Skip to main content

Characteristics of Pegmatite Deposits of Tantalum

  • Conference paper
Book cover Lanthanides, Tantalum and Niobium

Part of the book series: Special Publication No. 7 of the Society for Geology Applied to Mineral Deposits ((MINERAL DEPOS.,volume 7))

Abstract

Within the broad spectrum of granitic pegmatites, economic tantalum concentrations are encountered only in those of the orogen-related rare-element class. These are located in Archean greenstone and gneissic belts, Proterozoic terranes skirting cratonic margins and Phanerozoic orogenic belts. Fertile granites generating the rare-element pegmatites are largely late to post-tectonic, post-dating the peak of regional dynamometamorphism. The granite-pegmatite systems are largely confined to deep faults, pre-existing batholithic contacts or lithologic boundaries; they are located in host rocks of the upper-greenschist and lower-amphibolite facies of Abukuma-type terranes.

Tantalum-enriched pegmatites are found in the intermediate to outermost parts of zoned pegmatite aureoles surrounding parental granites. Such pegmatites may belong to the (i) beryl, (ii) complex (spodumene, petalite or amblygonite), (iii) complex (lepidolite), (iv) albite-spodumene or (v) albite types and (subtypes). Type (i) grades into (ii) by increasing complexity of internal zoning, replacement phenomena, mineral paragenesis and geochemical fractionation, the latter including a progressive decrease in Nb/Ta. Tantalum mineralization may be confined to the core-margin assemblage in (i), but it is more commonly enriched in albitic units, greisenlike muscovitic assemblages and lepidolite units, all of them in the internal parts of the pegmatite bodies. Tantalum-bearing minerals are represented mainly by the ferromanganoan oxide species and the members of the broader microlite family, in contrast to the lepidolite subtype (iii) with abundant microlite and only minor manganocolumbite. High grades and variable tonnages of tantalum ore are typical of type (ii) deposits, particularly those containing lepidolite and pollucite.

In contrast to the zoned and/or layered types (i) to (iii), the other two pegmatite types are nearly homogeneous in texture and composition, and they contain the tantalum mineralization dispersed through most of their volumes. Low grades but large tonnages of tantalum reserves may be encountered particularly in type (iv).

Generalized characteristics of the different types of tantalum-bearing pegmatites are complemented by brief descriptions of some better-known specific examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson AJ (1984) Geochemistry, mineralogy and petrology of the Cross Lake pegmatite field, Manitoba. M Sc Thesis, Univ Manitoba, Winnipeg

    Google Scholar 

  • Ayres LD, Černý P (1982) Metallogeny of granitic rocks in the Canadian Shield. Can Min 20: 439–536

    Google Scholar 

  • Beus AA (1948) Vertical zoning of pegmatites on the example of the pegmatite field Aksu Pushtiru (Turkestan Range). Dokl Acad Sci USSR 60: 1235–1238

    Google Scholar 

  • Beus AA (1960) Geochemistry of beryllium and genetic types of beryllium deposits. Acad Sci USSR Moscow Engl Transi Freeman, 1966, 401 pp

    Google Scholar 

  • Beus AA (1968) Geochemical exploration for endogenic deposits of rare elements on the example of tantalum. Nedra Moscow, Engl Transi GSC Libr, Ottawa

    Google Scholar 

  • Beus AA, Severov EA, Sitnin AA, Subbotin KD (1962) Albitized and greisenized granites (apogranites). Acad Sci USSR Moscow, 191 pp

    Google Scholar 

  • Beus AA, Sobolev BP, Dikov JP (1963) On the geochemistry of beryllium in high-temperature post-magmatic mineralization events. Geokhimya 1963: 297–304 (in Russian)

    Google Scholar 

  • Blockley JG (1980) The tin deposits of western Australia, with special reference to the associated granites. Geol Sur W Austr Min Res Bull 12: 184

    Google Scholar 

  • Boctor NZ (1985) Rhodonite solubility and thermodynamic properties of aqueous-MnCl2 in the system MnO-SiO2-HCl-H2O. Geochim Cosmochim Acta 49: 565–575

    Article  Google Scholar 

  • Brookins DG, Chakoumakos B, Cook CW, Ewing RC, Landis GP, Register ME (1979) The Harding pegmatite: summary of recent research. N Mex Geol Soc Guideb 30th Field Conf, Santa Fe County, pp 127-133

    Google Scholar 

  • Brotzen O (1959a) Outline of mineralization in zoned granitic pegmatites. A qualitative and comparative study. Geol Fören Förhandl 81: 1–99

    Article  Google Scholar 

  • Brotzen O (1959b) Mineral association in granitic pegmatites: a statistical study. Geol Fören Förhandl 81: 231–296

    Article  Google Scholar 

  • Burnol L (1974) Géochimie du béryllium et types de concentration dans les leucogranites du Massif Central français. Bur Rech Geol Min Mem 85, 168 pp

    Google Scholar 

  • Burt DM (1981) Acidity-salinity diagrams — application to greisen and porphyry deposits. Econ Geol 76: 832–843

    Article  Google Scholar 

  • Burt DM, London D (1982) Subsolidus equilibria. In: Černý P (ed) Granitic pegmatites in science and industry. Min Assoc Can Short Course Handb 8: 329-346

    Google Scholar 

  • Cameron EN, Shainin VE (1947) The beryl resources of Connecticut. Econ. Geol. 42: 353–367

    Google Scholar 

  • Cameron EN, Jahns RH, McNair A, Page LR (1949) Internal structure of granitic pegmatites. Econ Geol Monogr 2, 115 pp

    Google Scholar 

  • Černý P (1982a) Anatomy and classification of granitic pegmatites. In: Černý P (ed) Granitic pegmatites in science and industry. Min Assoc Can Short Course Handb 8: 1-39

    Google Scholar 

  • Černý P (1982b) Petrogenesis of granitic pegmatites. In: Černý P (ed) Granitic pegmatites in science and industry. Min Assoc Can Short Course Handb 8: 405-461

    Google Scholar 

  • Černý P (1982c) The Tanco pegmatite at Bernic Lake, southeastern Manitoba. In: Černý P (ed) Granitic pegmatites in science and industry. Min Assoc Can Short Course Handb 8: 527-543

    Google Scholar 

  • Černý P (1988) Rare-element granitic pegmatites. In: Brown AC (ed) Monograph series on geology of ore deposits (in press)

    Google Scholar 

  • Černý P, Burt DM (1984) Paragenesis, crystallochemical characteristics, and chemical evolution of micas in granitic pegmatites. In: Bailey SW (ed) Micas, Reviews in Mineralogy 13, pp 257-297

    Google Scholar 

  • Černý P, Ercit TS (1985) Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatites. Bull Mineral 108: 499–532

    Google Scholar 

  • Černý P, Meintzer RE (1988) Fertile granites in the Archean and Proterozoic fields of rare-element pegmatites: crustal environment, geochemistry and petrogenetic relationships. In: Taylor RP, Strong DF (eds) Recent advances in the geology of granite-related mineral deposits. CIM Special Volume 39: 170-207

    Google Scholar 

  • Černý P, Trueman DL, Ziehlke DV, Goad BE, Paul BJ (1981) The Cat Lake-Winnipeg River and the Wekusko Lake pegmatite fields, Manitoba. Man Dep Energ Mines Mineral Res Div Econ Geol Rep ER80-1

    Google Scholar 

  • Černý P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. Can Min 23: 381–421

    Google Scholar 

  • Černý P, Goad BE, Hawthorne FC, Chapman R (1986) Fractionation trends of the Nb-and Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole, southeastern Manitoba. Am Mineral 71: 501–517

    Google Scholar 

  • Chackowsky LE (1987) Mineralogy, geochemistry and petrology of pegmatitic granites and pegmatites at Red Sucker Lake and Gods Lake, northeastern Manitoba, M Sc Thesis, Univ Manitoba, Winnipeg

    Google Scholar 

  • Cooper DG (1964) The geology of the Bikita pegmatites. In: Geology of some ore deposits in Southern Africa 2: 441–462

    Google Scholar 

  • Crouse RA, Černý P, Trueman DL, Burt RO (1979) The Tanco pegmatite, southeastern Manitoba; Can Inst Min Metall Bull 1979, 2: 1–10

    Google Scholar 

  • Drysdall AR, Ramsay CR, Stoeser DB (eds) (1986) Felsic plutonic rocks and associated mineralization of the Kingdom of Saudi Arabia. J Afr Earth Sci 4: 1–290

    Google Scholar 

  • Eby R (1986) A structural and petrofabric study of sheared pegmatite dikes, Red Cross lake, Manitoba. B Sc Thesis, Univ Manitoba, Winnipeg

    Google Scholar 

  • Ercit TS (1986) The simpsonite paragenesis; the crystal chemistry and geochemistry of extreme Ta fractionation. Unpubl PhD Thesis, Univ Manitoba, Winnipeg

    Google Scholar 

  • Foord EE (1976) Mineralogy and petrogenesis of layered pegmatite-aplite dykes in the Mesa Grande district, San Diego County, California PhD Thesis, Stanford Univ

    Google Scholar 

  • Foord EE, Cook RB (1989) Mineralogy and paragenesis of the McAllister Sn-Ta pegmatite deposit, Coosa County, Alabama. Can Min 27 (in press)

    Google Scholar 

  • Garson MS, Bradshaw N, Ratawong S (1969) Lepidolite pegmatites in the Phangnga area of peninsular Thailand. In: Fox W (ed) 2nd Tech Conf Tin. Int Tin Counc Dep Mines Res, Thailand

    Google Scholar 

  • Gaupp R, Möller P, Morteani G (1984) Tantal-Pegmatite: geologische, petrologische und geochemische Untersuchungen. Monogr Ser Min Dep 23. Borntraeger, Berlin Stuttgart

    Google Scholar 

  • Ginsburg AI, Zdorik TB, Feldman LG (1978) Rare-metal carbonatites and rare-metal pegmatites. Int Geol Rev 21: 291–298

    Article  Google Scholar 

  • Ginsburg AI, Timofeyev IN, Feldman LG (1979) Principles of geology of the granitic pegmatites. Nedra, Moscow (in Russian)

    Google Scholar 

  • Glyuk DS, Trufanova LG, Bazarova SB (1980) Phase relations in the granite-H2O-LiF system at 1,000 kg/cm2. Geochem Int 17: 35–48

    Google Scholar 

  • Goad BE, Černý P (1981) Peraluminous pegmatitic granites and their pegmatite aureoles in the Winnipeg River district, southeastern Manitoba. Can Min 19: 177–194

    Google Scholar 

  • Grice JD, Černý P, Ferguson RB (1972) The Tanco pegmatite at Bernic Lake, Manitoba. II. Wodginite, tantalite, pseudo-ixiolite and related minerals. Can Min 11: 609–642

    Google Scholar 

  • Hanley JB, Heinrich EWm, Page RL (1950) Pegmatite investigations in Colorado, Wyoming, and Utah, 1942-1944. US Geol Surv Prof Pap 227

    Google Scholar 

  • Hatcher MI, Bolitho BC (1982) The Greenbushes pegmatite, southwest Western Australia. In: Černý P (ed) Granitic pegmatites in science and industry. Min Assoc Can Short Course Handb 8: 513-525

    Google Scholar 

  • Hatcher MI, Elliott A (1986) Greenbushes — a new world source of lithium. 7th Int Cong Ind Min Proc, pp 217-232

    Google Scholar 

  • Heinrich EWm (1953) Zoning in pegmatite districts. Am Mineral 38: 68–87

    Google Scholar 

  • Heinrich EWm (1964) Tin-tantalum-lithium pegmatites of the São João del Rei district, Minas Gérais, Brazil. Econ Geol 59: 982–1002

    Article  Google Scholar 

  • Heinrich EWm (1967) Micas of the Brown Derby pegmatites, Gunnison County, Colorado. Am Mineral 52: 1110–1121

    Google Scholar 

  • Heinrich EWm (1976) A comparison of three major lithium pegmatites: Varuträsk, Bikita, and Bernic Lake. US Geol Surv Prof Pap 1005: 50–54

    Google Scholar 

  • Heinrich EWm (1978) Mineralogy and structure of lithium pegmatites. J Min Recife 7: 59–65

    Google Scholar 

  • Hemley JJ, Jones WR (1964) Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism. Econ Geol 59: 538–569

    Article  Google Scholar 

  • Hutchinson RW (1955) Regional zonation of pegmatites near Ross Lake, District of MacKenzie, Northwest Territories. Geol Surv Can Bull 34: 50 pp

    Google Scholar 

  • Jahns RH (1953) The genesis of pegmatites II: quantitative analysis of lithium-bearing pegmatite, Mora County, New Mexico. Am Mineral 38: 1078–1112

    Google Scholar 

  • Jahns RH (1953) The study of pegmatites. Econ Geol 50th Anniv Vol 1955: 1025–1130

    Google Scholar 

  • Jahns RH (1982) Internal evolution of granitic pegmatites. In: Černý P (ed) Granitic pegmatites in science and industry. Min Assoc Can Short Course Handb 8: 293-346

    Google Scholar 

  • Jahns RH, Ewing RC (1976) The Harding mine, Taos County, New Mexico. N Mex Geol Soc Guideb, 27th Field Conf, Vermejo Park, pp 263-276

    Google Scholar 

  • James RS, Hamilton DL (1969) Phase relations in the system NaAlSi3O8-KAlSi3O8-CaAl2Si2O8-SiO2 at 1 kilobar water vapour pressure. Contrib Mineral Petrol 21: 111–141

    Article  Google Scholar 

  • Jolliff BL, Papike JJ, Shearer CK (1986) Tourmaline as a recorder of pegmatite evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Am Mineral 71: 472–500

    Google Scholar 

  • Jolliff BL, Papike JJ, Shearer CK (1987) Fractionation trends in mica and tourmaline as indicators of pegmatite internal evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochim Cosmochim Acta 51: 519–534

    Article  Google Scholar 

  • Kesler TL (1961) Exploration of the Kings Mountain pegmatites. Min Eng 13: 1062–1068

    Google Scholar 

  • Kesler TL (1976) Occurrence, development and long-range outlook of lithium-pegmatite ore in the Carolinas. US Geol Surv Prof Pap 1005: 45–50

    Google Scholar 

  • Kunasz I (1982) Foote Mineral Company — Kings Mountain operation. In: Černý P (ed) Granitic pegmatites in science and industry. Min Assoc Can Short Course Handb 8: 505-511

    Google Scholar 

  • Kuzmenko MV (ed) (1976) Rare-element granitic pegmatite fields (geochemical specialization and distribution). Nauka Moscow, 332 pp (in Russian)

    Google Scholar 

  • Kuzmenko MV (1978) Geochemistry of tantalum and genesis of endogenous tantalum deposits. Nauka, Moscow 212 pp (in Russian)

    Google Scholar 

  • Kuzmenko MV, Eskova EM (1968) Tantalum and niobium; genetic types of deposits and geochemistry. Nauka Moscow 338 pp

    Google Scholar 

  • Lahti S (1981) On the granitic pegmatites of the Eräjärvi area in Orivesi, southern Finland. Bull Geol Surv Finl 314: 82 pp

    Google Scholar 

  • Landes KK (1932) The Barringer Hill, Texas, pegmatite. Am Mineral 17: 381–390

    Google Scholar 

  • Landes KK (1933) Origin and classification of pegmatites of central Maine. Am Mineral 10: 33–55, 95-103

    Google Scholar 

  • Lenton PG (1979) Mineralogy and petrology of the Buck Claim lithium pegmatite, Bernic Lake, southeastern Manitoba. Unpubl M Sc Thesis, Univ Manitoba, Winnipeg

    Google Scholar 

  • London D (1982) Stability of spodumene in acidic and saline fluorine-rich environments. Carnegie Inst Geophys Lab Annu Rep 81: 331–334

    Google Scholar 

  • London D (1984) Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O: a petrogenetic grid for lithium-rich pegmatites. Am Mineral 69: 995–1004

    Google Scholar 

  • London D (1985) Pegmatites of the Middletown district, Connecticut. Field trip guide

    Google Scholar 

  • London D (1986a) Formation of tourmaline-rich gem pockets in miarolitic pegmatites. Am Mineral 71: 396–405

    Google Scholar 

  • London D (1986b) Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase-equilibrium experiments. Am Mineral 71: 376–395

    Google Scholar 

  • London D (1986c) Holmquistite as a guide to pegmatitic rare metal deposits. Econ Geol 81: 704–712

    Article  Google Scholar 

  • London D (1987) Internal differentiation of rare-element pegmatites: effects of boron, phosphorus, and fluorine. Geochim Cosmochim Acta 51: 403–420

    Article  Google Scholar 

  • Lumpkin GR, Chakoumakos BC, Ewing RC (1986) Mineralogy and radiation effects of microlite from the Harding pegmatite, Taos County, New Mexico. Am Mineral 71: 569–588

    Google Scholar 

  • Luster GR (1977) Lithologic variability of the Kings Mountain pegmatite, North Carolina. Unpubl M Sc Thesis, Pennsylvania State Univ

    Google Scholar 

  • Manning DAC, Henderson CMB (1981) The effect of the addition of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Prog Exp Petrol 1978-80, 5th Rep NERC Publ Ser D 18: 16–32

    Google Scholar 

  • Manning DAC, Pichavant M (1988) Volatiles and their bearing on the behaviour of metals in granitic systems. In: Taylor RP, Strong DF (eds) Recent advances in the geology of Granite-related mineral deposits. CIM Special Volume 39: 13-24

    Google Scholar 

  • Meintzer RE (1987) The mineralogy and geochemistry of the granitoid rocks and related pegmatites of the Yellowknife pegmatite field, Northwest Territories. PhD Thesis, Univ Manitoba, Winnipeg

    Google Scholar 

  • Meintzer RE, Wise MA, Černý P (1984) Distribution and structural setting of fertile granites and related pegmatites in the Yellowknife pegmatite field, District of MacKenzie. Curr Res Pt A, Geol Surv Can Pap 84-1A: 373-381

    Google Scholar 

  • Melentyev GB, Delitsyn LM (1969) Problem of liquation in magma. Dokl Acad Sci USSR AGI New York Earth Sci Ser 186: 215–217

    Google Scholar 

  • Morgan GB VI, London D (1987) Alteration of amphibolitic wall rocks around the Tanco rare-element pegmatite, Bernic Lake, Manitoba, Am Mineral 72: 1097–1121

    Google Scholar 

  • Mulligan R (1965) Geology of Canadian lithium deposits. Geol Surv Can Econ Geol Rep 21: 131 pp

    Google Scholar 

  • Munoz JL (1971) Hydrothermal stability relations of synthetic lepidolite. Am Mineral 56: 2069–2087

    Google Scholar 

  • Nikitin VD (1957) Characteristics of rare-metal mineralization in pegmatite veins. Zapiski Vses Min Obshtch 86: 18–29 (in Russian)

    Google Scholar 

  • Norton JJ (1973) Lithium, cesium, and rubidium — the rare alkali metals; In: Brobst DA, Pratt WP (eds) United States mineral resources. US Geol Surv Prof Pap 820: 365-378

    Google Scholar 

  • Norton JJ (1981) Origin of lithium-rich pegmatitic magmas, southern Black Hills, South Dakota. Geol Soc Am Rocky Mt Sec 34 Annu Mect, Rapid City Abstr Progr, p 221

    Google Scholar 

  • Norton JJ (1983) Sequence of mineral assemblages in differentiated granitic pegmatites. Econ Geol 78: 854–874

    Article  Google Scholar 

  • Norton JJ, Page RL, Brobst DA (1962) Geology of the Hugo pegmatite, Keystone, South Dakota. US Geol Surv Prof Pap 297-B: 49–128

    Google Scholar 

  • Norton JJ et al. (1964) Geology and mineral deposits of some pegmatites in the southern Black Hills, South Dakota. US Geol Surv Prof Pap 297-E: 293–341

    Google Scholar 

  • Orville PM (1960) Petrology of several pegmatites in the Keystone district, Black Hills, South Dakota. Geol Soc Am Bull 71: 1467–1490

    Article  Google Scholar 

  • Ovchinnikov LN, Solodov NA (eds) (1980) Deposits of lithophile rare metals. Nedra, Moscow (in Russian)

    Google Scholar 

  • Page RL et al. (1953) Pegmatite investigations, 1942-1945, Black Hills, South Dakota. US Geol Surv Prof Pap 247: 1–228

    Google Scholar 

  • Pichavant M (1981) An experimental study of the effect of boron on a water-saturated haplogranite at 1 kb vapour pressure. Contrib Mineral Petrol 76: 430–439

    Article  Google Scholar 

  • Pichavant M, Herrera JV, Boulmier S, Briqueu L, Joron J-L, Juteau M, Marin L, Michard A, Sheppard SMF, Treuil M, Vernet M (1987) The Macusani glasses, SE Peru: evidence of chemical fractionation in peraluminous magmas. In: Magmatic processes: physicochemical principles. Geochem Soc Spec Publ 1: 359–373

    Google Scholar 

  • Pye EG (1965) Georgia Lake area. Ontario Dep Mines Rep 31: 1–113

    Google Scholar 

  • Quensel P (1956) The paragenesis of the Varuträsk pegmatite. Ark Min Geol 2: 9–125

    Google Scholar 

  • Rijks HRP, Veen AH v. d. (1972) The geology of the tin-bearing pegmatites in the eastern part of the Kamativi district, Rhodesia. Mineral Deposit 7: 383–395

    Article  Google Scholar 

  • Robie RA, Hemingway BS (1984) Entropies of kyanite, andalusite and sillimanite: additional constraints on the pressure and temperature of the Al2SiO5 triple point. Am Mineral 69: 298–306

    Google Scholar 

  • Rosenberg PE (1972) Paragenesis of the topaz-bearing portion of the Brown Derby No. 1 pegmatite, Gunnison County, Colorado, Am Mineral 57: 571–583

    Google Scholar 

  • Rossovskyi LN, Chmyrev VM (1977) Distribution patterns of rare-metal pegmatites in the Hindu Kush (Afghanistan). Int Geol Rev 19: 511–520

    Article  Google Scholar 

  • Rudenko SA, Romanov VA, Morakhovskyi VN, Tarasov EB, Galkin GA, Dorokhin VK (1975) Conditions of formation and controls of distribution of muscovite objects of the North-Baikal muscovite province, and some general problems of pegmatite consolidation. In: Gordiyenko VV (ed) Muscovite pegmatites of the USSR. Nauka, Leningrad, pp 174-182 (in Russian)

    Google Scholar 

  • Schaller WT (1925) The genesis of lithium pegmatites. Am J Sci 5th Ser 10: 269–279

    Article  Google Scholar 

  • Schneiderhöhn H (1961) Die Erzlagerstätten der Erde, vol 2. Die Pegmatite. Fischer, Stuttgart

    Google Scholar 

  • Shearer CK, Papike JJ, Simon SB, Laul JC (1986) Pegmatite-wall rock interactions, Black Hills, South Dakota: Interaction between pegmatite-derived fluids and quartz-mica schist wall rock. Am Mineral 71: 518–539

    Google Scholar 

  • Shearer CK, Papike JJ, Laul JC (1987) Mineralogical and chemical evolution of a rare-element granite-pegmatite system: Harney Peak granite, Black Hills, South Dakota. Geochim Cosmochim Acta 51: 473–486

    Article  Google Scholar 

  • Sheridan DM, Stephens HG, Staatz MH, Norton JJ (1957) Geology and beryl deposits of the Peerless pegmatite, Pennington County, South Dakota. US Geol Surv Prof Pap 297-A: 1-47

    Google Scholar 

  • Shigley JE, Kampf AR, Foord EE, London D (1986) Field trip guide book to gem pegmatites of southern California. 14th Gen Meet Int Mineral Assoc 1986, Stanford Univ, pp 1-39

    Google Scholar 

  • Shmakin BM (1983) Geochemistry and origin of granitic pegmatites. Geochem Int 20: 1–8

    Google Scholar 

  • Simmons WmB, Heinrich EWm (1980) Rare-earth pegmatites of the South Platte district, Colorado. Col Geol Surv Res Ser 11: 1–131

    Google Scholar 

  • Simpson MG (1977) Structural analysis of the Kings Mountain belt, Kings Mountain, North Carolina. Unpubl M Sc Thesis, Univ S Car

    Google Scholar 

  • Solodov NA (1962) Internal structure and geochemistry of rare-element granitic pegmatites. Acad Sci USSR Moscow (in Russian)

    Google Scholar 

  • Solodov NA (1971) Scientific principles of perspective evaluation of rare-element pegmatites. Nauka, Moscow (in Russian)

    Google Scholar 

  • Staatz MH, Trites AF (1955) Geology of the Quartz Creek pegmatite district, Gunnison County, Colorado. US Geol Surv Prof Pap 265: 1–111

    Google Scholar 

  • Stanék J (1965) Contributions to the mineralogy of the South-Moravian County (Pegmatite from Dobrá Voda, near Velké Meziříčí). Folia Fac Sci Nat Univ Purkynianae Brunensis 6, Geol Op 8, 1 (in Czech)

    Google Scholar 

  • Stern LA, Brown GE, Jr., Bird DK, Jahns RH, Foord EE, Shigley JE, Spaulding LB Jr (1986) Mineralogy California. Am Mineral 71: 406–427

    Google Scholar 

  • Stewart DB (1978) Petrogenesis of lithium-rich pegmatites. Am Mineral 63: 970–980

    Google Scholar 

  • Sundelius HW (1963) The Peg claims spodumene pegmatites, Maine. Econ Geol 58: 84–106

    Article  Google Scholar 

  • Tatarinov AV (1974) Types of miarolitic pegmatites of the Borshtchovoshnyi Kryazh. Zap Vses Min Obsch 103: 52–67

    Google Scholar 

  • Taylor RG (1979) Geology of tin deposits. Dev Econ Geol 11. Elsevier, Amsterdam

    Google Scholar 

  • Thomas AV, Spooner ETC (1988) Occurrence, petrology and fluid inclusion characteristics of tantalum mineralization in the Tanco granitic pegmatite, s. e. Manitoba. In: Taylor RP, Strong DF (eds) Recent advances in the geology of Granite-related mineral deposits. CIM Spec Vol 39: 208-222

    Google Scholar 

  • Thoreau J (1950) La pegmatite stannifère de Manono, Katanga. CR Trav Congr Sci, Elisabethville 41: 1–33

    Google Scholar 

  • Thurston WR (1955) Pegmatites of the Crystal Mountains District, Larimer County, Colorado. US Geol Surv Bull 1011: 1–185

    Google Scholar 

  • Trueman DL, Černý P (1982) Exploration for rare-element granitic pegmatites. In: Černý P (ed) Granitic pegmatites in science and industry. Min Assoc Can Short Course Handb 8: 463-494

    Google Scholar 

  • Uebel P-J (1977) Internal structure of pegmatites, its origin and nomenclature. N Jahrb Mineral Abn 131: 83–113

    Google Scholar 

  • Vladykin NV, Dorfman MD, Kovalenko VI (1974) Mineralogy, geochemistry and genesis of rare-element topaz-lepidolite-albite pegmatites of the Mongolian People’s Republic. Trud Min Mus Acad Sci USSR 23: 6–49 (in Russian)

    Google Scholar 

  • Wang X-J, Zou T-R, Xu J-G, Yu X-Y, Qiu Y-Z (1981) Study of pegmatite minerals from the Altai region. Sci Publ House, Beijing, pp 1-140 (in Chinese)

    Google Scholar 

  • Winkler HGF (1967) Petrogenesis of metamorphic rocks; 2nd edn. Springer, Berlin Heidelberg New York, 334 pp

    Google Scholar 

  • Wise MA (1987) Geochemistry and crystal chemistry of Nb, Ta and Sn minerals from the Yellowknife pegmatite field, N.W.T. Ph D Thesis, Univ Manitoba, Winnipeg

    Google Scholar 

  • Wise MA, Meintzer RE, Černý P (1986) The Yellowknife pegmatite field: mineralogy and geochemistry of Nb-Ta-Sn oxide minerals. Contrib Geol NWT 2, Geol Div INAC Yellowknife NAP EGS 1985-86: 15–25

    Google Scholar 

  • Wise MA, Meintzer RE, Černý P (1988) Phosphate mineralogy of the Yellowknife pegmatite field. Contrib Geol NWT 3, Geol Div INAC Yellowknife NAP EGS 1986-87: 123–129

    Google Scholar 

  • Zagorskyi VY, Khaltuyeva K (1976) Chemistry of metasomatic alteration of amphibolites in exocontacts of tantalum-containing pegmatites. Chem Abstr 90: 1–87

    Google Scholar 

  • Zagorskyi VY, Makrygin AI, Matveeva LN (1974) On the rubidium-rich Li-Fe-Mg-micas from exocontacts of rare-element pegmatites. 1973 Annu Rep Geochem Inst Sib Br Acad Sci USSR: 143-147 (in Russian)

    Google Scholar 

  • Zalashkova NE (1957) Albitization stages in granitic pegmatites on the example of an Altai pegmatite field. Trudy IMGRE 1957: 155–164 (in Russian)

    Google Scholar 

  • Zasedatelev AM (1974) Possible accumulation of lithium in host rocks of lithium pegmatite veins during old sedimentation processes. Dokl Acad Sci USSR 218: 196–198

    Google Scholar 

  • Zasedatelev AM (1977) Quantitative model of metamorphic generation of rare-metal pegmatite with lithium mineralization. Dokl Acad Sci USSR 236: 219–221

    Google Scholar 

  • Zayachkivsky B (1985) Granitoids and rare-element pegmatites of the Georgia Lake area, northwest Ontario. M Sc Thesis, Lakehead Univ, Thunder Bay, Ontario

    Google Scholar 

  • Zou, Tianren, Yang, Yueqing, Guo, Yongquan, Ni, Yunxiang (1985) China’s crust-and mantle-source pegmatites and their discriminating criteria. Geochem Beijing 4: 1–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Černý, P. (1989). Characteristics of Pegmatite Deposits of Tantalum. In: Möller, P., Černý, P., Saupé, F. (eds) Lanthanides, Tantalum and Niobium. Special Publication No. 7 of the Society for Geology Applied to Mineral Deposits, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87262-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87262-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87264-8

  • Online ISBN: 978-3-642-87262-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics