusammenhinge; fast möchte man sagen, wir identifizierten beide miteinander. Vor allem im Kapitel über die Zwillingsforschung jedoch wurde uns klar, daß diese einfache Beziehung nicht in jedem Fall zutreffen kann. Wir sahen, daß es Faktoren gibt, die Einfluß darauf haben, ob und wie sich Erbanlagen manifestieren, und wir erkannten die Aufgabe, diese Faktoren mit Hilfe der Analyse diskordanter eineiiger Zwillingspaare näher kennenzulernen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Abel, S., and T, vanDellen: Amer. J. Med. 4, 776 (1948).CrossRefGoogle Scholar
  2. Abel, W.: Die Erbanlagen der Papillarmuster. Handbuch der Erbbiologie des Menschen Bd. 3. Berlin: Springer-Verlag 1940.Google Scholar
  3. Achard, C.: Arachnodaktylie. Bull. Soc. méd. Hop. (Paris) 19, 834 (1902).Google Scholar
  4. Achenbach, W.: Angiohemophilia (Vascular hemophilia). Hemophilia and other hemorrhagic states. Ed. Brinkhous, S. 100 (1959).Google Scholar
  5. Achenbach,W., u. R. Klesper: Abgiohämophilie A und B (nicht-hämophile hämorrhagische Diathese mit kongenitalem AHG-(PTC-) Mangel. Folia haemat. N. F. 1, 251 (1957).Google Scholar
  6. Aggeler, P. M., T. H. Spaet and B. E. Emery: Purification of plasma thromboplastin factor B and its identification as β-globulin. Science 119, 806 (1954).PubMedCrossRefGoogle Scholar
  7. — S. G. White and T. H. Spaet: Deuterohemophilia: Plasma thromboplastin factor B deficiency, plasma thromboplastin component (PTC) deficiency, Christmas disease, hemophilia B. Blood 9, 246 (1954).Google Scholar
  8. — et. al.: PTC factor deficiency: A previously undescribed hemophilia — like disease due to deficiency of a heretofore unknown thromboplastin component. Amer. J. Med. 13, 90 (1952).Google Scholar
  9. Alexander, B., R. Goldstein, G. Landwehr and C. D. Cook: Congenital SPCA deficiency; a hitherto unrecognized coagulation defect with hemorrhage rectified by serum and fractions. J. clin. Invest. 30, 596 (1951).PubMedCrossRefGoogle Scholar
  10. — et. al.: Congenital afibrinogenemia: A study of some basic aspects of coagulation. Blood 9, 843 (1954).Google Scholar
  11. Allen, C.: The meaning of concordance and discordance in estimation of penetrance and gene frequency. Amer. J. hum. Genet. 4, 155–172 (1952).PubMedGoogle Scholar
  12. Allfrey, V., A. E. Mirsky and S. Osawa: The nucleus and protein synthesis. The chemical basis of heredity. 200–231. Ed. McElroy and Glass. Baltimore: 1957.Google Scholar
  13. Allison, A. C.: The genetical and clinical significance of the haptoglobins. Proc. roy. Soc. Med. 51, 641–645 (1958).PubMedGoogle Scholar
  14. — Recent developments in the study of inherited anemias. Eugen. Quart. 6, 155–166 (1959).Google Scholar
  15. — Haptoglobins. Blut 5, 201–204 (1959).Google Scholar
  16. — B. S. Blumberg and Mrs. Rees: Haptoglobin types in British, Spanish, Basque and Nigerian African populations. Nature (Lond.) 181, 824–825 (1958).Google Scholar
  17. Andersen, D. H.: Studies on glycogen disease with a report of a case in which the glycogen was abnormal. Najjar, V. A. (ed.) „Symposium on the clinical and biochemical aspects of carbohydrate utilization in health and disease.“ Baltimore: Johns Hopkins Press 1952.Google Scholar
  18. Anderson, E. P., H. M. Kalckar and K. J. Isselbacher: Defect in uptake of galactose-1-phosphat into liver nucleotides in congenital galactosemia. Science 125, 113–114 (1957).PubMedCrossRefGoogle Scholar
  19. Armstrong, M. D.,and K. S. Robinson: On the excretion of indole derivatives in phenylketonuria. Arch. Biochem. 52, 287 (1954).PubMedCrossRefGoogle Scholar
  20. — K. N. F. Shaw and P. E. Wall: The phenolic acids of human urine: Paper chromatography of phenolic acids. J. biol. Chem. 218, 293–303 (1956).Google Scholar
  21. —, and F. H. Tyler: Studies on phenylketonuria I. Restricted phenylalanine intake in phenylketonuria. J. clin. Invest. 34, 563–580 (1955).Google Scholar
  22. Aschner, B. M., and R. H. Post: Modern therapy and hereditary disease. Acta genet. (Basel) 6, 362–369 (1957).Google Scholar
  23. Ashton, G. C.: Lack of “slow-alpha” proteins in some Guernsey cattle. Nature (Lond.) 182, 193–194 (1958).CrossRefGoogle Scholar
  24. — Polymorphism in the β-globulins of sheep. Nature (Lond.) 181, 849–850 (1958).Google Scholar
  25. — Genetics of β-globulin polymorphism in British cattle. Nature (Lond.) 182, 370–372 (1958).Google Scholar
  26. — Serum protein variations in horses. Nature (Lond.) 182, 1029–1030 (1958).Google Scholar
  27. Baber, M. D.: A case of congenital cirrhosis of the liver with renal tubular defects akin to those in the Fanconi syndrome. Arch. Dis. Child. 31, 335 (1956).PubMedCrossRefGoogle Scholar
  28. Baér, R. W., H. B. Taussig and E. H. Oppenheimer: Congenital Aneurysmal dilatation of the aorta associated with arachnodactly. Bull. Johns Hopk. Hosp. 72, 309 (1942).Google Scholar
  29. Barnicot, N. A.: Albinisme in south western Nigeria. Ann. Eugen. (Lond.) 17, 38–73 (1952).Google Scholar
  30. Baron, J. B., C. E. Dent, H. Harris, E. W. Hart and J. B. Jepson: Hereditary pellagralike skin rash with temporary cerebellar ataxia, constant renal aminoaciduria and other bizarre biochemical features. Lancet 1956 I, 421–428.Google Scholar
  31. Barthel, H.: Mißbildungen des menschlichen Herzens. Stuttgart: Thieme-Verlag 1960.Google Scholar
  32. Bartter, F. C., F. Albright, A. P. Leaf, E. Dempsey and E. Caroll: The effects of adrenocorticotropic hormone and cortisone in the adrenogenital syndrome associated with congenital adrenal hyperplasia. J. clin. Invest. 30, 237 (1951).PubMedCrossRefGoogle Scholar
  33. Batschelet, E.: Auslesefreie Verteilung des Manifestationsalters mit einer Anwendung auf die Respirationsatopien. Biometr. Z. 2, 244–256 (1960).CrossRefGoogle Scholar
  34. Beadle, G. W.: Biochemical genetics. Chem. Rev. 37, 15–96 (1945).CrossRefGoogle Scholar
  35. — The role fo the nucleus in heredity. Mc Elroy and Glass eds. „The chemical basis of heredity“. Baltimore: Johns Hopkins Press 1957.Google Scholar
  36. —, and B. Ephrussi: The differentation of eye pigments in drosophila as studied by transplantations. Genetics 21, 225–247 (1936).Google Scholar
  37. —, and E. L. Tatum: Genetic control of biochemical reactions in Neurospora. Proc. nat. Acad. Sc. (Wash.) 27, 499–506 (1941).„Classic papers in genetics“. J. A. Peters ed. Englewood Cliffs: Prentice Hall Inc. 1959.Google Scholar
  38. Bearn, A. G.: Genetic and biochemical aspects of Wilson’s disease. Amer. J. Med. 15, 442 bis 449 (1953).PubMedCrossRefGoogle Scholar
  39. — Wilson’s disease: Is the primary inherited defect one of copper or aminoacid metabolism? Acta genet. (Basel) 7, 177–178 (1957)Google Scholar
  40. — Hereditary variations in synthesis of serum proteins in health and disease. Symp. hered. metabol. dis. 208–218 (1959).Google Scholar
  41. —, and E. C. Franklin: Some genetical implications of physical studies of human haptoglobins. Science 128, 596–597 (1958).Google Scholar
  42. —, and H. G. Kunkel: Wilson’s disease. Ergebn. inn. Med. Kinderheilk. 7, 147–169 (1956).Google Scholar
  43. Becker, P. E.: Dystrophia musculorum progressiva. Stuttgart 1953.Google Scholar
  44. Bedichek, S., and J. B. S. Haldane: A search for autosomal recessive lethals in man. Ann. Eugen. (Lond.) 8, 245–254 (1937/38).CrossRefGoogle Scholar
  45. Beet, E. A.: The genetics of the sickle-cell trait in a Bantu tribe. Ann. Eugen. (Lond.) 14, 279 (1949).CrossRefGoogle Scholar
  46. Bennhold, H.: Kongenitale Defektdysproteinämien. Verh. dtsch. Ges. inn. Med. 62, 657 bis 667 (1956).Google Scholar
  47. — H. Peters u. E. Roth: Über einen Fall von kompletter Analbuminämie ohne wesentliche klinische Krankheitszeichen. Verh. dtsch. Ges. inn. Med. 60, 630–634 (1954).Google Scholar
  48. Benzer, S.: The elementary units of heredity. ed: McElroy and Glass Baltimore 1957.Google Scholar
  49. — V. N. Ingram and H. Lehmann: Three varieties of human haemoglobin D. Nature (Lond.) 182, 852–854 (1958).Google Scholar
  50. Berry, H., B. Sutherland and G. Guest: Phenylalanine tolerance tests on relatives of Phenylketonuric children. Amer. J. hum. Genet. 9, 310 (1957).PubMedGoogle Scholar
  51. Beutler, E.: Acta haemat. (Basel) 38, 1605 (1959).Google Scholar
  52. — R. J. Dern and A. S. Alving: J. Lab. clin. Med. 45, 40 (1955).Google Scholar
  53. — — C. L. Flanagan and A. S. Alving: The hemolytic effects of primaquine. VII. Biochemical studies in drug sensitive erythrocytes. J. Lab. clin. Med. 45, 286 (1955).Google Scholar
  54. — M. Robson and E. Buttenwieser: The mechanism of glutathione destruction and protection in drug sensitive and non sensitive erythrocytes. In vitro studies. J. clin. Invest. 36, 617 (1957).Google Scholar
  55. Bickel, H.: Influence of phenylalanine intake on phenylketonuria. Lancet 1953 II, 812.Google Scholar
  56. — Metabolisch-genetischer Schwachsinn. Klinische Physiologie Bd. 1, 87–118 (1960).Google Scholar
  57. —, u. W. Grüter: Prophylaxe und Behandlung der Phenylketonurie. Dtsch. med. Wschr. 86, 39–42 (1961).Google Scholar
  58. Biggs, R., A. S. Douglas and A. G. MacFarlane: The formation of thromboplastin in human blood. J. Physiol. (Lond.) 119, 89 (1953).Google Scholar
  59. — — — The initial stages of blood coagulation. J. Physiol. (Lond.) 122, 583 (1953).Google Scholar
  60. — — — J. V. Dacie, W. R. Pitney, C. Merskey and J. R. O’Brian: Christmas disease; a condition previously mistaken for hemophilia. Brit. med. J. 2, 1378 (1952).Google Scholar
  61. —, R. G. Mac Farlane: Human blood coagulation and its disorders. Oxford: Blackwell 1953.Google Scholar
  62. Boggs, J. D., D. Y. Hsia, R. F. Mais and J. A. Bigler: The genetic mechanism of idiopathic hyperlipemia. New Engl. J. Med. 257, 1101 (1957).PubMedCrossRefGoogle Scholar
  63. Bohn, H., E. Koch, F. Koch, W. Rick u. R. Rau: Die Erwaehsenen-Mucoviscidosis als überaus häufige dominant erbliehe Krankheit. Medizinische 24, 1139–1149 (1959).Google Scholar
  64. — — W. Rick, B. V. Kügelen, A. Grützner, W. Gumbel u. W. Jesch: Über die Erwachsenen-Mucoviscidosis. Dtsch. med. Wschr. 86, 1384–1394 (1961).Google Scholar
  65. Bongiovanni, A. M. and W. R. Eberlein: Clinical and metabolic variations in the adrenogenital syndrome. Pediatrics 16, 628 (1955).PubMedGoogle Scholar
  66. — A. M. Di George and M. M. Grumbach: Masculinization of the female infant associated with estrogenic therapy alone during gestation: for cases. J. clin. Endocr. 19, 1004 (1959).Google Scholar
  67. Bonnevie, K.: Studies on papillary patterns of human fingers. J. Genet. 15, 1 (1924).CrossRefGoogle Scholar
  68. — Zur Mechanik der Papillarmusterbildung. I. Epidermis als formativer Faktor in der Entwicklung der Fingerbeere und der Papillarmuster. Arch. Entwickl. Mech. Org. p., 117 (1929).Google Scholar
  69. — Was lehrt die Embryologie der Papillarmuster über ihre Bedeutung als Rassen- und Familiencharakter? III. Zur Genetik des quantitativen Wertes der Papillarmuster. Z. indukt. Abstamm.- u. Vererb.-Lehre 59, 1–60 (1931a).Google Scholar
  70. — Vererbbarer Cerebrospinaldefekt (?) bei Mäusen mit sekundären Augen- und Fußanomalien, nebst Trumschädelanlage. Abh. N. Vidsk.-Akad. Oslo, Kl. I (1931b).Google Scholar
  71. — Tatsachen der genetischen Entwicklungsphysiologie. Handbuch der Erbbiologie des Menschen Bd. 1., 73–172. Berlin: Springer 1940.Google Scholar
  72. Böök, J. A., and R. Kostmann: Prospects of biochemical genetics in medicine. Ann. hum. Genet. 20, 251–253 (1956).PubMedCrossRefGoogle Scholar
  73. Brachet, J.: Biochemical cytology. New York 1957.Google Scholar
  74. — The biochemistry of development. London: Pergamon Press 1960.Google Scholar
  75. Brage, D.: Hepatolenticular syndrome and familial hyperaminoaciduria: The expression of homozygotes and heterozygotes. Proc. X. int. Congr. Genet. 31–32 (1958 II).Google Scholar
  76. Bremer, J. L.: Congenital anomalies of the viscera. Cambridge: Harvard University Press 1957.Google Scholar
  77. Brenner, S.: On the impossibility of all overlapping triplet codes in information transfer from nucleic acids to proteins. Proc. nat. Acad. Sci. (Wash.) 43, 687–694 (1957).CrossRefGoogle Scholar
  78. Briggs, R., and T. J. King: J. exp. Zool. 122, 485 (1953).CrossRefGoogle Scholar
  79. Brinkhous, K. M., and J. B. Graham: Hemophilia and the hemophiloid states. Blood 9, 254 (1954).PubMedGoogle Scholar
  80. — R. D. Langdell, G. D. Penick, J. B. Graham, and R. H. Wagner: Newer approaches to the study of hemophilia and hemophiloid states. J. Amer. med. Ass. 154, 481–486 (1954).Google Scholar
  81. Brown, N. H., F. Sanger and R. Kitai: The structure of pig and sheep insulins. Biochem. J. 60, 556–565 (1955).PubMedGoogle Scholar
  82. Browne, E. A.: The inheritance of an intrinsic abnormality of the red blood cell predisposing to drug induced hemolytic anemia. Bull. Johns Hopk. Hosp. 101, 115 (1957).Google Scholar
  83. Brugsch, J.: Hämoglobin, der rote Blutfarbstoff. 2. Aufl. Leipzig: VEB Thieme 1955.Google Scholar
  84. Bruton, O. C.: Agammaglobulinemia. Pediatrics 9, 722–728 (1952).PubMedGoogle Scholar
  85. —, and A. J. Kanter: Idiopathic familial hyperlipemia. A. M. A. Amer. J. Dis. Child. 82, 153 (1954).Google Scholar
  86. Büchner, F.: Bedeutung peristatischer Faktoren für Mißbildungen. Verh. dtsch. Ges. inn. Med. 64, (1958).Google Scholar
  87. Butenandt, A.: Biochemie der Gene und Genwirkungen. Naturwissenschaften 40, 91–100 (1953).CrossRefGoogle Scholar
  88. Cairns, J. M.: The “early lethal” action of the homozygous Creeper factor in the chick. J. exp. Zool. 88, 481–503 (1941).CrossRefGoogle Scholar
  89. Carter, C., and E. Simpkiss: The „carrier“ state-nephrogenic diabetes insipidus. Lancet 1956 II, 1069–1073.Google Scholar
  90. Chernoff, A. I., V. Minnich and S. Chongchareonsuk: Hemoglobin E, a hereditary abnormality of human hemoglobin. Science 120, 605 (1954).PubMedCrossRefGoogle Scholar
  91. Childs, B., M. M. Grumbach and J. J. vanWyk: Virilizing adrenal hyperplasia: A genetic and hormonal study. J. clin. Invest. 35, 213–222 (1956).PubMedCrossRefGoogle Scholar
  92. — J. B. Sidbury and C. J. Migeon: Glucuronic acid conjugation by patients with familial nonhemolytic jaundice and their relatives. Pediatrics 23, 903 (1959).Google Scholar
  93. — W. Zinkham, E. A. Browne, E. L. Kimbro and J. V. Turbert: A genetic study of a defect in glutathione metabolism of the erythrocyte. Bull. Johns Hopk. Hosp. 102, 21–37 (1958).Google Scholar
  94. Ciba Foundation Symposium: Biochemistry of human genetics. London: J. & A. Churchill Ltd. 1959.Google Scholar
  95. Clara, M.: Entwicklungsgeschichte des Menschen. (1940).Google Scholar
  96. Clay, H. D., E. M. Darmady and M. Hawkins: The nature of the renal lesion in the Fanconisyndrome. J. Path. Bact. 65, 551 (1953).PubMedCrossRefGoogle Scholar
  97. Cohen, F. W., W. Zuelzer, J. V. Neel and A. R. Robinson: Multiple inherited erythrocyte abnormalities in an American negro family; Hereditary spherocytosis, sickling and thalassemia. Blood 7, 816–823 (1959).Google Scholar
  98. Connell, G. E., and O. Smithies: Human haptoglobins: Estimation and purification. Biochem. J. 72, 115–121 (1959).PubMedGoogle Scholar
  99. Cooley, T. B., and P. Lee: A series of cases of splenomegaly in children, with anemia and peculiar bone changes. Trans. Amer. pediat. Soc. 37, 29 (1925).Google Scholar
  100. Cori, G. T.: Glycogen structure and enzyme deficiencies in glycogen storage disease. Harvey Lect. 48, 145 (1953).Google Scholar
  101. —, and C. F. Cori: Glucose-6-phosphatase of the liver in glycogen storage disease. J. biol. Chem. 199, 661 (1952).Google Scholar
  102. Crick, F. H. C.: On protein synthesis. Symp. Soc. exp. Biol. 12, 138 (1958).PubMedGoogle Scholar
  103. — J. S. Griffith and L. E. Orgel: Codes without commas. Proc. nat. Acad. Sci. (Wash.) 43, 416 (1957).Google Scholar
  104. Crigler, J. F., and V. Naijar: Congenital familial nonhemolytic jauncice with kernicterus. Pediatrics 10, 169–180 (1952).PubMedGoogle Scholar
  105. Gullen, A. M., and W. E. Knox: O-Hydroxyphenylacetic acid excretion in the phenylalanine tolerance test for carriers of phenylketonuria. Proc. Soc. exp. Biol. (N. Y.) 99, 219 (1958).Google Scholar
  106. Davenport, C. B.: Heredity of albinisme. J. Hered. 7, 221 (1916).Google Scholar
  107. Davenport, G. C., and C. B. Davenport: Inheritance of albinism. Amer. Naturalist 44, 705–731 (1910).CrossRefGoogle Scholar
  108. Debre, R., G. Schapira, J. Dreyfus and F. Schapira: Metabolisme du fer chez les descendants de malades atteints de cirrhose bronzée. Bull. Soc. méd. Hôp. Paris 68, 665–669 (1952).PubMedGoogle Scholar
  109. Degenhardt, K. H.: Mißbildungskorrelationen durch Sauerstoffmangel im Tierexperiment. Naturwissenschaften 22, 525–526 (1956).CrossRefGoogle Scholar
  110. — Vitamin E-Schutz bei Sauerstoffmangel in der frühen Gravidität. Z. menschl. Vererb.-u. Konstit.-Lehre 35, 136–162 (1959).Google Scholar
  111. —, u. H. J. Grüter: Durch Röntgenstrahlen induzierte Entwicklungsstörungen bei Kaninchenembryonen. Z. Naturforsch. 14b, 753–756 (1959).Google Scholar
  112. Demerec, M.: A comparative study of certain gene loci in salmonella. Cold Spr. Harb. Symp. quant. Biol. 21, 113–121 (1956).CrossRefGoogle Scholar
  113. — Z. Hartman, P. E. Hartman, T. Yura, J. S. Gots, H. Ozeki and S. W. Glover: Genetic studies with bacteria. Publ. Cornegie Inst. 612 (1956).Google Scholar
  114. Dent, C. E., and H. Harris: Hereditary forms of rickets and osteomalacia. J. Bone Jt. Surg, p., 204 (1953).Google Scholar
  115. DiSant’Agnese, P. A.: Fibrocystic disease of the pancreas with normal or partial pancreatic function. Pediatrics 15, 683 (1955).Google Scholar
  116. — Die zystische Fibrose des Pankreas, Mucoviscidosis; fibrozystische Erkrankung des Pankreas. Dtsch. med. Wschr. 86, 1376–1384 (1961).Google Scholar
  117. —, and D. H. Andersen: Cystic fibrosis of the pancreas in young adults. Ann. int. Med. 50, 1321 (1959).Google Scholar
  118. — — H. H. Mason and W. A. Bauman: Glycogen storage disease of the heart I. Report of 2 cases in siblings with chemical and pathologic studies. Pediatrics 6, 402 (1950).Google Scholar
  119. — R. C. Darling, G. A. Perera and E. Shea: Sweat electrolyte disturbances associated with childhood pancreatic disease. Amer. J. Med. 15, 777 (1953).Google Scholar
  120. — ——— Abnormal electrolyte composition of sweat in cystic fibrosis of pancreas. Pediatrics 12, 549 (1953).Google Scholar
  121. — Z. Dische and A. Danilczenko: Physiochemical difference of mucoproteins in duodenal fluid of patients with cystic fibrosis of the pancreas and controls. Pediatries 19, 252 (1957).Google Scholar
  122. Dobzhansky, T., and B. Wallace: The problem of adaptive differences in human populations. Amer. J. hum. Genet. 6, 199 (1954).PubMedGoogle Scholar
  123. Doerr, W.: Die formale Entstehung der wichtigsten Mißbildungen des arteriellen Herzendes. Beitr. path. Anat. 115, 1 (1955).Google Scholar
  124. Dowben, R. M.: Increased oxidation of p-phenylenediamine by serum of patients with Tay-Sachs disease. Quart. Bull. Northw. Univ. med. Sch. 33, 15 (1959).PubMedGoogle Scholar
  125. Dubinin, N. P., M. A. Heptner, Z. A. Demidoya and L. L Djachkova: Genetic constitution and gene dynamics of wild populations of Drosophila melanogaster. Biol. Z. Mosk. 5, 939–976(1936).Google Scholar
  126. Duspiva, F.: Die Bedeutung der Atmung für den frühembryonalen Stoffwechsel der Amphibien zugleich ein Beitrag des Mißbildungsproblems. Verh. dtsch. Ges. Path. (1958) 250.Google Scholar
  127. Eberlein, W. R., and A. M. Bongiovanni: Steroid metabolism in the “saltlosing” form of congenital adrenal hyperplasia. J. clin. Invest. 37, 889 (1958).Google Scholar
  128. Ehling, U. Untersuchungen zur kausalen Genese erblicher Katarakte beim Kaninchen. Z. menschl. Vererb.- u. Konstit.-Lehre 34, 77–104 (1957).Google Scholar
  129. —E. Krokowski and H. G. Mehl: The uptake of radioactive elements in bones by skeleton mutants of rabbits. X. Intern. Congr Genetics, Montreal (1958) Volume II: Abstracts.Google Scholar
  130. Eisenberg, F. jr., K. J. Isselbacher and H. M. Kalckar: Studies on metabolism of carbon-14-labled galactose in a galactosemic individual. Science 125, 116–117 (1957).PubMedCrossRefGoogle Scholar
  131. Elphinstone, R. H., I. G. Wickes and A. B. Anderson: Familial agammaglobulinaemia. Brit. med. J. 1956 II, 336–338.Google Scholar
  132. Ephrussi, B.,and H. Hottinguer: Cytoplasmic constituents of heredity. Cold Spr. Harb. Symp. quant. Biol. 16, 75–85 (1951).CrossRefGoogle Scholar
  133. Evans, D. A. P., K. A. Manley and V. A. McKusick: Genetic control of isoniazid metabolism in man. Brit. med. J. 1960 II, 485.Google Scholar
  134. — P. B. Storey and V. A. Mc Kusick: Further observations on the determination of the isoniazid inactivator phenotype. Bull. Johns Hopk. Hosp. 108, 60 (1961).Google Scholar
  135. Finch: Idiopathic hemochromatosis, an iron storage disease. Medicine 34, 381–430 (1955).PubMedCrossRefGoogle Scholar
  136. Fischer, J., G. Landbeck u. W. Lenz: Vergleichende Bestimmungen des antihämophilen Globulins bei beiden Geschlechtern. Klin. Wschr. 36, 20 (1958).PubMedCrossRefGoogle Scholar
  137. Fleischer, E., and J. Lundevall: Inheritance of serum groups. IV. Europ. Congr. Haemat. Copenhagen (1957).Google Scholar
  138. Fliegelman, M. T., C. F. Wilkinson and E. A. Hand: Genetics of Xanthoma tuberosum multiplex. Arch. Derm. Syph. (Chicago) 58, 409 (1948).CrossRefGoogle Scholar
  139. Fölling, A.: Hoppe-Seyler’s Z. physiol. Chem. 227, 169 (1934).CrossRefGoogle Scholar
  140. Forbes, G. B.: Glycogen storage disease. J. Pediat. 42, 645 (1953).PubMedCrossRefGoogle Scholar
  141. Fox, M., and M. Bortin: J. Amer. med. Ass. 130, 568 (1946).CrossRefGoogle Scholar
  142. Franceschetti, A., et D. Klein: Le dépistage des hétérozygotes. Genetica med. p. 50–78. Rom: Ed. L. Gedda 1954.Google Scholar
  143. Fraser, F. C., and T. D. Feinstat: Production of congenital defects in offspring of pregnant mice treated with cortisone. Pediatrics 8, 527 (1951).PubMedGoogle Scholar
  144. — B. E. Walker and D. G. Trasler: Experimental production of congenital cleft palate: genetic and environmental factors. Pediatrics 19, 782 (1957) Suppl.Google Scholar
  145. Frick, P. G., and I. McQuarrie: Congenital afibrinogenemia. Pediatrics 13, 44 (1954).PubMedGoogle Scholar
  146. Frosch, E. R., A. Prader, A. Labhart, H. W. Stuber u. H. P. Wolf: Hereditäre Fructoseintoleranz, eine bisher nicht bekannte kongenitale Stoffwechselstörung. Schweiz. med. Wschr. 1957, 1168.Google Scholar
  147. Fuhrmann, W.: Diskordantes Auftreten angeborener Angiokardiopathien bei eineiigen Zwillingen. Z. menschl. Vererb.- u. Konstit.-Lehre 34, 563–586 (1958).Google Scholar
  148. — Genetische und exogene Faktoren in der Ätiologie der angeborenen Angiocardiopathien. Habilitationsschrift Berlin-West (1961). Erg. inner. Med. Kinderheilk., im Druck.Google Scholar
  149. Galatius-Jensen, F.: Further investigations of the genetic mechanism of the haptoglobins. Acta genet. (Basel) 7, 549–564 (1957).Google Scholar
  150. — On the genetics of the haptoglobins. Acta genet. (Basel) 8, 232–247 (1958a).Google Scholar
  151. — Rare phenotypes in the Hp-system. Acta genet. (Basel) 8, 248–255 (1958 b).Google Scholar
  152. Gale, E. F., and J. P. Folkes: Promotion of incorporation of amino acids by specific di- and trinucleotides. Nature (Lond.) 175, 592 (1955).CrossRefGoogle Scholar
  153. Gallera, J.: Acta anat. (Basel) 11, 549 (1951).CrossRefGoogle Scholar
  154. Gamow, G., S. Rich and M. Ycas: Advanc. biol. med. Phys. 4, 23 (1956).Google Scholar
  155. Garrod, A. E.: The incidence of alkaptonuria: A study in chemical individuality. Lancet 1902, 1616–1620.Google Scholar
  156. — Inborn errors of metabolism. London 1923.Google Scholar
  157. Gates, R. R.: Human genetics. Vol. 2. New York: Macmillan & Co. Ltd. 1946.Google Scholar
  158. Giblett, E. R., C. G. Hickman and O. Smithies: Serum transferrins. Nature (Lond.) 183, 1589–1590 (1959).CrossRefGoogle Scholar
  159. Gibson, Q. H., and D. C. Harrison: Familial idiopathic methemoglobinemia. Lancet 1947 II 941–943.Google Scholar
  160. Gierke, E.V.: nach: Hsia, D. Y.-Y. „Inborn errors of metabolism“. The Year Book Publishers Inc. 1959.Google Scholar
  161. Gitlin, D.: Low resistance to infections: Relationship to abnormalities in γ-globulin. Bull. N. Y. Acad. Med. 31, 359 (1955).PubMedGoogle Scholar
  162. —, and W. H. Borges: Studies on the metabolism of fibrinogen in two patients with congenital afibrinogenemia. Blood 8, 679 (1953).Google Scholar
  163. — W. H. Hitzig and C. A. Janeway: Multiple serum protein deficiencies in congenital and acquired agammaglobulinemia. J. clin. Invest. 35, 1199 (1956).Google Scholar
  164. Gloor, H.: Zur Entwicklungsphysiologie und Genetik des Letalfaktors crc bei Drosophila melanogaster. Arch. Vererb.-Forsch. Klaus-Stift. 20, 209–256 (1945).Google Scholar
  165. Goerttler, K.: Normale und pathologische Entwicklung des menschlichen Herzens. Zwangslose Abhandlungen aus dem Gebiet der normalen und pathologischen Anatomie. Ed. W. Bargmann u. W. Doerr, Heft 3. Stuttgart: Thieme Verlag 1958.Google Scholar
  166. Goldschmidt, R.: Gen und Außeneigenschaft (Untersuchungen an Drosophila) I und II. Z. Vererb.-Lehre 10, 74–98 (1935).CrossRefGoogle Scholar
  167. Goodman, H. O., and S. C. Reed: Heredity of fibrosis of the pancreas. Possible mutation rate. Amer. J. hum. Genet. 4, 59 (1952).PubMedGoogle Scholar
  168. Graham, J. B.: Biochemical genetics of blood coagulation. Amer. J. hum. Genet. 8, 63 (1956).PubMedGoogle Scholar
  169. — The inheritance of „vascular hemophilia“, a new and interesting problem in human genetics. J. med. Educ. 34, 385 (1959).Google Scholar
  170. — E. M. Barrow and C. Hougie: Stuart clotting defect. II. Genetic aspects of a new hemorrhagic state. J. clin. Invest. 36. 497 (1957).Google Scholar
  171. —, and K. M. Brinkhous: Christmas disease. Brit. med. J. 2, 97 (1953).Google Scholar
  172. — W. W. Mc Lendon and K. M. Brinkhous: Mild hemophilia: an allelic form of the disease. Amer. J. med. Sci. 25, 46 (1953).Google Scholar
  173. Greenberg, M., O. Pellitteri and J. Barton: Frequency of defects in infants whose mothers had rubella during pregnancy. J. Amer. med. Ass. 165, 675 (1957).CrossRefGoogle Scholar
  174. Gregg, M.: Congenital cataracts following German measles in the mother. Trans. Ophthal. Soc. Aust. 3, 35 (1941).Google Scholar
  175. Groen, J.: The hereditary mechanism of Gaucher’s disease. Blood 3, 1238–1249 (1948).PubMedGoogle Scholar
  176. —, and A. H. Garrer: Adult Gaucher’s disease with special reference to variations in its clinical course and value of sternal puncture as an aid to its diagnosis. Blood 3,1221 (1948).Google Scholar
  177. Grönvall, H., and P. Selander: Svenska Läk.-Tidn. 44, 1108 (1947).Google Scholar
  178. — —Några virus ejukdoma under graviditet och deras verkan pa fostret. Nord. med. 37, 409 (1948).Google Scholar
  179. Gross, R.: Angiohemophilia and thrombopathia v. Willebrand-Jürgens. Hemophilia and other hemorrhagic states. Ed. Brinkhous, S. 104 (1959).Google Scholar
  180. Gross, R., u. E. Mammen: Über Pseudohämophilie, Angiohämophilie, v. Willebrand-Jürgenssche Krankheit und verwandte hämorrhagische Diathesen. Klin. Wschr. 36, 112 (1958).PubMedCrossRefGoogle Scholar
  181. Grosser, O.: Frühentwicklung, Eihautbildung und Placentation des Menschen und der Säugetiere. München: Verlag J. F. Bergmann 1927.Google Scholar
  182. Grüneberg, H.: An analysis of the “pleiotropie” effects of a new lethal mutation in the rat. Proc. roy. Soc. Lond. B 125, 123–144 (1938).CrossRefGoogle Scholar
  183. — The genetics of the mouse. Den Haag: Martmus Nijhoff 1952.Google Scholar
  184. Grüttner, R.: Die Oligophrenia phenylpyruvica. Dtsch. med. Wschr. 1957 I, 155–156.Google Scholar
  185. Haase, F. H.: Die Übersterblichkeit der Knaben als Folge recessiver geschlechtsgebundener Anlagen. Z. menschl. Vererb.- u. Konstit.-Lehre 22, 105–126 (1938/39).Google Scholar
  186. Hadorn, E.: Letalfaktoren. Stuttgart: Thieme-Verlag 1955.Google Scholar
  187. Haecker, V.: Entwicklungsgeschichtliche Eigenschaftsanalyse. Jena 1918.Google Scholar
  188. Haldane, J. B. S.: The biochemistry of genetics. London 1954.Google Scholar
  189. Hanhart, E.: Über 18 lebende und 13 verstorbene Albinos in einem Dorf des Piemont. Arch. Klaus-Stift. Vererb.-Forsch. 27, 178 (1952).Google Scholar
  190. — Eineiige Zwillingsmädchen mit konkordantem Albinismus. Acta Genet. med. (Roma) 2, 380 (1953).Google Scholar
  191. Harris, H.: Human biochemical genetics. Cambridge University Press 1959.Google Scholar
  192. —U. Mittwoch, E. B. Robson and F. L. Warren: Phenotypes and genotypes in cystinuria. Ann. Eugen. (Lond.) 20, 57 (1955).Google Scholar
  193. —, and E. B. Robson: A genetic study of ethanolamine phosphate excretion in hypophosphatasia. Ann. hum. Genet. 23, 421 (1959).Google Scholar
  194. Harris, J. I., F. Sanger and M. A. Naughton: Species differences in insulin. Arch. Biochem. 65, 427–438 (1956)PubMedCrossRefGoogle Scholar
  195. Harslof, E.: Idiopathic familial hyperlipemia attended with hepatosplenomegaly. Acta med. scand. 130, 140 (1048).CrossRefGoogle Scholar
  196. Harvey, E. B.: Biol. Bull. 71, 101 (1936).CrossRefGoogle Scholar
  197. Hawthorne, D. C.: The genetics of galactose fermentation in saccharomyces hybrids. C. R. Lab. Carlsberg., Sér. physiol. 26, 149–160 (1956).Google Scholar
  198. Heilmeyer, L., u. H. Begemann: Handbuch der inneren Medizin, 4. Aufl., II. Berlin-Göttingen-Heidelberg: Springer 1951.Google Scholar
  199. Herndon, N.: Genetics of the lipidoses. Res. Publ. Ass. nerv. ment. Dis. 33, 239–258 (1954).Google Scholar
  200. Hill, R. L., and H. C. Schwartz: A chemical abnormality in haemoglobin G. Nature (Lond.) 184, 641–642 (1959).CrossRefGoogle Scholar
  201. Hockwald, R. S., J. Arnold, C. B. Clayman and A. S. Alving: J. Amer. med. Ass. 149, 1568 (1952).CrossRefGoogle Scholar
  202. Holt, L. E., F. X. Aylward and H. G. Timbres: Idiopathic familial lipemia. Bull. Johns Hopk. Hosp. 64, 279 (1939).Google Scholar
  203. Holt, S. B.: A quantitative survey of the fingerprints of a small sample of the British population. Ann. Eugen. (Lond.) 14, 329 (1949).CrossRefGoogle Scholar
  204. — A comparative quantitative study of the finger-prints of mongolian imbeciles and normal individuals. Ann. Eugen. (Lond.) 15, 355 (1951a).Google Scholar
  205. — The correlations between ridge-counts on different fingers. Ann. Eugen. (Lond.) 16, 287 (1951b).Google Scholar
  206. — Genetics of dermal ridges: bilateral asymmetry in finger ridge-counts. Ann. Eugen. (Lond.) 18, 211 (1954).Google Scholar
  207. — Genetics of dermal ridges: sib-pair correlations for total finger ridge-count. Ann. Eugen. (Lond.) 21, 352 (1957a).Google Scholar
  208. — Quantitative genetics of dermal ridge patterns on fingers. Acta genet. (Basel) 6, 473 (1957b).Google Scholar
  209. — Genetics of dermal ridges: the relation between total ridge-count and the variability of counts from finger to finger. Ann. hum. Genet. 22, 323 (1958).Google Scholar
  210. Holzel, A., and G. Komrower: A study of the genetics of galactosaemia. Arch. Dis. Childh. 30, 155–159 (1955).PubMedCrossRefGoogle Scholar
  211. Horowitz, N. H.: Biochemical genetics of neurospora. Advanc. Genet. 3, 33–71 (1950).CrossRefGoogle Scholar
  212. —, an S.-C. Sheng: Neurospora Tyrosinase. J. biol. Chem. 197, 513–520 (1952).Google Scholar
  213. Hougie, C., E. M. Barrow and J. B. Graham: Stuart clotting defect. L Segregation of an hereditary hemorrhagic state from the heterogeneous group heretofore called “stable factor” (SPCA, proconvertin, factor VII) deficiency. J. clin. Invest. 36, 485 (1957).PubMedCrossRefGoogle Scholar
  214. Hsia, D. Y. Y.: The laboratory detection of heterozygotes. Amer. J. hum. Genet. 9, 97–116 (1957).Google Scholar
  215. — Phenylketonuria. The phenylalanine-tyrosine ratio in the detection of the heterozygous carrier. J. ment. Def. Res. 2, 8 (1958).Google Scholar
  216. — Inborn errors of metabolism. Chicago: The Year Book Publishers Inc. 1959.Google Scholar
  217. Hsia, D. Y. Y.: Recent advances in biochemical detection of heterozygous carriers in hereditary diseases. Metabolism 9, 301–315 (1960).PubMedGoogle Scholar
  218. —, K. W. Driscoll: Detection of the heterozygous carriers of phenylketonuria. Lancet 1956 II, 1337.Google Scholar
  219. —— W. Troll and W. E. Knox: Heterozygous carriers of phenylketonuria detected by phenylalanine tolerance tests. Acta genet. (Basel) 7, 189–190 (1957).Google Scholar
  220. — W. E. Knox, K. V. Quinn and R. S. Paine: A one-year, controlled study of the effect of low-phenylalanine diet on phenylkatonuria. Pediatrics 21, 178–202 (1958).Google Scholar
  221. —, E. G. Kot: Detection of heterozvgous carriers in glycogen storage disease of the liver (von Gierke’s disease). Nature (Lond.) 183 1331 (1959).Google Scholar
  222. Huisman, T. H. J., and H. K. Prins: Chromatographic estimation of four different human hemoglobins. J. Lab. clin. Med. 46, 255 (1955).PubMedGoogle Scholar
  223. Hunt, J. A., and V. M. Ingram: Allelomorphism and the chemical differences of the human haemoglobins A, S. and C. Nature (Lond.) 181, 1062 (1958).CrossRefGoogle Scholar
  224. — — A terminal peptide sequence of human haemoglobin? Nature (Lond.) 184, 640–641 (1959).Google Scholar
  225. — — Human hemoglobin E, the chemical effect of gene mutation. Nature (Lond.) 184, 870 bis 872 (1959).Google Scholar
  226. Hutchison, J. H., and E. M. McGirr: Sporadic non-endemic goitrous cretinism: Hereditary transmission. Lancet 1956 II, 906.Google Scholar
  227. Illingworth, B., and G. T. Cori: Structures of glycogen and amylopectins: HI. Normal and abnormal human glycogen. J. biol. Chem. 199, 653 (1952).PubMedGoogle Scholar
  228. Ingram, V. M.: A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature (Lond.) 178, 792 (1956).CrossRefGoogle Scholar
  229. — Gene mutations in human haemoglobin: the chemical difference between normal and sickle cell haemoglobin. Nature (Lond.) 180, 325–328 (1957).Google Scholar
  230. — Abnormal human haemoglobins: The comparison of normal human and sickle-cell haemoglobins by „fingerprinting“. Biochem. biophys. Acta 28, 539 (1958).Google Scholar
  231. — Constituents of human haemoglobin. Nature (Lond.) 183, 1795–1798 (1959).Google Scholar
  232. — Gene evolution and the haemoglobins. Nature (Lond.) 189, 704–708 (1961).Google Scholar
  233. —, and A. O. W. Stretton: Genetic basis of the thalassemia diseases. Nature (Lond.) 184 II, 1903–1909 (1959).Google Scholar
  234. Itano, H. A.: A third abnormal hemoglobin associated with hereditary hemolytic anemia. Proc. nat. Acad. Sci. (Wash.) 37, 775 (1951).CrossRefGoogle Scholar
  235. — W. R. Bergren and P. Sturgeon: Identification of a 4th abnormal human hemoglobin. J. Amer. chem. Soc. 76, 2278 (1954).Google Scholar
  236. —, and J. V. Neel: A new inherited abnormality of human hemoglobin. Proc. nat. Acad. Sci. (Wash.) 36, 613 (1950).Google Scholar
  237. Janeway, C. A., and D. Gitlin: The gamma globulins. Advanc. Pediat. 9, 65 (1957).Google Scholar
  238. Jayle, M. F., and J. Badin: Signification et intérêt clinique de la formule protéique du plasma sanguin. Presse méd. 61, 343 (1953).PubMedGoogle Scholar
  239. —, and J. Valin: Variations de la formule protéique du plasma au cours des affections hépatiques. Sem. Hôp. (Paris) 28, 3133 (1952).Google Scholar
  240. Jervis, G. A.: Proc. Soc. exp. Biol. (N. Y.) 75, 83 (1950).Google Scholar
  241. — Proc. Soc. exp. Biol. (N. Y.) 82, 514 (1953).Google Scholar
  242. Johnston, C. L., and J. H. Ferguson: Hageman factor activation and related processes. Hemophilia and other hemorrhagic states. Ed. Brinkhous, S. 192 (1959).Google Scholar
  243. Kalckar, H. M.: Biochemical mutations in man and microorganism. Science 125, 3105–108 (1957).PubMedCrossRefGoogle Scholar
  244. Kalow, W.: Familial incidence of low pseudocholinesterase level. Lancet 1956 II, 576–577.Google Scholar
  245. — The distribution, destruction and elimination of muscle relaxants. Anesthesiology 20, 505 (1959).Google Scholar
  246. — Cholinesterase types. Ciba Found. Symp. Biochemistry of Human Genetics. pp. 39. London 1959.Google Scholar
  247. — Unusual responses to drugs in some hereditary conditions. Canad. Anaesth. Soc. J. 8, 43–52 (1961).Google Scholar
  248. —, and K. Genest: A method for the detection of atypical forms of human serum Cholinesterase. Determination of dibucaine numbers. Canad. J. Biochem. 35, 339–346 (1957).Google Scholar
  249. —, and D. R. Gunn: Some statistical data on atypical Cholinesterase of human serum. Ann. hum. Genet. 23, 239–250 (1959).Google Scholar
  250. —, and D. R. Staron: On distribution and inheritance of atypical forms of human serum cholinesterase als indicated by dibucaine numbers. Canad. J. Biochem. 35, 1305–1320 (1957).Google Scholar
  251. Kessler, W. R., and D. H. Andersen: Heat prostration in fibrocystic disease of pancreas and other conditions. Pediatrics 8, 648 (1951).PubMedGoogle Scholar
  252. Kimbro, E. J. jr.: The mechanism of hemolytic anemia induced by nitrofurantoin (furadantin). Bull. Johns Hopk. Hosp. 101, 118 (1957); 101, 245 (1957).Google Scholar
  253. Kingsley, C. S.: Famihal factor V deficiency: The pattern of heredity. Quart. J. Med. 23, 323–329 (1954).PubMedGoogle Scholar
  254. Klante, H.: Unveröffentlichte Staatsexamensarbeit. Freie Universität Berlin (1954).Google Scholar
  255. Knedel, M.: Die Doppel-Albuminämie, eine neue erbliche Proteinanomalie. Blut 3, 129 bis 134 (1957).PubMedCrossRefGoogle Scholar
  256. Knox, W. E.: Sir ArchibaldGarrod’s “inborn errors of metabolism.” 1. Cystinuria, 2. Alkaptonuria, 3. Albinism, 4. Pentosuria. Amer. J. hum. Genet. 10, 3–32; 95–124; 249 bis 267; 385–397 (1958).PubMedGoogle Scholar
  257. —, and E. C. Messinger: The detection in the heterozygote of the metabolic effect of the recessive gene for phenylketonuria. Amer. J. hum. Genet. 10, 53 (1958).Google Scholar
  258. — K. V. Quinn, and R. S. Paine: A one-year, controlled study of the effect of low-phenylalanine diet on phenylketonuria. Pediatrics 21, 178–202 (1958).Google Scholar
  259. Koch, E.: Die erbliche Erwachsenen-Mucoviscidosis und ihre Beziehungen zur Ulkuskrankheit. Dtsch. med. Wschr. 39, 1773–1784 (1959).CrossRefGoogle Scholar
  260. — H. Bohn, W. Rick u. W. Hartung: Erbliche Mucoviscidosis des Erwachsenen. Internist 1, 35–44 (1960).Google Scholar
  261. — W. Lehmann, W. Rick u. W. Gumbel: Mucoviscidosis-Symptome beim Diabetes mellitus. Dtsch. med. Wschr. 86, 1433–1438 (1961).Google Scholar
  262. Konyukhov, B. V.: Bjull. eksper. Biol. Med. 44, 96 (1957).Google Scholar
  263. Kostmann, R.: Infantile genetic agranulocytosis. Acta paediat. (Uppsala) Suppl. 105 (1956).Google Scholar
  264. Kubahashi, K.: Enzyme formation in galactose-negative mutants of Escherichia coli. Science 125, 114–116 (1957).CrossRefGoogle Scholar
  265. KÜhn, A.: Vorlesungen über Entwicklungsphysiologie. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  266. KÜhne, P.: Vitamin C im Orangensaft. Informationsbericht der Firma Eckes Übersee Fruchtsaft AG; Nieder-Olm. Mainz 1959.Google Scholar
  267. Labhart, A.: Klinik der inneren Sekretion, Berlin-Göttingen-Heidelberg: Springer 1957.Google Scholar
  268. Lamy, M., J. deGrouchy and O. Schweissguth: Genetic and non-genetic factors in the etiology of congenital heart disease. A study of 1188 cases. Amer. J. hum. Genet. 9, 17 (1957).PubMedGoogle Scholar
  269. Landauer, W.: Hereditary abnormalities and their chemically-induced phenocopies. Growth, Symp. 12, 171–200 (1948).Google Scholar
  270. — The hatchability of chicken eggs as influenced by environment and heredity. Storrs Agr. exp. Stat. Bull. 262, 1–223 (1951).Google Scholar
  271. — On teratogenic effects of pilocarpine in chick development. J. exp. Zool. 122, 469–508 (1953).Google Scholar
  272. — Phenocopies and genotype with special reference to sporadically occurring developmental variants. Amer. Naturalist 91, 79–90 (1957).Google Scholar
  273. —, u. A. Landauer: Chick mortality and sex ratio in the domestic fowl. Amer. Naturalist 65, 492–501 (1931).Google Scholar
  274. Lasker, M.: Essential fruetosuria. Human Biol. 13, 51 (1941).Google Scholar
  275. Last, U.: Klinische und genetische Untersuchungen des Marfan-Syndroms an Hand eigener Fälle. Diss. Freie Universität Berlin (1956).Google Scholar
  276. —, u. F. Vogel: Bemerkungen zum Marfan-Syndrom. Dtsch. med. Wschr. 82, 746–747 (1957).Google Scholar
  277. Lehmann, H.: Distribution of abnormal haemoglobins. J. clin. Pathol. 9, 180 (1956a).Google Scholar
  278. — Human haemoglobins. St. Bartholomew’s Hosp. J. 60, 237 (1956b).Google Scholar
  279. — Variations of haemoglobin synthesis in man. Acta genet. (Basel) 6, 413–429 (1957).Google Scholar
  280. —, and M. Cutbush: Sickle cell trait in Southern India. Brit. med. J. 1952 I, 404.Google Scholar
  281. —, and E. Ryan: Familial incidence of low pseudocholinesterase level. Lancet 1956 II, 124. Lehmann, W.: Ein Beitrag zur Frage der Heterogenie der rezessiven Taubstummheit. Z. menschl. Vererb.- u. Konstit.-Lehre 29, 825 (1950).Google Scholar
  282. — Erbliche — plasmatische und thrombocytogene — Gerinnungsfaktoren. Verh. dtsch. Ges. inn. Med. 64, 213 (1958).Google Scholar
  283. — Neue Untersuchungen zur Thrombopathie (v. Willebrand-Jürgens) auf den Ålands-Inseln (Finnland). Acta Genet. med. (Roma) Sompl. II, 38 (1959).Google Scholar
  284. Lehnartz, E.: Einführung in die chemische Physiologie. 10. Aufl. (1952); 11. Aufl. (1959). Berlin-Göttingen-Heidelberg: Springer.Google Scholar
  285. Lenz, F.: Die Übersterblichkeit der Knaben im Lichte der Erblichkeitslehre. Arch. Hyg. 93, 126–150 (1923).Google Scholar
  286. — Menschliche Auslese und Rassenhygiene (Eugenik). München: J. F. Lehmanns Verlag 1932.Google Scholar
  287. Lenz, W.: Medizinische Genetik. Stuttgart: Thieme-Verlag 1961.Google Scholar
  288. Linnet-Jepsen, P., F. Galatius-Jensen and M. Hauge: On the inheritance of the Gm serum group. Acta genet. (Basel) 8, 164–196 (1958).Google Scholar
  289. Lippman, R. W., T. L. Perry and S. W. Wright: The biochemical basis of mental dysfunction. Metabolism 7, 274 (1958).PubMedGoogle Scholar
  290. Lohr, G. W., u. H. D. Waller: Hämolytische Erythrocytopathie durch Fehlen von Glucose-6-Phosphat-Dehydrogenase in roten Blutzellen als dominant vererbliche Krankheit. Klin. Wschr. 1958, 865.Google Scholar
  291. Low, N. L.: Electroencephalography on children. Amer. J. Dis. Childr. 65, 899–904 (1943).Google Scholar
  292. — J. F. Bosma and M. D. Armstrong: Studies on phenylketonuria. VI. EEG studies in phenylketonuria. Arch. Neurol. Psychiatr. (Chicago) 77, 359 (1957).Google Scholar
  293. Lundström, R.: Changes in foetuses damaged by rubellas. Proc. IX Int. Congr. Paediatr. Montreal (1959).Google Scholar
  294. Lutman, F. C., and J. V. Neel: Inheritance of arachnodactyly, ectopia lentis and other congenital anomalies (Marfan’s syndrome) in the E. family. Arch. Ophthal. (Chicago) 41, 276 (1949).Google Scholar
  295. Luxenburger, H.: Zwillingsforschung als Methode der Erbforschung des Menschen. Handbuch der Erbbiologie des Menschen 2, 213–248 (1940).Google Scholar
  296. Mäkelä, O., A. W. Eriksson and R. Lehtovaara: On the inheritance of the haptoglobin serum groups. Acta genet. (Basel) 9, 149–166 (1959).Google Scholar
  297. McCain, K. F., A. T. Chernoff and J. B. Graham: Establishment of the inheritance of Hageman defect as an autosomal recessive trait. Hemophilia and other hemorrhagic states. Ed. Brinkhous S. 179 (1959).Google Scholar
  298. MacFarlane, R. G.: Hemophilia, Christmas disease, and matters of terminology. Blood 9, 258 (1954).PubMedGoogle Scholar
  299. —, and M. Simpkiss: The investigation of a large family with von Willebrand’s disease. Arch. Dis. Childh. 29, 483 (1954).Google Scholar
  300. Margolis, J.: The role of Hageman factor in plasma surface reactions. Hemophilia and other hemorrhagic states. Ed. Brinkhous S. 208 (1959).Google Scholar
  301. McKusick, V. A.: Vererbbare Störungen des Bindegewebes. Stuttgart: Thieme-Verlag 1959.Google Scholar
  302. Medes, G.: A new error of tyrosine metabolism: Tyrosinosis, Biochem. J. 26, 917 (1932).PubMedGoogle Scholar
  303. Mitoma, C., R. M. Auld and S. Udenfriend: On the nature of enzymatic defect in phenyl-pyruvic oligophrenia. Proc. Soc. exp. Biol. (N. Y.) 94, 634 (1957).Google Scholar
  304. Moor-Jankowski, J. K., G. Truog u. H. J. Huser: Der Bluterstamm von Tenna und seine Nachkommen. Acta genet. (Basel) 7, 185 (1957),Google Scholar
  305. Morton, N. E.: The detection and estimation of linkage between the genes for elliptocytosis and the Rh blood type. Amer. J. hum. Genet. 8, 80–96 (1956).PubMedGoogle Scholar
  306. Motulsky, A. G.: Drug reactions, enzymes, and biochemical genetics. J. amer. med. Ass, 165, 835–838 (1957).CrossRefGoogle Scholar
  307. — E. Giblett, D. Colman, B. W. Gabrio and C. A. Finch: Life span, glucose metabolism, and osmotic fragility of erythrocytes in hereditary spherocytosis. J. clin. Invest. 34, 911 (1955).Google Scholar
  308. MÜhlmann, W. E.: Ein ungewöhnlicher Stammbaum über Taubstummheit. Arch. Rass. u. ges. Biol. 22, 181–183 (1930).Google Scholar
  309. Murakami, U.: Clinico-genetic study of hereditary disorders of the nervous system, especially on problems of phenogenesis. Folia psychiatr. neurol. jap. Suppl. I (1957).Google Scholar
  310. Murayama, M., and V. M, Ingram: Comparison of normal adult human hemoglobin with hemoglobin I by “fingerprinting”. Nature (Lond.) 183, 1798–1799 (1959),CrossRefGoogle Scholar
  311. Nachtsheim, H.: Krampfbereitsehaft und Genotypus. I. Die Epilepsie der weißen Wiener Kaninchen. Z. menschl. Vererb.- u. Konstit.-Lehre 22, 791–810 (1939).Google Scholar
  312. — Krampfbereitschaft und Genotypus. II. Weitere Untersuchungen zur Epilepsie der Weißen Wiener Kaninchen. Z. menschl. Vererb.- u. Konstit.-Lehre 25, 229–244 (1941).Google Scholar
  313. — Krampfbereitschaft und Genotypus. III. Das Verhalten epileptischer und nicht epileptischer Kaninchen im Cardiazolkrampf. Z. menschl. Vererb.- u. Konstit.-Lehre 26, 22–74 (1942).Google Scholar
  314. — Ergebnisse und Probleme der vergleichenden und experimentellen Erbpathologie. Jena. Z. Med. Naturw. 76, 81–108 (1943).Google Scholar
  315. — Mutation und Phänokopie bei Säugetier und Mensch. Ihre theoretische und praktische Bedeutung für Genetik und Eugenik. Experientia (Basel) 13, 57–68 (1957).Google Scholar
  316. — Problems of comparative genetics in mammals. Volume I: Papers. X Intern. Congr. Genet. Montreal (1958).Google Scholar
  317. — Die Bedeutung genetischer Faktoren für die Entstehung von Mißbildungen und Mißbildungskrankheiten. Verh. dtsch. Ges. inn. Med. 64, 33–50 (1958).Google Scholar
  318. Nakamura, H. M., K. Kaziro and G. Kikuchi: On “anenzymia catalasea,” a new type of constitutional abnormality. Proc. Jap. Acad. 28, 59–64 (1952).Google Scholar
  319. Na-Nakorn, S., and V. Minnich: Studies on hemoglobin E. III. Homozygous hemoglobin E and variants of thalassemia and hemoglobin E: a family study. Blood 12, 529–538 (1957).PubMedGoogle Scholar
  320. Neale, F. C., and M. Fischer-Williams: Copper metabolism in normal adults and in clinically normal relatives of patients with Wilson’s disease. J. clin. Path. 11, 441 (1958).PubMedCrossRefGoogle Scholar
  321. Neel, J. V.: The inheritance of sickle-cell anemia. Science 110, 64 (1949).PubMedCrossRefGoogle Scholar
  322. — The inheritance of the sickling phenomenon, with particular reference to sickle cell disease. Blood 6, 389–412 (1951).Google Scholar
  323. — The detection of the genetic carriers of inherited disease. In: Sorsby, A.: Clinical Genetics, p. 27. St. Louis: C. V. Mosby 1953.Google Scholar
  324. — Aspects of the genetic control of the structure of the hemoglobin molecule. Proc. X. Int. Cong. Genetics I, 108–119 (1958).Google Scholar
  325. — A study of major congenital defects in Japanese infants. Amer. J. hum. Genet. 10, 398 bis 445 (1958).Google Scholar
  326. — H. A. Itano and J. S. Lawrence: Two cases of sickle disease presumably due to the combination of the genes responsible for thalassemia and sickle cell hemoglobin. Blood 8, 434–443 (1953).Google Scholar
  327. Nennstiel, H. J., u. Th. Becht: Über das erbliche Auftreten einer Albuminspaltung im Elektrophoresediagramm. Klin. Wschr. 35, 689 (1957).PubMedCrossRefGoogle Scholar
  328. Nilsson, I. M., M. Blombäck and I. v. Francken: On an inherited autosomal hemorrhagic diathesis with antihemophilie globulin (AHG) deficiency and prolonged bleeding time. Acta med. scand. 159, 35 (1957).PubMedCrossRefGoogle Scholar
  329. — — A. Thilén and I. v. Francken: Carriers of hemophilia A. A laboratory study. Acta med. scand. 165, 357 (1959).Google Scholar
  330. Nishimura, E. T. et al.: Carrier state in human acatalasemia. Science 130, 333 (1959).PubMedCrossRefGoogle Scholar
  331. Nyman, M.: Haptoglobin in pernicious anemia. Scand. J. clin. Lab. Invest. 9, 168 (1957).PubMedCrossRefGoogle Scholar
  332. — Über Haptoglobinbestimmung im Serum. Normalkonzentration und Verhältnis zu Smithies’ Serumgruppen. Clin. ehim. Acta 3, 111 (1958).Google Scholar
  333. Ober, R., R. Horton and R. Freemster: Amer. J. Publ. Health 37, 1328 (1947).CrossRefGoogle Scholar
  334. Ollier, L. X. E. L.: Traité expérimental et clinique de la régénération des os et production artificielle du tissu osseux. Paris: Masson & Cie 1867.Google Scholar
  335. Ott, H.: Das Blutserum bei Analbuminämie. Weitere Untersuchungen über die Serumfraktionen, das Farbstoffbindungsvermögen und den kolloidosmotischen Druck. Z. ges. exp. Med. 128, 340–360 (1957).PubMedCrossRefGoogle Scholar
  336. Owren, P. A.: Parahemophilia: Hemorrhagic diathesis due to absence of a previously unknown clotting factor. Lancet 1947 I, 446.Google Scholar
  337. Pauling, L., H. A. Itano, S. J. Singer and I. C. Wells: Sickle cell anemia, a molecular disease. Science 110, 543 (1949).PubMedCrossRefGoogle Scholar
  338. Pearson, K., E. Nettleship and C. H. Usher: A monograph on albinism in man. Drapers Comp. res. mem. Biometrics series IX, Teil I, II u. IV. London 1911–1913.Google Scholar
  339. Penrose, L. S.: The problem of anticipation in pedigrees of dystrophia myotonica. Ann. Eugen. (Lond.) 14, 125–132 (1947–49).CrossRefGoogle Scholar
  340. — The biology of mental defect. London: Sidgwick and Jackson Ltd. 1949.Google Scholar
  341. — Measurement of pleiotropic effects in phenylketonuria. Ann. Eugen. (Lond.) 16, 134–141 (1951/52).Google Scholar
  342. Perutz, M. F., A. M. Liquori and F. Eirich: X-ray and solubility studies of the haemoglobin of sickle-cell anaemia patients. Nature (Lond.) 167, 929 (1951).CrossRefGoogle Scholar
  343. Pfändler, U.: La manifestation hétérozygote et homozygote de certains troubles du métabolisme (Porphyrie chronique, cystinose, maladie de Niemann-Pick). Acta genet. (Basel) 7, 184–187 (1957).Google Scholar
  344. — L’importance des facteurs génétiques dans les troubles métaboliques de l’enfant. Mod. Probl. Pädiat. 3, 542–592 (1957).Google Scholar
  345. — La contribution de la biochimie au développement de la phénogénétique humaine. Rev. int. Vitaminol. 28, 110–118 (1957).Google Scholar
  346. Pieter, H.: Une famille d’alcaptonuriques. Presse méd. 33, 1310 (1925).Google Scholar
  347. Pipkin, A. C., and S. B. Pipkin: Albinism in negroes. J. Hered. 33, 419–427 (1942).Google Scholar
  348. Plate, L.: Vererbungs- und Deszendenztheorie. Festschrift für R. Hertwig II, 537 (1910).Google Scholar
  349. Polani, P. E., and M. Campbell: An aetiological study of congenital heart disease. Ann. hum. Genet. 19, 209–230 (1954/55).CrossRefGoogle Scholar
  350. Polonovski, M.: Haptoglobine et globuline du plasma sanguin. Rev. soc. biol. 289, 138 (1944).Google Scholar
  351. Pontfcorvo, G.: The genetics of aspergillus nidulans. Advanc. Genet. 5, 141–238 (1953).CrossRefGoogle Scholar
  352. Prankerd, T. A. J., K. I. Altman and L. E. Young: Abnormalities of carbohydrate metabolism of red cells in hereditary spherocytosis. J. clin. Invest. 34, 911 (1955).CrossRefGoogle Scholar
  353. Querido, A., J. B. Stanbury, A. A. H. Kassenaar and J. W. A. Meijer: The metabolism of iodotyrosines: III. Di-iodotyrosine dehalogenating activity of human thyroid tissue. J. Clin. Endocrinol. 16, 1096 (1956).CrossRefGoogle Scholar
  354. Quick, A. J., A. V. Pisciotta and C. V. Hussey: Congenital hypoprothrombinemic states. Arch. int. Med. 95, 2–14 (1955).CrossRefGoogle Scholar
  355. Rabe, F. u. E. Salomon: Dtsch. Arch. klin. Med. 132, 240 (1920).Google Scholar
  356. Race, R. R.: On the inheritance and linkage relations of acholuric jaundice. Ann. Eugen. (Lond.) 11, 365–384 (1942).CrossRefGoogle Scholar
  357. —, and Ruth Sanger: Blood groups in man. Oxford: Blackwell Scientific Publication 1958.Google Scholar
  358. Ramot, B., B. Angelopoulos and K. Singer: Variable manifestations of plasma thromboplastin component deficiency. J. Lab. clin. Med. 46, 80–88 (1955).PubMedGoogle Scholar
  359. Ratnoff, O. D., and J. E. Colopy: A familial hemorrhagic trait associated with a deficiency of a clot promoting fraction of plasma. J. clin. Invest. 34, 602 (1955).PubMedCrossRefGoogle Scholar
  360. Rayner, S.: Juvenile amaurotic idioty. Diagnosis of the heterozygotes. Acta genet. (Basel) 3, 1–5 (1952).Google Scholar
  361. Rein, H.: Physiologie des Menschen. Berlin: Springer 1943.Google Scholar
  362. Renwick, J. H., S. Lawler and V. A. Cowie: Phenylketonuria: A genetical linkage study using phenylalanine tolerance tests. Amer. J. hum. Genet. 12, 287–322 (1960).PubMedGoogle Scholar
  363. Rhinesmith, H., W. Schroeder and N. Martin: The N-terminal sequence of the β-chains of normal adult human hemoglobin. J. Amer. chem. Soc. 80, 3358 (1958).CrossRefGoogle Scholar
  364. Robson, E. B., and G. A. Rose: The effect of intravenous lysine on the renal clearances of cystine, arginine, and ornithine in normal subjects, in patients with cystinuria, in Fanconi syndrome, and in their relatives. Clin. Sci. 16, 75 (1957).PubMedGoogle Scholar
  365. Roche, J., O. Michel, R. Michel, A. Gorbman et S. Lissitzky: Sur la déshalogénation enzymatique des iodotyrosines par le corps thyroide et sur son rôle physiologique. II. Biochim. biophys. Acta 12, 570 (1953).PubMedCrossRefGoogle Scholar
  366. Rosenthal, R. L.: Hemophilia and hemophilia-like diseases caused by deficiencies in plasma thromboplastin factors. Amer. J. Med. 17, 57–69 (1954).PubMedCrossRefGoogle Scholar
  367. — O. H. Dreskin and N. Rosenthal: New hemophilia-like-disease caused by deficiency of a third thromboplastin factor. Proc. Soc. exp. Biol. (N. Y.) 82, 171 (1953).Google Scholar
  368. — — — Plasma thromboplastin antecedent (PTA) deficiency: Clinical, coagulation, therapeutic and hereditary aspects of a new hemophilia-like disease. Blood 10, 120–131 (1955).Google Scholar
  369. Sanders, J.: Die Heredität des Albinismus. Genetica 20, 97–120 (1938).CrossRefGoogle Scholar
  370. Schade, H.: Vaterschaftsbegutachtung. Stuttgart: E. Schweizerbartsehe Verlagsbuchhandlung (Erwin Nägele) 1954.Google Scholar
  371. Schirmer, W.: Über den Einfluß geschlechtsgebundener Erbanlagen auf die Säuglingssterblichkeit. Arch. Rassenbiol. 21, 353–393 (1929).Google Scholar
  372. Schmid, R., J. Axelrod, L. Hammaker and I. M. Rosenthal: Congenital defects in bilirubin metabolism. J. clin. Invest. 36, 927 (1957).Google Scholar
  373. Schull, W. J.: Empirical risks in consanguineous marriages: Sex ratio, malformations and viability. Amer. J. hum. Genet. 10, 294–343 (1958).PubMedGoogle Scholar
  374. Schulman, I., C. E. Smith, M. Erlandson, E. Fort and R. E. Lee: Vascular hemophilia. A familial hemorrhagic disease in males and females characterized by combined antihemophilic globulin deficiency and vascular abnormality. Pediatrics 18, 347 (1956).PubMedGoogle Scholar
  375. Schultze, K. W.: Zur Bedeutung der Abortiveier und über ihre zellkernmorphologische Geschlechtsbestimmung. Dtsch. med. Wschr. 83, 1818–1823 (1958).PubMedCrossRefGoogle Scholar
  376. Schwartz, H. C., T. H. Spaet, W. W. Zuelzer, J. V. Neel, A. R. Robinson and S. F. Kaufman: Combinations of hemoglobin G, hemoglobin S and thalassemia occurring in one family. Blood 12, 238 (1957).PubMedGoogle Scholar
  377. Schwartzkopf, J.: Beitrag zum Problem der „Blutgerinnung bei Schnecken“. Z. Naturforsch. 9b, 155–158 (1954).Google Scholar
  378. Schwarz U. Mitarb.: zit.: Kalckar, H. M.: „Biochemical mutations in man and microorganism.“ Science 125, 105–108 (1957).CrossRefGoogle Scholar
  379. Scott, E. M., and D. D. Hoskins: Hereditary methemoglobinemia in Alaskan Eskimos and Indians. Blood 13, 795–802 (1958).PubMedGoogle Scholar
  380. Selander, P.: Mißbildungen infolge von Virusinfektionen während der Schwangerschaft. Berl. med. Z. 11/12, 249–252 (1950).Google Scholar
  381. Shwachman, H., H. Leubner and P. Catzel: Mucoviscidosis. Advanc. Ped. 7, 249 (1955).Google Scholar
  382. Silvestroni, E., and I. Bianco: Microcytemia, constitutional microcytic anemia and Cooley’s anemia. Amer. J. hum. Genet. 1, 83 (1949).PubMedGoogle Scholar
  383. — — Genetic aspects of sickle cell anemia and micro-drepanocytic disease. Blood 7, 429 (1952).Google Scholar
  384. Simpson, G. G.: Zeitmaße und Ablaufformen der Evolution. Berlin: Musterschmidt-Wiss. Verlag 1951.Google Scholar
  385. Singer, K., A. P. Kraus, L. Singer, H. M. Rubinstein and S. R. Goldberg: Studies on abnormal hemoglobins. X. A new syndrome: hemoglobin C-thalassemia disease. Blood 9, 1032–1046 (1954).PubMedGoogle Scholar
  386. Sinnott-Dunn-Dobzhansky: Principles of Genetics. 4. Aufl. New. York 1950.Google Scholar
  387. Sjølin, K. E., and A. Videbaek: Christmas factor deficiency and decreased capillary resistance in a female with haemorrhagic diathesis. Dan. med. Bull., p. 85 (1956).Google Scholar
  388. Smith, C. H., T. R. C. Sisson, W. H. Floyd and S. Siegal: Serum iron and iron-binding capacity of the serum in children with severe Mediterranean (Cooley’s) anemia. Pediatrics 5, 799 (1950).PubMedGoogle Scholar
  389. Smithies, O.: Grouped variations in the occurrence of new protein components in normal human serum. Nature (Lond.) 175, 307–308 (1955a).CrossRefGoogle Scholar
  390. — Zone electrophoresis in starch gels: Group variations in the serum proteins of normal human adults. Biochem. J. 61, 629–641 (1955b).Google Scholar
  391. — Variations in human serum β-globulins. Nature (Lond.) 180, 1482–1483 (1957).Google Scholar
  392. — Third allele at the serum β-globulin locus in humans. Nature (Lond.) 181, 1203–1204 (1958).Google Scholar
  393. —, and O. Hiller: The genetic control of transferrins in humans. Biochem. J. 72, 121–126 (1959).Google Scholar
  394. —, and N. F. Walker: Genetic control of some serum proteins in normal humans. Nature (Lond.) 176, 1265–1266 (1955).Google Scholar
  395. — — Notation for serum protein groups and the genes controlling their inheritance. Nature (Lond.) 178, 694 (1956).Google Scholar
  396. Smyth, C. J., C. W. Cotterman and R. H. Freyberg: The genetics of gout and hyperuricemia — an analysis of 19 families. J. clin. Invest. 27, 749–759 (1948).CrossRefGoogle Scholar
  397. Snyder, L. H.: The principles of heredity. 4. Bull. Boston (1951).Google Scholar
  398. Sobel, E. H., L. C. Clark, R. Fox and M. Robinow: Rickets, deficiency of “alkaline” phosphatase activity, and premature loss of teeth in childhood. Pediatrics 11, 309 (1953).PubMedGoogle Scholar
  399. Sonnet, J.: Les glycoprotéines sériques à l’état normal et pathologique. Bruxelles: Ed. Arscia 1956.Google Scholar
  400. Soulier, J. P., et M. J. Larrieu: Déficit en facteur antihémophilique B avec allongement du temps de saignement. Sang 28, 138 (1957).PubMedGoogle Scholar
  401. Spaet, T. H.: Identification of abnormal hemoglobins by means of paper electrophoresis. J. Lab. clin. Med. 41, 161 (1953).PubMedGoogle Scholar
  402. Spiegelman, S.: Nucleic acids and the synthesis of proteins. The Chemical Basis of Heredity. 232–267. McElroy and Glass Ed. Baltimore 1957.Google Scholar
  403. —, and R. Dunn: Interactions between enzyme-forming systems during adaption. J. gen. Physiol. 31, 153–173 (1947).Google Scholar
  404. Stanbury, J. B.: Cretinism with goiter: A case report. J. clin. Endocr. 11, 740 (1951).PubMedCrossRefGoogle Scholar
  405. —, and A. N. Hedie: A study of a family of goitrous cretins. J. clin. Endocr. 10, 1471 (1950).Google Scholar
  406. — J. W. A. Meijer and A. A. H. Kassenaar: The metabolism of iodo-tyrosines: II. The metabolism of mono- and di-iodotyrosines in certain patients with familial goiter. J. clin. Endocr. 16, 848 (1956).Google Scholar
  407. — K. Ohela and R. Pitt-Rivers: The metabolism of iodine in 2 goitrous cretins compared with that in 2 patients receiving methimazole. J. clin. Endocr. 15, 54 (1955).Google Scholar
  408. Starck, D.: Embryologie. Stuttgart: Thieme-Verlag 1955.Google Scholar
  409. Stauffer, E.: Rev. suisse Zool. 52, 231 (1945).Google Scholar
  410. Stecher, R. M., A. H. Hersh and W. M. Solomon: The heredity of gout and its relationship to familial hyperuricemia. Ann. int. Med. 31, 595–614 (1949).PubMedGoogle Scholar
  411. Stern, C.: Radiation and population genetics. „Radiation Biology and Medicine.“ Ed.: W. C. Claus. Cambridge/Mass.: Addison-Wesley Publ. 1958.Google Scholar
  412. —, and E. Novitski: The viability of individuals heterozygous for recessive lethals. Science 108, 538 (1948).Google Scholar
  413. Strauss, B. S.: An outline of chemical genetics. Philadelphia and London: W. B. Saunders Company 1960.Google Scholar
  414. Suskind, S. R.: Gene function and enzyme formation. In: „The chemical basis of heredity.“ 123–133. Eds. McElroy and Glass. Baltimore: Johns Hopkins Press 1957.Google Scholar
  415. —, and L. I. Kurek: On an mechanism of suppressor gene regulation of tryptophane synthetase activity in Neurospora crassa. Proc. nat. Acad. Sci. (Wash.) 45, 193–196 (1959).Google Scholar
  416. Sutton, H. E., J. V. Neel, F. B. Livingstone, G. Binson, P. Kunstadter and L. E. Trombley: The frequencies of haptoglobin types in five populations. Ann. Eugen. (Lond.) 23, 175–183 (1959).CrossRefGoogle Scholar
  417. Swan, C., A. Tostein and G. BarhamBlack: Med. J. Aust. 33, 899 (1946).Google Scholar
  418. Swanson, C. P.: Cytology and Cytogenetics. Englewood Cliffs: Prentics Hall Inc. 1957.Google Scholar
  419. Szeinberg, A., and A. Chari-Bitron: Blood glutathione concentration in cases with past history of hemolytic anemia due to Vicia faba or sulphonamides. Acta haemat. (Basel) 18, 229 (1957).CrossRefGoogle Scholar
  420. — — and A. Adam: Selective occurrence of glutathione instability in red blood corpuscules of the various Jewish tribes. Blood 13, 1043–1053 (1958).Google Scholar
  421. — — Nina Hirshorn and Eva Bodonyi: Studies on erythrocytes in cases with past history of favism and drug induced hemolytic anemia. Blood 12, 603 (1957).Google Scholar
  422. Takahara, S.: Progressive oral gangrene probably due to laek of catalase in the blood (aka-talasemia) report of nine cases. Lancet 1952 II, 1101–1104.Google Scholar
  423. Taliaferro, W. H., and J. G. Huck: The inheritance of sickle cell anemia in man. Genetics 8, 594 (1923).PubMedGoogle Scholar
  424. Taussig, H. B.: Congenital malformations of the heart. The Commonwealth Fund., New York (1947).Google Scholar
  425. Telfer, T. P., K. W. Denson and D. R. Wright: A “new” coagulation defect. Brit. J. Haemat. 2, 308 (1956).PubMedCrossRefGoogle Scholar
  426. Tencer, R.: J. Embryol. exp. Morph. 6, 117 (1958).PubMedGoogle Scholar
  427. Timofeeff-Ressovsky, N. W.: Allgemeine Erscheinungen der Genmanifestierung. Handbuch der Erbbiologie des Menschen Bd. 1. Berlin: Springer 1940.Google Scholar
  428. Töndury, G.: Entwicklungsstörungen durch chemische Faktoren und Viren. Naturwissenschaften 42, 312 (1955).CrossRefGoogle Scholar
  429. — Entwicklungsmechanik des Herzens. Verh. dtsch. Ges. Kreisl.-Forsch. 23, 177 (1957).Google Scholar
  430. Trevor-Roper, P. D.: Marriage of two complet albinos with normally pigmented offspring. Brit. J. Ophthal. 36, 107 (1952).PubMedCrossRefGoogle Scholar
  431. Udenfriend, S., and S. P. Bessman: The hydroxylation of phenylalanine and antipyrine in phenylpyruvie oligophrenia. J. biol. Chem. 203, 961 (1953).PubMedGoogle Scholar
  432. —, and J. R. Cooper: The enzymatic conversion of phenylalanine to tyrosine. J. biol. Chem. 194, 503 (1952).Google Scholar
  433. Valentine, W. N., and J. V. Neel: Hematologic and genetic study of the transmission of thalassemia. Arch. inn. Med. 74, 185 (1944).CrossRefGoogle Scholar
  434. — — A statistical study of the hematologic variables in subjects with thalassemia minor. Amer. J. med. Sci. 215, 456–460 (1948).Google Scholar
  435. Verschuer, O. v.: Erbpathologie. 2. Aufl. Dresden u. Leipzig: Steinkopf 1937.Google Scholar
  436. — Genetik des Menschen. München-Berlin: Urban & Schwarzenberg 1959.Google Scholar
  437. Vogel, F.: Über Genetik und Mutationsrate des Retinoblastoms (Glioma retinae). Z. menschl. Vererb.- u. Konstit.-Lehre 32, 308–336 (1954).Google Scholar
  438. — Moderne Anschauungen über Aufbau und Wirkung der Gene. Dtsch. med. Wschr. 84, 1825 (1959).Google Scholar
  439. — Moderne Probleme der Humangenetik. Ergebn. inn. Med. Kinderheilk. 12, 52–125 (1959).Google Scholar
  440. —, u. H. Dorn: Erbliche Hautkrankheiten. In: Kurzes Handbuch der Humangenetik. Ed. P. E. Becker. Stuttgart: Thieme-Verlag (im Druck).Google Scholar
  441. Waardenburg, P. J.: Das menschliche Auge und seine Erbanlagen. Bibliogr. genet. 7, (1932).Google Scholar
  442. — Herkenbaarheid von latente overdragers van Albinismus universalis en Albinismus oculi. Ned. T. Geneesk. 91, 1863 (1947).Google Scholar
  443. Waddington, C. H.: Principles of Embryology. New York: Macmillan & Company 1956.CrossRefGoogle Scholar
  444. Wagner, R. P., and H. K. Mitchell: Genetics and metabolism. New York-London 1955.Google Scholar
  445. Waldenström, J.: Genetische Kontrolle der Eiweißsynthese. „Chemie der Genetik“. Berlin-Göttingen-Heidelberg: Springer 1959.Google Scholar
  446. Walker, N. F., and C. P. Kramer: Inheritance of nephrogenic diabetes insipidus. Amer. J. hum. Genet. 6, 354–358 (1954).PubMedGoogle Scholar
  447. Waller, H. D.: Pentosephosphat-Cyclus und hämolytische Erythrozytopathie (Favismus). Blut 5, 1–6 (1959).PubMedCrossRefGoogle Scholar
  448. Wendt, G. G.: Der individuelle Musterwert der Fingerleisten und seine Vererbung. Acta med. Genet. (Roma) 4, 330 (1955).Google Scholar
  449. — Der Fingerabdruck als Gegenstand wissenschaftlicher Untersuchungen. Ther. d. Monats 9, 182–198 (1959).Google Scholar
  450. — H. J. Landzettel u. I. Unterreiner: Das Erkrankungsalter bei der Huntingtonschen Chorea. Acta genet. (Basel) 9, 18–32 (1959).Google Scholar
  451. West, J. R., and J. G. Kramer: Nephrogenic diabetes insipidus. Pediatrics 15, 424–432 (1955).PubMedGoogle Scholar
  452. Weve, H.: Über Arachnodaktylie (Dystrophia mesodermalis congenita, typus Marfanis). Arch. Augenheilk. 104, 1 (1931).Google Scholar
  453. White, S. G.,P. M. Aggeler and M. B. Glendening: Plasma thromboplastin component, (PTC). A hitherto unrecognized blood coagulation factor. Case report of PTC-deficiency. Blood 8, 101 (1953).PubMedGoogle Scholar
  454. Wilkins, L.: The diagnosis of the adrenogenital syndrome and its treatment with cortisone. J. Pediat. 41, 860 (1952).PubMedCrossRefGoogle Scholar
  455. — J. F. Crigler, S. H. Silverman, L. I. Gardner and C. J. Migeon: Further studies on the treatment of congenital adrenal hyperplasia with cortisone: III. The control of hypertension with cortisone, with a discussion of variations in the type of congenital adrenal hyperplasia and report of a ease with probable defect of carbohydrate-regulating hormones. J. Clin. Endocrin. 12, 1015 (1952).Google Scholar
  456. Williams, R. J.: Biochemical individuality. New York: John Wiley & Sons 1956.Google Scholar
  457. Winzler, R. J.: In methods of biochemical analysis. Ed.: D. Glick, pp. 279–311, vol. 2. New York: Interscience Publishers 1955.CrossRefGoogle Scholar
  458. Wood, J. A., A. P. Fishman, K. Reemtsma, H. G. Barker and P. A. diSant’Agnese: A comparison of sweat chlorides and intestinal fat absorption in chronic obstructive pulmonary emphysema and fibrocystic disease of the pancreas. New Engl. J. Med. 260, 951 (1959).PubMedCrossRefGoogle Scholar
  459. Woolf, B., R. Griffith and A. Moncrieff: Treatment of phenylketonuria with a diet low in Phenylalanin. Brit. med. J. 1955 I, 57–64.Google Scholar
  460. Wuhrmann, F.: Albumindoppelzacken als vererbbare Bluteiweißanomalie. Schweiz. med. Wschr. 6, 150–152 (1959).Google Scholar
  461. —, u. Ch. Wunderly: Die Bluteiweißkörper des Menschen. 3. Aufl. Basel: Schwabe 1957.Google Scholar
  462. Young, L. E., M. J. Izzo and R. F. Platzer: Hereditary spherocytosis. I. Clinical, hematologic. and genetic features in 28 cases with particular reference to osmotic and mechanical fragility of incubated erythrocytes. Blood 6, 1073–1098 (1951).PubMedGoogle Scholar
  463. Zinkham, W. H. and B. Childs: Effect of vitamin K and naphtalene metabolites on glutathione metabolism of erythrocytes from normal newborn and patients with naphtalene hemolytic anemia. J. clin. Invest. 36, 938 (1957).Google Scholar
  464. Zuelzer, W. E., J. V. Neel and A. R. Robinson: Abnormal hemoglobins. Progr. in Hematology. 91–137. Grune & Stratton 1956.Google Scholar

Copyright information

© Springer-Verlag OHG Berlin · Göttingen · Heidelberg 1961

Authors and Affiliations

  • Friedrich Vogel
    • 1
  1. 1.Freien Universität BerlinDeutschland

Personalised recommendations