Advertisement

Laser pp 360-422 | Cite as

Der Halbleiterlaser

  • G. H. Winstel

Zusammenfassung

Wie in Gas- und optisch gepumpten Festkörperlasern kann auch in bestimmten Halbleitern eine Lichtemission induziert und bei Rückkopplung der entstehenden Strahlung ein Laser realisiert werden. Die wesentlichen Unterschiede, die eine gesonderte Behandlung des Halbleiterlasers erfordern, beruhen auf der Art der Elektronenzustände. Während diese bei den anderen Lasern in der Energieskala ein Spektrum schmaler Linien darstellen, sind beim Halbleiter breite Energiebänder vorhanden. Dieser Sachverhalt führt vor allem zu einer relativ großen Breite der spontanen Emissionslinie und damit nach der Schawlow-Townes-Bedingung (vgl. Gl. 7.3/5) zu einer sehr hohen Schwellenleistung für eine optische Anregung.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu den Tabellen 7.1a-c

  1. [T 1]
    Hall, R. N., et al.: Coherent light emission from GaAs junctions. Phys. Rev. Letters 9 (1962) 366–368.ADSGoogle Scholar
  2. [T 2]
    Nathan, M. I., et al.: Stimulated emission of radiation from GaAs p-n junctions. Appl. Phys. Letters 1 (1962) 62–64.ADSGoogle Scholar
  3. [T 3]
    Quist, T. M., et al.: Semiconductor Maser of GaAs. Appl. Phys. Letters 1 (1962) 91–92.ADSGoogle Scholar
  4. [T 4]
    Burns, G., F. H. Dill, JR., u. M. I. Nathan: The effect of temperature on the properties of GaAs laser. Proc. IEEE 51 (1963) 947–948.Google Scholar
  5. [T 5]
    Engeler, W. E., u. M. Garfinkel: Temperature effects in coherent GaAs diodes. J. Appl. Phys. 34 (1963) 2746–2750.Google Scholar
  6. [T 6]
    Lamorte, M. F., T. Gondau. H. JunkerPhenomena influencing the temperature behavior of stimulated emission in GaAs p-n junctions. IEEE J. Q. E. QE-2 (1966) 9–15.Google Scholar
  7. Effectof higher absorption in non-lasing GaAs diodes at 300.K. LEEE J. Q. E. QE-2 (1966) 74–76.Google Scholar
  8. [T 7]
    Engeler, W., U. M. Garfinkel. Thermal characteristics of GaAs laser junctions under high power pulsed conditions. Solid State Electron. 8 (1965) 585–604.ADSGoogle Scholar
  9. [T 8]
    Keyes, R. W.: Thermal problems of the injection laser. IBM J. Res. and Dev. 9 (1965) 303–314.Google Scholar
  10. [T 9]
    Pilkuhn, M. H., u. H. S. Rupprecht: Junction heating of GaAs injection lasers during continuous operation. IBM J. Res. and Dev. 9 (1965) 400–404.Google Scholar
  11. [T 10]
    Lamorte, M. F.: Continuous operation is near for uncooled diode lasers. Electronics 39, January 10 (1966) 95–99.Google Scholar
  12. [T 11]
    Ryan, F. M., u. R. C. Miller. The effect of uniaxial strain on the threshold current and output of GaAs lasers. Appl. Phys. Letters 3 (1963) 162–163.ADSGoogle Scholar
  13. Miller, R C, F. M. RyanU. P. R. Emtage: Uniaxial strain effects in gallium arsenide laser diodes, in: Radiative Recombination in Semiconductors, Paris: Dunod 1964, 209–215.Google Scholar
  14. [T 12]
    Galeener, F. L., et al.: Evidence for the role of donor states in GaAs electroluminescence. Phys. Rev. Letters 10 (1963) 472–474.ADSGoogle Scholar
  15. [T 13] Holonyax, N., JR., et al.: The direct-indirect transition in Ga (As1_xPx)
    Junctions. Appl. Phys. Letters 3 (1963) 47–49Google Scholar
  16. [T 14]
    Pilkuhn, M., u. H. Rupprecht: Electroluminescence and lasing action in GaAsxP1_x. J. Appl. Phys. 36 (1965) 684–688.ADSGoogle Scholar
  17. [T 15] Holonyak, N., Jr., u. S. F. Bevacqua: Coherent (visible)
    light emission from Ga(As1_x. Px) junctions. Appl. Phys. Letters 1 (1962) 82–83.Google Scholar
  18. [T 16]
    Teitjen, J. J., u. S. A. Ocn: Improved performance of GaAs1_xPx laser diodes. Proc. IEEE 53 (1965) 180–181.Google Scholar
  19. [T 17] Fulton, T. A., D. B. Fitchen u. G. E. FENNER: Pressure effects in Ga(As1_xPx)
    electroluminescent diodes. Appl. Phys. Letters 4 (1964) 9–11.Google Scholar
  20. [T 18]
    Melngailis, I. A., A. J. Strauss u. R. H. Rdiker Semiconductor diode masers of (InxGa1_x)As. Proc. IEEE 51 (1963) 1154–1155.Google Scholar
  21. [T 19]
    Melngailis, I.: Maser action in InAs diodes. Appl. Phys. Letters 2 (1963) 176–178. MELNGAILIS, I., u. R. H. REDIKER: Properties of InAs lasers. J. Appl. Phys. 37 899–911.Google Scholar
  22. [T 20]
    Melngailis, I., u. R. H. Rediker. Magnetically tunable cw InAs maser. Appl. Phys. Letters 2 (1963) 202–204.Google Scholar
  23. [T 21]
    Galeener, F. L., et al.: Magnetic properties of InAs diode electroluminescence. J. Appl. Phys. 36 (1965) 1574–1579.ADSGoogle Scholar
  24. [T 22] Alexander, F. B., et al.: Spontaneous and stimulated infrared emission from In (P, As)
    diodes. Appl. Phys. Letters 4 (1964) 13–15.Google Scholar
  25. [T 23]
    Weiser, K., u. R. S. Levitt: Stimulated light emission from InP. Appl. Phys Letters 2 (1963) 178–179.Google Scholar
  26. Burns, G., et al.: Some properties of InP lasers. Proc. IEEE 51 (1963) 1148 bis 1149.Google Scholar
  27. [T 24]
    Melngailis, I.: Longitudinal injection-plasma laser of InSb. Appl. Phys. Letters 6. (1965) 59–60.ADSGoogle Scholar
  28. [T 25]
    Phelan, R. J., et al.: Infrared InSb laser diode in high magnetic field. Appl. Phys. Letters 3 (1963) 143–145.ADSGoogle Scholar
  29. [T 26]
    Benoitn La Guillaume, C., U. P. Lavallard: Laser effect in InSb. Solid State Comm. 1 (1963) 148–153.Google Scholar
  30. [T 27]
    Bernard, M.: Stimulated emission in InSb. Compt. Rend. 257 (1963) 2984.Google Scholar
  31. [T 28]
    Phelan, R. J., u. R. H. Rediker. Magnetic tuning of CW InSb diode laser. Proc. IEEE 52 (1964) 91–92.Google Scholar
  32. [T 29]
    Basov, N. G.: Semiconductor quantum generator on p-n junction in InAs1_xSbx system. Fiz. Tverdogo Tela 8 (1966) 1060–1063.Google Scholar
  33. [T 30]
    Ciripaux, C., et al.: Emission Stimulée dans l Antimoniure de Gallium, in: Radiative Recombination in Semiconductors, Paris: Dunod, 1964, 217–222.Google Scholar
  34. Chipaux, C., u. R. Eymard: Etude de l’effet „laser“ dans des jonctions d’antimoniure de gallium. Phys. Status Solidi 10 (1965) 165–174.Google Scholar
  35. T 31] Kukova, I. V.: Stimulated emission from GaSb diffused p-n junctions. Fiz. Tverdogo Tela 7 (1965) 3421–3422Google Scholar
  36. Fiz. Tverdogo Tela 8 (1966) 1028–1034.Google Scholar
  37. [T 32]
    Butler, J. F., u. A. R. Calawa: PbS diode laser. J. Electrochem. Soc. 112 (1965) 1056 bis 1057.Google Scholar
  38. [T 33]
    Butler, J. F.: PbSe diode laser. Solid State Commun. 2 (1964) 303–304.ADSGoogle Scholar
  39. Butler, J. F., A. R. Calawau. R. H. Rediker. Properties of the PbSe diode laser. IEEE J. Q. E. QE-1 (1965) 4–7.Google Scholar
  40. [T 34]
    Besson, J. M., et al.: Pressure-tuned PbSe diode laser. Appl. Phys. Letters 7 (1963) 206–208.ADSGoogle Scholar
  41. Pratt, G. W., JR., u. J. E. Ripper: Theory of a pressure-tuned lead salt laser. J. Appl. Phys. 36 (1965) 1525–1527.Google Scholar
  42. [T 35]
    Butler, J. F., et al.: PbTe diode laser. Appl. Phys. Letters 5 (1964) 75–77.ADSGoogle Scholar
  43. [T 36]
    Melnoailis, I., A. J. Straussu. R. H. Rediker. Semiconductor Diode Masers of (In,Gal_x)As. Proc. IEEE 51 (1963) 1154–1155.Google Scholar
  44. [T 37]
    Hurwitz, C. E., u. R. J. Keyes: Electron-beam pumped GaAs laser. Appl. Phys. Letters 5 (1964) 139–141.ADSGoogle Scholar
  45. [T 38]
    Cusano, D. A.: Radiative recombination from GaAs directly excited by electron beams. Solid State Comm 2 (1964) 353–358.ADSGoogle Scholar
  46. [T 39]
    Cusano, D. A., u. J. D. Kingsley: Laser emission from n-type GaAs excited by fast electrons. Appl. Phys. Letters 6 (1965) 91–93.ADSGoogle Scholar
  47. [T 40]
    Cusano, D. A.: Identification of laser transitions in electron-beam pumped GaAs. Appl. Phys. Letters 7 (1965) 151–152.ADSGoogle Scholar
  48. [T 41]
    Klein, C. A.: Laser-action threshold in electron-beam excited GaAs. Appl. Phys. Letters 7 (1965) 200–202.ADSGoogle Scholar
  49. [T 42]
    Coleman, P. D., u. G. E. Bennett: Stimulated cathodoluminescence in n-type GaAs at 77°K. Proc. IEEE 53 (1965) 419–420.Google Scholar
  50. [T 43]
    Kurbatov, L. N.: Generation of coherent radiation in GaAs specimens under electronic excitation. Doklady Akad. Nauk SSSR 165 (1965) 303.Google Scholar
  51. [T 44]
    Basov, N. G., O. V. Bogdankeviciiu. B. M. Lavrusxnin. GaAs laser with fast electron excitation. Fiz. Tverdoga Tela 8 (1966) 21–33.Google Scholar
  52. [T 45]
    Casey, H. C., Jr., u. R. H. Kaiser: Room-temperature super-radiance radiation in n-type GaAs by continuous electron-beam excitation. Appl. Phys. Letters 8 (1966) 113–115.Google Scholar
  53. [T 46]
    Basov, N. G.: Quantum oscillator and amplifier investigations in Physics of Quantum Electronics, ed by P. L. Kelley et al. New York: McGraw-Hill 1966, 411–423.Google Scholar
  54. [T 47]
    Benoit Ila Guillaume, C., U. J. M. Debever: Laser effect in GaSb by electron bombardement. Compt. Rend. 259 (1964) 2200.Google Scholar
  55. [T 48]
    Basov, H. G.: Radiation in GaSe single crystals induced by excitation with fast electrons. Soy. Phys.-Doklady 10 (1965) 329–330.ADSGoogle Scholar
  56. [T 49]
    Benoit La Guillaume, C., u. J. M. Debever: Laser effect in IriAs by electron bombardement. Sol. State Comm. 2 (1964) 145–147.Google Scholar
  57. [T 20]
    Benoit.La Guillaume, C., u. J. M. Debever: Effect Laser par bombardement electronique, in: Radiative Recombination, in: Semiconductors, Paris: Dunod 1964, 255 bis 257.Google Scholar
  58. [T 51]
    Benoit La Guillaume, C., u. J. M. Debever: Electron-beam excitation of semiconductor lasers, in: Physics of Quantum Electronics, ed. by P. L. Kelley et al. New York: McGraw-Hill 1966, 397–410.Google Scholar
  59. [T 52]
    Basov, N. G., u. O. V. Bogdankevich: Excitation of semiconductor lasers by a beam of fast electrons, in: Radiative Recombination in Semiconductors, Paris: Dunod 1964, 225–233.Google Scholar
  60. [T 53]
    Basov, N. G., O. V. Bogdankeviciiu. A. G. Devyatkov: Exciting a semiconductor laser with a fast electron beam. Sov. Phys.-Doklady 9 (1964)CdS laser excited by fast electrons. Soy. Phys.-JETP 20 (1965) 1067–1068.Google Scholar
  61. [T 54]
    Egorov, W. D., G. O. Mulleru. H. Weber: Zur Kantenlumineszenz von CdS bei starker Kathodenstrahlanregung. Phys. Status Solidi 12 (1965) 71–80.Google Scholar
  62. [T 55]
    Benoit La Guillaume, C., U. J. M. Debever: Laser effect in CdS by electronic bombardement Compt. Rend. 261 (1965) 5428.Google Scholar
  63. [T 56]
    Hurwitz, C. E.: Electron-beam pumped lasers of CdSe and CdS. Appl. Phys. Letters. 8 (1966) 121–124.ADSGoogle Scholar
  64. [T 57]
    Nolle, E. L., et al.: Stimulated emission of CdSe in Case of electron excitation. Fiz. Tverdogo Tela 8, (1966) 286–287.Google Scholar
  65. [T 58]
    Vavilov, V. S., u. E. L. Nolle: CdTe laser with electron excitation. Soy. Phys.Doklady 10 (1965) 827–828.ADSGoogle Scholar
  66. [T 59]
    Hurwitz, C. E.: Efficient visible lasers of CdSxSel_x by electron-beam excitation. Appl. Phys. Letters 8 (1966) 243–245.ADSGoogle Scholar
  67. [T 60]
    Hurwitz, C. E., A. R. Calawau. R. H. Rediker. Electron beam pumped lasers of PbS, PbSe, PbTe. IEEE J. Q. E. QE-1 (1965) 102–103.Google Scholar
  68. [T 61]
    Benoit Ila Guillaume, C., u. J. M. Debever: Emission spontanée et stimulée du Tellure par bombardement electronique. Sol. State Comm. 3 (1965) 19–20.Google Scholar
  69. [T 62]
    Scjlickman, J. J., M. E. Fitzgeraldu. R. J. Kingston: Evidence of stimulated emission in ruby-pumped GaAs. Proc. IEEE 52 (1964) 1739–1740.Google Scholar
  70. [T 63]
    Basov, N. G., A. Z. GrasyukU. V. A. Katulyn: Stimulated emission in optically excited GaAs. Sov. Phys.-Doklady 10 (1965) 343–344.ADSGoogle Scholar
  71. [T 64]
    Basov, N. G., et al: Generation in GaAs under two-photon optical excitation of Nd-glass laser emission. JETP Letters 1 (1965) 118–120.ADSGoogle Scholar
  72. [T 65]
    BenoitA La Guillaume, C., u. J. M. Laurant: Laser effect in InAs and GaSb by optical excitation. Comp. Rend. 262 (1966) 275.Google Scholar
  73. [T 66]
    Phelan, R. J., Jr., u. R. H. Rediker. Optically pumped semiconductor laser. Appl. Phys. Letters 6 (1965) 70–71.Google Scholar
  74. [T 67]
    Phelan, R. J., Jr.: Laser emission by optical pumping of semiconductors, in: Physics of Quantum Electronics, ed. by P. L. Kelley et al. New York: McGraw-Hill 1966, 435 bis 441.Google Scholar
  75. [T 68]
    Melngailis, I.: Optically pumped InAs laser IEEE J. Q. E. QE-1 (1965) 104–105.Google Scholar
  76. [T 69]
    Koniukhov, V. K., L. A. Kolevskiiu. A. M. Prokhorov: Optical oscillation in CdS under the action of two-photon excitation by a ruby laser. Sov. Phys.-Doklady 10 (1965) 943–945.ADSGoogle Scholar
  77. [T 70]
    Basov, N. G.: Laser oscillation in CdS by two-photon optical excitation by ruby laser radiation. Fiz. Tverdogo Tela 7 (1965) 3639–3640.Google Scholar
  78. [T 71]
    Melngailis, I., u. A. J. Strauss: Spontaneous and coherent photoluminescence in CdxHgl_xTe. Appl. Phys. Letters 8 (1966) 179–180.Google Scholar
  79. [T 72]
    Patel, C. K. N., et al.: Multiphotonplasma production and stimulated recombination in semiconductors. Phys. Rev. Letters 16 (1966) 971–974.ADSGoogle Scholar

Allgemeine Einführungen in die Halbleiterphysik und -technologie unter besonderer Berücksichtigung optischer Eigenschaften

  1. Spenke, E.: Elektronische Halbleiter, 2. Auflage, Berlin: Springer 1965.Google Scholar
  2. Shockley, W.: Electrons and holes in semiconductors with applications to transistor electronics, New York: van Nostrand 1959.Google Scholar
  3. Hannay, N. B.: Semiconductors, New York: Reinhold 1959.Google Scholar
  4. Kittel, CH.: Introduction to solid state physics, London: Wiley 1956.Google Scholar
  5. Putley, E. H.: The Hall effect and related phenomena, London: Butterworths 1960.Google Scholar
  6. Cohen, M. L., u. T. K. Bergstresser: Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zincblende structures. Phys. Rev. 141 (1966) 789–796.Google Scholar
  7. Blakemooje, J. S.: Semiconductor statistics, London: Pergamon Press 1962, Vol. 3.Moss, T. S.: Optical properties of semiconductors, London: Butterworths 1959.Google Scholar
  8. Stern, F.: Elementary theory of the optical properties of solids. in: solid state physics, Vol. 15,ed. by F. Seitz and D. Turnbull, New York: Academic Press 1963, 300–408.Google Scholar
  9. Mclean, T. P.: The absorption edge spectrum of semiconductors. in: Progress in semiconduc-tors 5, ed. by A. F. Gibson, London: Heywood 1960, 54–102.Google Scholar
  10. Willardson, R. K., u. H. W. Goering: Compound semiconductors. Vol. 1, Preparation of III—V compounds, New York: Reinhold 1962.Google Scholar
  11. Pilkuhn, M. H., u. H. Rupprecht: Diffusion problems related to GaAs injection lasers. Trans. Met. Soc. AIME 230 (1964) 296–299.Google Scholar
  12. Shortes, S. R., J. A. Kanzu. E. C. Wurst Jr.: Zinc diffusion through Si02 films. Trans. Met. Soc. Aime 230 (1964) 300–305.Google Scholar
  13. Madelung, O.: Physics of III—V-compounds, New York: Wiley 1964.Google Scholar
  14. Husum, C.: Gallium Arsenide. in: Progress in semiconductors 9, ed. by A. F. Gibson, London: Temple Press Books 1965, 135–178.Google Scholar

Spezielle Literatur

  1. [1]
    Redirer, R. H.: Infrared and visible. light emission from forward-biased p—n junctions’. Solid State Design, August (1963) 3–12.Google Scholar
  2. [2]
    Winstel, G. H.: Die Galliumarsenid-Lumineszenz-und die Laser-Diode, neue Bauelemente der Nachrichtentechnik. Intern. Elektr. Rundschau 17 (1963) 389–392.Google Scholar
  3. [3]
    Winstel, G.: Physikalische Grundlagen der Halbleiter-Injektions-Laser. Z. angew. Phys. 17 (1964) 10–16.Google Scholar
  4. [4]
    Burns, G., u. N. I. Nathan: PsN-junction lasers. Proc. IEEE 52 (1964) 770–794.Google Scholar
  5. [5]
    Hooge, F. N.: Injection lasers. J. Appl. Math. and Phys. (ZAMP) 16 (1965) 89–97.Google Scholar
  6. [6]
    Heywang, W., u. G. Winstel: Injektionslaser, Aufbau und physikalische Eigenschaften, in: Festkörperprobleme, Band IV, hrsg. von F. Sauter, Braunschweig: Vieweg 1965, 27–44.Google Scholar
  7. [7]
    Gremmelmaier, R., u. H. J. Henkel: Galliumarsenid-Laserdioden. Siemens-Zeitschr. 39 (1965) 438–441.Google Scholar
  8. [8]
    Lax, B.: Progress in semiconductor lasers’. IEEE Spectrum 2 (1965) 62–75.Google Scholar
  9. [9]
    Tomiyasu, K.: Laser bibliography I’. IEEE J. Q. E. QE-1 (1965) 133–156.Google Scholar
  10. [10]
    Tomiyasu, K.: Laser bibliography II’. IEEE J. Q. E. QE-1 (1965) 199–219.Google Scholar
  11. [11]
    Basov, N. G.: Halbleiterlaser. Umschau, 9 (1965) 257–261.Google Scholar
  12. [12]
    Gershenzon, M., u. L. A. Dasaro: Electroluminescence from pn-junctions’. Bell Lab. Rec. October (1965) 359–363.Google Scholar
  13. [13]
    Unger, K.: Inkohärente und kohärente Rekombinationsstrahlung in Halbleiterdioden. Fortschr. d. Phys. 13 (1965) 701–754.Google Scholar
  14. [14]
    Ivey, H. F.: Electroluminescence and semiconductor lasers. IEEE J. Q. E. QE-2 (1966) 713–716.Google Scholar
  15. [15]
    BenoitA La Guillaume, C., (Editors): Radiative recombination in semiconductors. 7 thInternational Conference on the Physics of Semiconductors. Paris: Dunod.Google Scholar
  16. [16]
    Stickland, A. C. (Editors): Gallium Arsenide. London, The Institute of Physics and the Physical Society, 1967, Conference Series No. 3, Proceedings of the International Symposium, Reading 1966.Google Scholar
  17. [17]
    Biai1d, J R, W. N. CarrU. B. S. Reed: Analysis of a GaAs-laser. Trans. Met. Soc. AIME 230 (1964) 286–290Google Scholar
  18. [18]
    Nathan, M. I.: Semiconductor lasers. Proc. IEEE 54 (1966) 1276–1290.Google Scholar
  19. [19]
    Willardson, R. K., u. A. C. Beer (Editors): Semiconductors and semimetals, Physics of III—V compounds, Vol. 2, London: Academic Press 1966.Google Scholar
  20. [20]
    Gershenzon, M.: Radiative recombination in the III—V compounds. in: [19] S. 289 bis 369.Google Scholar
  21. [22]
    Reichardt, W. E.: Elektronische Strahlungsibergänge in Halbleitern. in: Halbleiter probleme II, hrsg. von W. Schottky, Braunschweig: Vieweg 1955, 161–183.Google Scholar
  22. [23]
    Sauter, F., (Herausgeber): Festkörperprobleme V ( Halbleiterprobleme Band XI) Braunschweig: Vieweg 1966.Google Scholar
  23. [24]
    Schultz, W.: Rekombinations- und Generationsprozesse in Halbleitern. in: [23] S. 165 bis 219.Google Scholar
  24. [25]
    Grimmeiss, H. G.: Elektrolumineszenz in III-V-Verbindungen. in: [23] S. 221–248.Google Scholar
  25. [26]
    Gumlica, H. E.: Elektrolumineszenz von II-VI-Verbindungen. in: [23] S. 249–282.Google Scholar
  26. [27]
    Broser, I.: Exzitonen-Lumineszenz in Halbleitern. in: [23] S. 283–318.Google Scholar
  27. [28]
    Unger, K.: Inkohärente und kohärente Rekombinationsstrahlung in Halbleiterdioden. Fortschr. d, Phys. 13 (1965) 701–754, s. S. 710.Google Scholar
  28. [29]
    Watanabe Nishisawa: Halbleiter Maser. Japanische Auslegeschrift SHO 35 (1960) -13.787, bekanntgemacht 20. 9. 1960.Google Scholar
  29. [30]
    Heywang, W. U. a.: Installation pour la production ou l’amplification de rayonnement attres haute frequences. Französ. Patent Nr. 1 223 113, erteilt am 25. 1. 1960. Improvement in/or relating to semiconductor arragements. Engl. Patent Nr. 898411, erteilt am 26. 9. 1962.Google Scholar
  30. [31]
    Lax, B.: Cyclotron resonance and impurity levels in semiconductors. in: Quantum Electronics, ed. by C. H. Townes, New York: Columbia University Press 1960, 428 bis 449.Google Scholar
  31. [32]
    Bernard, M. G. A., u. G. Duraffourg: Possibilités de lasers à semiconducteurs. J. Phys. Radium 22 (1961) 836 und Laser conditions in semiconductors. Physica Status Solidi 1 (1961) 699–703.Google Scholar
  32. [33]
    Basov, N. G., O. N. Krokhinu. Y. M. Porov: Indirect interband transitions and radiation absorption by the free carriers. in: Advances in Quantum Electronics, ed. by J. R. Singer, London: Columbia University Press 1961, 500–506 (siehe auch Diskussionsbemerkung).Google Scholar
  33. [34]
    BenoitA La Guillaume, C., U. Mme Trio: Les semiconducteurs et leur utilisation possible dans les laser. J. Phys. Radium 22 (1961) 834–836.Google Scholar
  34. [35]
    Keyes, R. J. u. T. M. Quist: Recombination radiation emitted by gallium arsenide. Proc. IRE 50 (1962) 1822–1823.Google Scholar
  35. [36]
    Dumke, W. P.: Interband transitions and maser action. Phys. Rev. 127 (1962) 1559 bis 1563.Google Scholar
  36. [37]
    Hall, R. N., et al.: Coherent light emission from GaAs-junctions. Phys. Rev. Letters 9 (1962) 366–368.ADSGoogle Scholar
  37. [38]
    Nathan, M. I., et al.: Stimulated emission of radiation from GaAs pn-junctions. Appl. Phys. Letters 1 (1962) 62–64.ADSGoogle Scholar
  38. [39]
    Quist, T. M., et al.: Semiconductor maser of GaAs. Appl. Phys. Letters 1 (1962) 91–92.ADSGoogle Scholar
  39. [T 40]
    Holonyak, N., Jr., u. S. F. Bevacqua: Coherent light emission from Ga (As1_xPx) junctions. Appl. Phys. Letters 1 (1962) 82–83.Google Scholar
  40. [41]
    Melngailis, I.: Maser action in InAs diodes. Appl. Phys. Letters 2 (1963) 176–178.ADSGoogle Scholar
  41. [42]
    Weiser, K., u. R. S. Levitt: Stimulated light emission from indium phosphide. Appl. Phys. Letters 2 (1963) 178–179.Google Scholar
  42. [43]
    Melngailis, I., A. J. Straussu. R. H. Rediker. Semiconductor diode masers of (InxGal_x)As. Proc. IEEE 51 (1963) 1154–1155.Google Scholar
  43. [44]
    Alexander, F. B., et al.: Spontaneous and stimulated infra-red emission from indium phosphide arsenide diodes. Appl. Phys. Letters 4 (1964) 13–15.ADSGoogle Scholar
  44. [45]
    Phelan, R. J., et al.: Infrared InSb-laser diode in high magnetic fields. Appl. Phys. Letters 3 (1963) 143–145.ADSGoogle Scholar
  45. [46]
    Stevenson, M. J., J. D. Axeu. J. R. Lankard: Line widths and pressure shifts in mode structure of stimulated emission from GaAs junctions. IBM J. Res. Dev. 7 (1963) 155–156.Google Scholar
  46. [47]
    Meyerhofer, D., u. R. Braunstein: Frequency tuning of GaAs laser diode by uniaxial stress. Appl. Phys. Letters 3 (1963) 171–172.Google Scholar
  47. [48]
    Burns, G., u. M. I. Nathan: Room-temperature stimulated emission. IBM J. Res. Dev. 7 (1963) 72–73.Google Scholar
  48. [49]
    Butler, J. F., et al.: PbTe diode laser. Appl. Phys. Letters 5 (1964) 75–77.ADSGoogle Scholar
  49. [50]
    Butler, J. F., et al.: PbSe diode laser. Solid State Comm. 2 (1964) 303–304.ADSGoogle Scholar
  50. [51]
    Butler, J. F., u. A. R. Calawa: PbS diode laser. J. el. chem. Soc. 112 (1965) 1056 bis 1057.Google Scholar
  51. [52]
    Basov, N. G., u. O. V. Bogdankevich: Excitation of semiconductor lasers by a beam of fast electrons. in: [15] S. 225–233.Google Scholar
  52. [53]
    BenoitA La Guillaume, C., u. J. M. Debever: Effet laser par bombardement electronique. in: [15] S. 255–257.Google Scholar
  53. [54]
    Hurwitz, C. E., u. R. J. Keyes: Electron-beam-pumped GaAs laser. Appl. Phys. Letters 5 (1964) 139–141.ADSGoogle Scholar
  54. [55]
    a) Cusano, D. A.: Radiative recombination from GaAs directly excited by electron beams. Solid State Comm 2 (1964) 353–358.Google Scholar
  55. [55]
    b) Cusano, D. A., G. E. Fenner u. R. O. Carlson: Recombination scheme and intrinsic gap variation in GaAs, _ xPx semiconductors from electron beam and pn-diode excitation. Appl. Phys. Letters 5 (1964) 144–146.Google Scholar
  56. [56]
    Klein, C. A.: Threshold considerations for electron-beam pumped GaAs lasers. Bull. Am. Phys. Soc. 10 (1965) 387–388.Google Scholar
  57. [57]
    Hora, H.: Calculations of laser excitation in a GaAs anode by slow electrons. Z. Naturf. 20a (1965) 543–548.ADSGoogle Scholar
  58. [58]
    Kogelnik, H., u. W. W. Rigrod: Visual display of isolated optical-resonator modes. Proc. IRE 50 (1962) 220.Google Scholar
  59. [59]
    BenoitA La Guillaume, C., u. J. M. Debever: Emission spontanée et stimulée du tellure par bombardement electronique. Solid State Comm. 3 (1965) 19–20.ADSGoogle Scholar
  60. [60]
    Hurwitz, C. E., A.R. Calawau. R. H. Rediker. Electron beam pumped lasers of PSb, PbSe, and PbTe. IEEE J. Q. E. QE-1, (1965) 102–103.Google Scholar
  61. [61]
    Weiser, K., u. J. F. Woons: Evidence for avalanche injection laser in p-type GaAs. Appl. Phys. Letters 7 (1965) 225–228.ADSGoogle Scholar
  62. [62]
    Basov, N. G., O. N. Krokhinu Y M Porov: Generation, amplification and detection of infrared and optical radiation by quantum-mechanical systems. Soviet Phys. Uspekhi 3 (1960) 702.Google Scholar
  63. [63]
    Phelan, R. J., JR., u. R. H. Rediker. Optically pumped semiconductor laser. Appl. Phys. Letters 6 (1965) 70–71.Google Scholar
  64. [64]
    Melngailis, I.: Optically pumped indiumarsenide laser. IEEE J. Quant. Electr. QE-1 (1965) 104–105.Google Scholar
  65. [65]
    Kelly, C. E.: Interactions between closely coupled GaAs injection lasers. IEEE Trans. Electr. Devices ED-12 (1965) 1–4.Google Scholar
  66. [66]
    a) Bagaev, V. S., et al.: About the energy spectrum of the heavily doped GaAs. in: [15] S. 149–154.Google Scholar
  67. b) Halperin, B. I., u. M. Lax: Impurity band tails in the high density limit. Phys. Rev. 148 (1966) 722–740.Google Scholar
  68. [67]
    Spenke, E.: Elektronische Halbleiter. 2. Aufl Berlin: Springer 1965, 594.Google Scholar
  69. [68]
    Pokrovskii, Y. E., u. K. I. Svistunova: Impurity recombination radiation of diodes made of indium-doped n-typ silicon. Sov. Phys. Sol. State 7 (1965) 1275–1276.Google Scholar
  70. [69]
    Cusano, D. A.: siehe [55 b].Google Scholar
  71. [70]
    Larsen, T. L., E. E. Loebneru. R. J. Archer: Relativ strength of direct and indirect radiative transitions in GaAsi_xPx alloys. Bull. Am. Phys. Soc. 10 (1965) 388.Google Scholar
  72. [71]
    Hall, R. N.: Recombination processes in semiconductors. Proc. IRE 106 B Suppl. 17 (1960) 923–931.Google Scholar
  73. [72]
    a) Dumke, W. P.: Spontaneous radiative recombination in semiconductors. Phys. Rev. 105 (1957) 139–144.Google Scholar
  74. b) Dumke, W. P.: Optical transitions involving impurities in semiconductors. Phys. Rev. 132 (1963) 1998–2002.Google Scholar
  75. c) Lasher, G., u. F. Stern: Spontaneous and stimulated recombination radiation in semiconductorsi. Phys. Rev. 133 (1964) A553 — A563.Google Scholar
  76. d) Zeiger, H. J.: Impurity states in semiconducting masers. J. Appl. Phys. 35 (1964) 1657–1667.Google Scholar
  77. [73]
    Krokhin, O. N., u. Y. M. Popov: Slowing-down time of nonequilibrium current carriers in semiconductors. Sov. Phys. JETP 11 (1960) 1144–1146.Google Scholar
  78. [74]
    a) Haken, E., u. H. Haken: Zur Theorie des Halbleiterlaser. Z. Phys. 176 (1963) 421 bis 428.Google Scholar
  79. b) Hall, R. N.: Coherent light emission from pn-junctions. Solid State Electronics 6 (1965) 405–416.Google Scholar
  80. [75]
    Lasher, G., u. F. Stern: siehe [72c].Google Scholar
  81. [76]
    Stern, F.: Effect of band tails on stimulated emission of light in semiconductors. Phys. Rev. 148 (1966) 186–194.ADSGoogle Scholar
  82. [77]
    Burstein, E.: Anomalous optical absorption limit in InSb. Phys. Rev. 93 (1954) 632 bis 633.Google Scholar
  83. [78]
    Bonch-Bruevich, V. L., u. R. Rozman: On the theory of the absorption of light in heavily doped semiconductors. Soy. Phys. Sol. St. 6 (1965) 2016–2017.Google Scholar
  84. [79]
    Kane, E. O.: Thomas-Fermi approach to impure semiconductor band structure. Phys. Rev. 131 (1963) 79–88.ADSMATHGoogle Scholar
  85. [80]
    a) Cusano, D. A.: siehe [55a].Google Scholar
  86. b) Casey, H. C., u. R. H. Kaiser: Analysis of n-type GaAs with electron-beam excited radiation recombination. J. El. Chem. Soc. 114 (1967) 1149–1153.Google Scholar
  87. [81]
    Ruprecht, II.: in [16] S. 57–61.Google Scholar
  88. [82]
    a) Zschauer, K.-H.: Properties of luminescent GaAs pn-junctions with alloyed p-region. Solid State Comm. 5 (1967) 123–126.ADSGoogle Scholar
  89. b) Mettler, K.: Optical properties of GaAs alloyed pn-junctions. Solid State Comm. 5 (1967) 127–130.Google Scholar
  90. [83]
    Mclean, T. P.: The absorption edge spectrum of semiconductors. in: Progress in Semiconductors, Vol. 5, ed. by A. F. Gibson, London: Heywood 1960, 60–63.Google Scholar
  91. [84]
    a) Hill, D. E.: Infrared transmission and fluorescence of doped gallium arsenide. Phys. Rev. 133 (1964) A866 - A872.Google Scholar
  92. b) Braunstein, R., J. I. Pankoveu. H. Nelson: Effect of doping on the emission peak and the absorption edge of GaAs. Appl. Phys. Letters 3 (1963) 31–33.Google Scholar
  93. [85]
    Lucovsky, G.: Absorption edge measurements in compensated GaAs. Appl. Phys. Letters 5 (1964) 37–39.ADSGoogle Scholar
  94. [86]
    Allen, J. W., u. R. Cherry: Space-charge currents in gallium arsenide. Nature 189 (1961) 297–298.ADSGoogle Scholar
  95. [87]
    Unger, K.: siehe [28].Google Scholar
  96. [88]
    Weiser, K. u. J. F. Woods: siehe [61].Google Scholar
  97. [89]
    a) Wade, G., C. A. WheelevU. R. G. Hunsperger: Inherent properties of a tunnel-injection laser. (Proc. IEEE 53 (1965) 98–99.Google Scholar
  98. b) Berglund, C. N.: Electroluminescence using GaAs MIS-structures Appl. Phys. Letters 9 (1966) 441–443.ADSGoogle Scholar
  99. [90]
    Pilkuhn, M. H., u. H. Rupprecht: siehe [99].Google Scholar
  100. [91]
    Scott, A. C.: Single mode differential efficiency for circular and rectangular laser diodes. Proc. IEEE 53 (1965) 315–316.Google Scholar
  101. [92]
    Horak, G.: Untersuchung an GaAs-Laserdioden mit Dreieck-Resonator. Z. angew. Math. Phys. 16 (1965) 556–559.Google Scholar
  102. [93]
    a) Mcwhorter, A. L.: Electromagnetic theory of the semiconductor junction laser. Solid State Electronics 6 (1963) 417–423.ADSGoogle Scholar
  103. b) Anderson, W. W.: Mode confinement and gain in injection lasers. IEEE J. Q. E. QE-1 (1965) 228–236.Google Scholar
  104. c) Yariv, A., u. R. C. C. Leite: Dielectric-wave-guide mode of light propagation in pn-junctions. Appl. Phys. Letters 2 (1963) 55–57.Google Scholar
  105. d) Bond, W. L., et al.: Observation of the dielectric-waveguide mode of light propagation in pn-;,unctions. Appl. Phys. Letters 2 (1963) 57–59.ADSGoogle Scholar
  106. e) Leite, R. C. C., u. A. Yariv: On mode confinement in pn-junctions. Proc. IEEE 51 (1963) 1035–1036.Google Scholar
  107. f) Diemer, G., u. B. Bolger: Proposal for reduction of diffraction lasers in pn-lasers. Physica 29 (1963) 600–601.Google Scholar
  108. [94]
    a) Visvanathan, S.: Free carrier absorption arising from impurities in semiconductors. Phys. Rev. 120 (1960) 379–380.ADSGoogle Scholar
  109. b) Visvanathan, S.: Free carrier absorption due to polar modes in the III-V compound semiconductors. Phys. Rev. 120 (1960) 376–378.Google Scholar
  110. C) Ryvkin, S. M., A. A. Grinbergu. N. I. Kramer: Indirect optical transitions in semiconductors involving carrier interaction. Soy. Phys. Sol. State 7 (1966) 1766–1773.Google Scholar
  111. [95]
    Btjrrell, G. J., T. S. Moss u. A. Hetherington: Transverse gain in GaAs-laser structures. Phys. Stat. Sol. 14 (1966) 109–113.ADSGoogle Scholar
  112. [96]
    a) Stern, F.: Transmission of isotropic radiation across an interface between two dielectrics. Appl. Optics 3 (1964) 111–113.ADSGoogle Scholar
  113. b) Pilkuhn, M., H. Rupprechtu. J. Woodall: Continuous stimulated emission from GaAs diodes at 77°K. Proc. IEEE 51 (1963) 1243.Google Scholar
  114. [97]
    a) Burns, G., u. M. 1. Nathanpn-junction lasers. Proc. IEEE 52 (1964) 770–794. b) siehe [93e].Google Scholar
  115. [98]
    Stern, F.: Radiation confinement in semiconductor lasers. in [15] S. 165–170.Google Scholar
  116. [99]
    Pilkuijn, M. H., u. H. Rupprecht: Optical and electrical properties of epitaxial and diffused GaAs injection lasers. J. Appl. Phys. 38 (1967) 5–10.Google Scholar
  117. [100]
    Antonoff, M. M.: Angular distribution of radiation from GaAs-injection lasers. J. Appl. Phys. 35 (1964) 3623–3624.ADSGoogle Scholar
  118. [101]
    Fenner, G. E., u. J. D. Kingsley: Spatial distribution of radiation from GaAs-lasers. J. Appl. Phys. 34 (1963) 3204–3208.Google Scholar
  119. [102]
    Henkel, H. J., E. Kleinu. H. Kuckuck: Das Verhalten von GaAs-Laserdioden bei hohen Strahlungsleistungen. Solid State Electronics 8 (1965) 475–478.ADSGoogle Scholar
  120. [103]
    Michel, A. E., u. E. J. Walker: Interference between the infrared beams from opposite ends of a GaAs-laser. J. Appl. Phys. 34 (1963) 2492–2493.Google Scholar
  121. [104]
    Sorokin, P. P., J. D. Axeu. J. R. Lankard: Spectral characteristics of GaAs-lasers operating in Fabry-Perot modes. J. Appl. Phys. 34 (1963) 2553–2556.ADSGoogle Scholar
  122. [105]
    Armstrong, J. A. u. A. W. Smith: Interferometric measurement of line width and noise in GaAs lasers. Appl. Phys. Letters 4 (1964) 196–198.ADSGoogle Scholar
  123. [106]
    a) Wilson, D. K.: Mode control in pn-junction lasers, in [15] S. 171–176.Google Scholar
  124. b) Weiser, K., u. A. E. Michel: Gallium Arsenide lasers with P-P°-N-structure. in: [15] S. 177–182.Google Scholar
  125. [107]
    Nathan, N. I., G. Burnsu. A. B. Fowler: Dispersion and loss in GaAs injection lasers. in: [15] S. 205–208.Google Scholar
  126. [108]
    a) Engeler, W. E., u. M. Garfinkel: Temperature effects in coherent GaAs diodes. J. Appl. Phys. 34 (1963) 2746–2750.Google Scholar
  127. b) Gooch, C. H.: Transient thermal effects in gallium arsenide injection lasers. Phys. Letters 16 (1965) 5–6.Google Scholar
  128. c) Konnerth, K.: Junction heating in GaAs injection lasers. Proc. IEEE 53 (1965) 397–398.Google Scholar
  129. [109]
    a) Spatz, H., C. L. Tangu. J. M. Lavine: Spectral output of semiconductor lasers. J. Appl. Phys. 35 (1964) 2581–2585.ADSGoogle Scholar
  130. b) Lavine, J. M., u. A. A. Iannini: Temperature dependence of the multimode behavior of GaAs-lasers. J. Appl. Phys. 36 (1965) 402–405.Google Scholar
  131. [110]
    a) Konnerth, K., u. C. Lanza: Delay between current pulse and light emission of a gallium arsenide injection laser. Appl. Phys. Letters 4 (1964) 120–121.Google Scholar
  132. b) Goldstein, B. S., u. J. D. Welch: Microwave modulation of a GaAs-injection laser. Proc. IEEE 52 (1964) 715.Google Scholar
  133. [111]
    Winogradoff, N. N., u. H. K. Kessler: Light emission and electrical characteristics of epitaxial GaAs-lasers and tunnel Diodes. Solid State Commun. 2 (1964) 119 bis 122.Google Scholar
  134. [112]
    Winstel, G., u. K. Mettler: Zur Trägerrekombination in einem GaAs-Injektionslaser. in: [15] S. 183–193.Google Scholar
  135. [113]
    Fulton, T. A., D. B. Fitchenu. G. E. Fenner: Pressure effects in Ga(Asl,Pa)electroluminescent diodes. Appl. Phys. Letters 4 (1964) 9–11.Google Scholar
  136. [114]
    Ryan, F. M., u. R. C. Miller: The effect of uniaxial strain on the threshold current and output of GaAs-lasers. Appl. Phys. Letters 3 (1963) 162–163.ADSGoogle Scholar
  137. [115]
    a) Miller, R. C., F. M. RyanU. P. R. Emtage: Uniaxial strain effects in gallium arsenide laser diodes. in: [15] S. 209–215.Google Scholar
  138. b) Meyerhofer, D., U. R. Braunstein: Frequency tuning of GaAs-laser diode by uniaxial stress. Appl. Phys. Letters 3 (1963) 171–172.Google Scholar
  139. c) Durrett, R. H., et al.: Uniaxial pressure wavelength changes in GaAs lasers in cw operation. Proc. IEEE 53, (1965), 2121–2122.Google Scholar
  140. [116]
    Phelan, R. J., et al.: Infrared InSb-laser diode in high magnetic fields. Appl. Phys. Letters 3 (1963) 143–145.ADSGoogle Scholar
  141. [117]
    a) Marinace, J. C.: Diffused junctions in GaAs injection lasers. J. Electrochem. Soc. 110 (1963) 1153–1159.Google Scholar
  142. b) Pilxuhn, M. H., u. H. Rupprecht: Diffusion problems related to GaAs injection lasers. Trans AIME 230 (1964) 296–300.Google Scholar
  143. [118]
    Kelly, C. E.: Donor-diffused galliumarsenid-injection lasers, Proc. IEEE 51 (1963) 1239–1240.Google Scholar
  144. [119]
    a) Nelson, H.: Epitaxial growth from the liquid state and its application to the fabrication of tunnel and laser diodes. RCA Review 24 (1963) 603–615.Google Scholar
  145. b)Melngailis, I.: Longitudinal injection-plasma laser of InSb. Appl. Phys. Letters 6 (1965) 59–60.ADSGoogle Scholar
  146. c) Lorenz, M. R., u. M. H. Pilkuhn: Preparation and properties of solution-grown epitaxial pn-junctions in GaP. J. Appl. Phys. 37 (1966) 4094–4102.Google Scholar
  147. [120]
    a) Rupprecht, H.: New aspects of solution regrowth in the device technology of gallium arsenide. in: [16] S. 57–61.Google Scholar
  148. b) Cayman, G.: Laser action in an alloyed GaAs-junction. Solid State Electronics 8 (1965) 455–456.ADSGoogle Scholar
  149. [121]
    a) Effer, D.: Epitaxial growth of doped and pure GaAs in an open flow system. J. Electrochem. Soc. 112 (1965) 1020–1025.Google Scholar
  150. b) MehalE. W., R. W. Haistyu. D. W. Shaw: GaAs Epitaxial technology for integrated circuits. Trans. Met. Soc AIME 236 (1966) 263–267.Google Scholar
  151. e) Eddolls, D. V., J. R. Knightu. B. L. H. Wilson: The preparation and properties of epitaxial gallium arsenide. in: [16] S. 3–9.Google Scholar
  152. Shaw, D. W., et al.: Gallium arsenide, epitaxial technology. in: [16] S. 10–15.Google Scholar
  153. Bolger, D. E., et al.: Preparation and characteristics of gallium arsenide. in: [16] S.16–22.Google Scholar
  154. Joyce, B. D., u. J. B. Mullin. Pyramid formation in epitaxial gallium arsenide. in: [16] S. 23–26.Google Scholar
  155. Williams, F V. Structural defects in epitaxial gallium arsenide. in: [16] S. 27–30.Google Scholar
  156. [122]
    Jonscher, A. K., u. M. H. Boyle: The flow of carriers and its effects on the spatial distribution of radiation from injection lasers. in: [16] S. 78–84.Google Scholar
  157. [123]
    Ziegler, G., u. H.-J. Henkel: Inhomogene Störstellenverteilung in GaAs-Einkristallen. Z. angew. Phys. 19 (1965) 401–404.Google Scholar
  158. [124]
    a) Casey, H. C., Jr., u. R. H. Kaiser: Analysis of N-type GaAs with electron-beam excited radiative recombination. J. Electrochem. Soc. 114 (1967) 149–153.Google Scholar
  159. b) Casey, H. C., Jr.: Investigation of inhomogeneities in GaAs by electron-beam excitation. J. Electrochem. Soc. 114 (1967) 153–158.Google Scholar
  160. [125]
    a) Engeler, W., U. M. Garfinkel. Thermal characteristics of GaAs-laser junctions under high power pulsed conditions. Solid State Electronics 8 (1965) 585–604.Google Scholar
  161. b) Mayburg, S.: Temperature limitationon continuous operation of GaAs lasers. J. Appl. Phys. 34 (1963) 3417–3418.ADSGoogle Scholar
  162. c) Quine, J. P., K. Tomiyasuu. C. Younger: Pulse modulation of gallium arsenide injection luminescent diode laser. Proc. IEEE 51 (1963) 1141–1142.Google Scholar
  163. d) Keyes, R. W.: Thermal problems of the injection laser. IBM J. R. s. Dev. 9 (1965) 303–314.Google Scholar
  164. e) Lasher, G. J., u. M. V. Smith: Thermal limitations on the energy of a single injection laser light pulse. IBM J. Res. Dev. 8 (1964) 532–536.Google Scholar
  165. f) Lamorte, M. F., R. B. Liebertu. T. Gonda: CW-Operation of GaAs injection lasers. Proc. IEEE, 52 (1964) 1257–1258.Google Scholar
  166. [126]
    Marinace, J. C.: High power cw operation of GaAs junction lasers at 77 °K. IBM J. Res. Dev. 8 (1964) 543–544.Google Scholar
  167. [127]
    a) Engeler, W. E.: Characteristics of a continuous high-power GaAs-junction laser. J. Appl. Phys. 35 (1964) 1734–1741.Google Scholar
  168. b) Salow, H., u. K.-W. Benz: Der Aufbau von GaAs-Injektionslasern für den kontinuierlichen Betrieb bei der Temperatur des flüssigen N2. Z. angew. Phys. 19 (1965) 157–161.Google Scholar
  169. c) Goldstein, B. S., u. J. D. Welch: siehe [110b].Google Scholar
  170. [128]
    Lindner, F. W.: Über das spektrale Emissionsverhalten von Nanosekunden gepulsten GaAs-Laserdioden. Phys. Letters 241 (1967) 409–411.ADSGoogle Scholar
  171. [129]
    Gallagher, C. C., et al.: Output power from GaAs lasers at room temperature. Proc. IEEE 52 (1964) 717–719.Google Scholar
  172. [130]
    Burns, G., u. M. I. Nathan: Room-temperature stimulated emission. IBM J. Res. Dev. 7 (1963) 72–75.Google Scholar
  173. [131]
    Nelson, H., et al.: High-efficiency injection laser at room temperature. Proc. IEEE 52 (1964) 1360–1361.Google Scholar
  174. [132]
    Pilkuhn, M., H. RupprechtR. J. Woodall: Continuous stimulated emission from GaAs diodes at 77°K. Proc. IEEE 51 (1963) 1243.Google Scholar
  175. [133]
    Crowe, J. W., u. R. M. Craig: Laser array fabrication techniques. 1967 International Circuits Conference Report, Philadelphia, USA, S. 94–95.Google Scholar
  176. [134]
    Dyment, J. C.: Hermite-Gaussian mode patterns in GaAs junction lasers. Appl. Phys. Letters 10 (1967) 84–88.ADSGoogle Scholar
  177. [135]
    Akselrad, A. Optimum design for a room-temperature, puls-operated GaAs injection laser. Appl. Phys. Letters 8 (1966) 250–252.ADSGoogle Scholar
  178. [136]
    Kessler, H. K.: Optical power increase in GaAs laser diodes coated with reflecting aluminium silicone mixture. Proc. IEEE 55 (1967) 99–100.Google Scholar
  179. [137]
    Basov, N. G., u. O. V. Bogdankevich: Excitation of semiconductor lasers by a beam of fast electrons. in: [15] S. 225–233.Google Scholar
  180. [138]
    Klein, C. A.: Laser-action threshold in electron-beam excited gallium arsenide. Appl. Phys. Letters 7 (1965) 200–202.ADSGoogle Scholar
  181. [139]
    Hurwitz, C. E., u. R. J. Keyes: Electron-beam-pumped GaAs laser. Appl. Phys. Letters 5 (1964) 139–141.ADSGoogle Scholar
  182. [140]
    Cusano, D. A.: Radiative recombination from GaAs directly excited by electron beams. Solid State Comm 2 (1964) 353.ADSGoogle Scholar
  183. [141]
    Cusano, D. A.: Identification of laser transitions in electron-beam-pumped GaAs. Appl. Phys. Letters 7 (1965) 151–152.ADSGoogle Scholar
  184. [142]
    Bernstein, L., u. R. J. Beals. Thermal expension and related bonding problems of some III—V compound semiconductors. J. Appl. Phys. 32 (1961) 122–123.Google Scholar
  185. [143]
    Zschauer, K.-H.: Possible mechanism of Auger-Recombination in Gallium arsenide. Zur Veröffentlichung vorgesehen.Google Scholar
  186. [144]
    Dyment, J. C. and L. A. Dasaro: Continuous operation of GaAs junction lasers on diamond heat sinks at 200°K. Appl. Phys. Lett. 11 (1967) 292–294.ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • G. H. Winstel

There are no affiliations available

Personalised recommendations