REE(Y), Nb, and Ta Enrichment in Pegmatites and Carbonatite-Alkalic Rock Complexes

  • P. Möller
Part of the Special Publication No. 7 of the Society for Geology Applied to Mineral Deposits book series (MINERAL DEPOS., volume 7)


Under favourable conditions REE(Y) and Ta(Nb) are enriched in complex granitic pegmatites but not both in the same body. The two groups of elements follow different fractionation trends. In alkalic rock-carbonatite complexes, however, REE(Y) and Nb(Ta) are always concentrated together. This geochemical coherence is remarkable because REE(Y) are expected to act as cations, whereas Ta and Nb form nuclei of complex anions. Both element suites are considered as “incompatible”, but their degree of incompatability differs. REE(Y) substitute for Ca, Fe and to some degree Mg in common rock-forming minerals and, as a result, are widely distributed. The anionic species of Ta and Nb do not substitute for \(SiO_4^{4 - }\) in silicates. Ta and Nb commonly substitute for Ti, Zr, W and Sn. The enrichment of REE(Y), Nb and Ta is closely linked with the petrogenesis of pegmatites, carbonatites and alkalic rocks.


Fluid Inclusion Incompatible Element Liquid Immiscibility Contrib Mineral Petrol Nepheline Syenite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleksandrov IV (1967) Niobium in carbon dioxide solutions and considerations concerning migration of rare elements under hydrothermal conditions. Geokhimiya: 684-693Google Scholar
  2. Aleksandrov IV, Krasov AM, Kochnova LM (1985) Effect of potassium, sodium and fluorine on association of rock-forming minerals and formation of tantalum-niobium ore mineralization in rare metal granite pegmatites. Geokhimiya: 620-629Google Scholar
  3. Allsopp HL (1986) The Palaborwa complex: isotopic evidence for ancient lithospheric enrichment. Joint Annu Meet GAC, MAC, CGU, Ottawa 11: 40Google Scholar
  4. Barker DS (1986) Carbonatite emplacement mechanisms: a review. Geol Assoc Can Joint Annu Meet, Ottawa 11: 43Google Scholar
  5. Becker P, Bilal BA (1985) Lanthanide-fluoride ion association in aqueous sodium chloride solutions at 25°C. J Solut Chem 14: 407–415Google Scholar
  6. Bedson P (1983) The origin of the carbonatites and their relation to other rocks by liquid immiscibility. Thesis, Univ Manchester, UKGoogle Scholar
  7. Bedson P (1984) Rare earth element distribution between immiscible silicate and carbonate liquids. Nat Environ Res Council Publ Ser D 25: 12–19Google Scholar
  8. Bell K, Blenkinsop J (1987) Archean depleted mantle: evidence from Nd and Sr initial isotopic ratios of carbonatites. Geochim Cosmochim Acta 51: 291–298Google Scholar
  9. Bergholz J (1978) Spurenanalysen an Pegmatiten SW-Afrikas. Thesis, Tech Univ Berlin, D83, 157ppGoogle Scholar
  10. Bilal BA, Koß V (1982) Complex formation of trace elements in geochemical systems-IV. Polyhedron 1: 239–241Google Scholar
  11. Bilal BA, Langer P (1987) Complex formation of trace elements in geochemical systems: Stability constants of fluoro-lanthanide complexes in 1 m NaCl aqueous medium up to 200°C and 1000 bars. Inorg Chim Acta 140: 297–298Google Scholar
  12. Blaxland AB, Bremen O v., Emeleus CH, Anderson JG (1978) Age and origin of the major syenite centers in the Gardar province of south Greenland: Rb-Sr studies. Geol Soc Am Bull 89: 231–244Google Scholar
  13. Bowden P (1985) The geochemistry and mineralization of alkaline ring complexes in Africa (a review). J A fr Earth Sci 3: 17–39Google Scholar
  14. Bray JM (1942) Spectroscopic distribution of minor elements in igneous rocks from Jamestown, Colorado. Geol Soc Am Bull 53: 765–814Google Scholar
  15. Brey GP, Green DH (1976) Solubility of CO2 in olivine melilitite at high pressures and role of CO2 in the earth’s upper mantle. Contrib Mineral Petrol 55: 217–230Google Scholar
  16. Burton JD, Culkin F (1969) Gallium. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, Berlin Heidelberg New York, II: 31 B-OGoogle Scholar
  17. Candela PA, Holland HD (1986) A mass transfer model for copper and molybdenum in magmatic hydrothermal systems: the origin of porphyry-type ore deposits. Econ Geol 81: 1–19Google Scholar
  18. Černý P (ed) (1982a) Anatomy and classification of granitic pegmatites. In: Granitic pegmatites in science and technology. Mineral Assoc Can, Winnipeg 8: 1–40Google Scholar
  19. Černý P, Ercit TS (1985) Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatites. Bull Mineral 108: 499–532Google Scholar
  20. Černý P, Trueman DL, Ziehlke DV, Goad BE, Paul BJ (1981) The Cat Lake-Winnipeg River and the Wekusko Lake Pegmatite Fields, Manitoba. Manitoba Dep Energ Min, 216 ppGoogle Scholar
  21. Černý P, Smith JV, Mason RA, Delaney JS (1984) Geochemistry and petrology of feldspar crystallization in the Veszna pegmatite, Czechoslovakia. Can Mineral 22: 631–651Google Scholar
  22. Černý P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. Can Mineral 23: 381–421Google Scholar
  23. Černý P, Goad BE, Hawthorne FC, Chapman R (1986) Fractionation of the Nb-and Ta-bearing oxide minerals in the Greer Lake pegmatitic granite and its pegmatite aureole, southeastern Manitoba. Am Mineral 71: 501–517Google Scholar
  24. Clark GS (1982) Rubidium-strontium isotope systematics of complex granitic pegmatites. In: Černý P (ed) Granitic pegmatites in science and technology. Mineral Assoc Can, Winnipeg 8: 347-372Google Scholar
  25. Clark GS, Černý P (1987) Radiogenic 87Sr, its mobility, and the interpretation of Rb-Sr fractionation trends in rare-element granitic pegmatites. Geochim Cosmochim Acta 51: 1011–1018Google Scholar
  26. Clarke DB, Muecke GK, Pe-Piper G (1983) The lamprophyres of Ubekendt Ejland, West Greenland: products of renewed partial melting or extreme differentiation? Contrib Mineral Petrol 83: 117–127Google Scholar
  27. Correns CW (1969) Titanium. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, Berlin Heidelberg New York II: 22 B-OGoogle Scholar
  28. Cullers RL, Medaris G (1977) Rare earth elements in carbonatite and cogenetic alkaline rocks: examples from Seabrook Lake and Callander Bay, Ontario. Contrib Mineral Petrol 65: 143–153Google Scholar
  29. Cuney M, Autran A, Burnol L (1985) Premiers résultats sur le sondage G.P.F. de 900 m réalisé sur le granite sodolithique et fluoré à minéralisation disséminée de Beaurai. Chron Rech Min 481: 59–63Google Scholar
  30. Drake MJ, Weill DF (1975) Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between plagioclase feldspar and magmatic liquid: an experimental study. Geochim Cosmochim Acta 39: 689–712Google Scholar
  31. Eby GN (1975) Abundance and distribution of the rare-earth elements and yttrium in the rocks and minerals of the Oka carbonatite complex, Quebec. Geochim Cosmochim Acta 39: 597–620Google Scholar
  32. Eggler DH (1974) Effect of CO2 on the melting of peridotite. Annu Rep Div Geophys Lab Washington 73: 215–224Google Scholar
  33. Erlank AJ, Smith HS, Marchant JW, Cardoso MP, Ahrens LH (1969) Hafnium. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, Berlin Heidelberg New York, II: 72 B-OGoogle Scholar
  34. Faure G, Powell JL (1972) Strontium isotope geology. Springer, Berlin Heidelberg New York, 182 ppGoogle Scholar
  35. Foord EE (1976) Mineralogy and petrogenesis of layered pegmatite-aplite dikes in the Mesa Grande district, San Diego County, California. PhD Thesis, Stanford UnivGoogle Scholar
  36. Freestone IC, Hamilton DL (1980) The role of liquid immiscibility in the genesis of carbonatites — an experimental study. Contrib Mineral Petrol 73: 103–117Google Scholar
  37. Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta 38: 1023–1059Google Scholar
  38. Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis. J Petrol 19: 463–513Google Scholar
  39. Gast PW (1968) Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim Cosmochim Acta 32: 1057–1086Google Scholar
  40. Gaupp R, Möller P, Morteani G (1984) Tantal — Pegmatite. Geologische, petrologische und geochemische Untersuchungen. Monogr Ser Mineral Deposits 23: 124 ppGoogle Scholar
  41. Ginsburg AE, Timofeyev IN, Feldman LG (1979) Principle of geology of the granitic pegmatites. Nedra, Moscow, 296 ppGoogle Scholar
  42. Gittins J (1986) Genesis and evolution of carbonatite magma. Geol Assoc Can Joint Annu Meet, Ottawa 1986 11: 73Google Scholar
  43. Gittins J, McKie D (1980) Alkali carbonatite magmas: Oldoinyo Lengai and its wider applicability. Lithos 13: 213–215Google Scholar
  44. Gmelin’s Handbook of inorganic chemistry (1971) Tantal, B2: 383 ppGoogle Scholar
  45. Green HW (1972) A CO2-charged asthenosphere. Nat Phys Sci 238: 2–5Google Scholar
  46. Green HW, Radcliffe SV (1975) Fluid precipitates in rocks from the earth’s mantle. Geol Soc Am Bull 86: 846–852Google Scholar
  47. Green TH, Pearson NJ (1987) An experimental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature. Geochim Cosmochim Acta 51: 55–62Google Scholar
  48. Gurney JJ, Harte B (1980) Chemical variations in upper mantle nodules from southern African kimberlites. Philos Trans R Soc London Ser A 297: 273–293Google Scholar
  49. Haapala I (1977) Petrography and geochemistry of the Eurajoki stock, a rapakivi-granite complex with greisen-type mineralization in southwestern Finland. Bull Geol Surv Finl 286: 128 ppGoogle Scholar
  50. Haapala I (1980) Fluid inclusions in the apatite of the Sokli carbonatite, Finland — a preliminary report. Geologi 32: 83–87Google Scholar
  51. Haggerty SE (1986) Kimberlite-carbonatite relations: brethren or distant cousins? Joint Annu Meet GAC, MAC, CGU, Ottawa, 11: 76Google Scholar
  52. Hamilton DL, Bedson P (1986) Carbonatites by liquid immiscibility. Joint Annu Meet GAC, MAC, CGU, Ottawa 11: 77Google Scholar
  53. Hamilton DL, Freestone IC, Dawson JB, Donaldson CH (1979) Origin of carbonatites by liquid immiscibility. Nature (London) 279: 408–410Google Scholar
  54. Hamilton DL, Bedson P, Essen J (in press) The behaviour of trace elements in the evolution of carbonatites. In: Bell K (ed) CarbonatitesGoogle Scholar
  55. Heier KS, Billings GK (1969) Potassium. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, Berlin Heidelberg New York, II: 19 B-NGoogle Scholar
  56. Heinrich EW (1969) Niobium. In: Wedepohl KH (ed) Handbook of geochemistry, Springer, Berlin Heidelberg New York, 11: 41DGoogle Scholar
  57. Henderson P (1984) Rare earth element geochemistry. Elsevier, Amsterdam, Oxford, New York, Tokyo, 510 ppGoogle Scholar
  58. Hildreth W (1979) The Bishop tuff: evidence for the origin of compositional zonation in silicic magma chambers. Geol Soc Am Spec Pap 180: 43–75Google Scholar
  59. Hoefs J (1980) Stable isotope geochemistry, 2nd edn. Springer, Berlin Heidelberg, New York, 208 ppGoogle Scholar
  60. Holdaway MJ (1971) Stability of andalusite and the aluminum silicate diagram. Am J Sci 271: 97–131Google Scholar
  61. Huang WL, Wyllie PJ (1974) Melting relations of muscovite with quartz and sanidine in the K2O-Al2O3-SiO2-H2O system at 30 kbars and an outline of paragenetic melting relations. Am J Sci 274: 378Google Scholar
  62. Jackson ED, Wright TL (1970) Xenoliths in the Honolulu volcanic series, Hawaii. J Petrol 11: 405–430Google Scholar
  63. Jahns RH (1982) Internal evolution of pegmatite bodies. In: Černý P (ed) Granitic pegmatites in science and technology. Mineral Assoc Canada, Winnipeg, 8: 293-327Google Scholar
  64. Jahns RH, Burnham CW (1969) Experimental studies of pegmatite genesis. I. A model for the derivation and crystallization of granitic pegmatites. Econ Geol 64: 843–864Google Scholar
  65. Jolliff BL, Papike JJ, Shearer CD (1987a) Fractionation trends in mica and tourmaline as indicators of pegmatite internal evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochim Cosmochim Acta 51: 519–534Google Scholar
  66. Jolliff BL, Papike JJ, Laul JC (1987b) Mineral recorders of pegmatite internal evolution: REE contents of tourmaline from the Bob Ingersoll pegmatite, South Dakota. Geochim Cosmochim Acta 51: 2225–2232Google Scholar
  67. Jordan TH (1978) Composition and development of the continental tectosphere. Nature (London) 274: 544–548Google Scholar
  68. Kjarsgaard BA, Hamilton DL (in press) Liquid immiscibility and the origin of alkali-poor carbonatites. Mineral MagGoogle Scholar
  69. Knorring O von (1960) Some geochemical aspects of columbite-bearing soda granite from south-east Uganda. Nature (London) 188: 204–206Google Scholar
  70. Koster Van Groos AF (1968) Liquid immiscibility in the join NaAlSi3O8-Na2CO3-H2O and its bearing on the genesis of carbonatites. Am J Sci 266: 932–967Google Scholar
  71. Koster Van Groos AF (1975) The effect of high CO2-pressures on alkalic rocks and its bearing on the formation of alkalic ultrabasic rocks and the associated carbonatites. Am J Sci 275: 163–185Google Scholar
  72. Koster Van Groos AF, Wyllie PJ (1966) Liquid immiscibility in the system Na2O-Al2O3-SiO2-CO2 at pressures to 1 kb. Am J Sci 275: 163–185Google Scholar
  73. Koster Van Groos AF, Wyllie P (1969) Melting relations in the system NaAlSi3O8-NaCl-H2O at 1 kbar pressure. J Geol 77: 581–605Google Scholar
  74. Koster Van Groos AF, Wyllie PJ (1973) Liquid immiscibility in the join NaAlSi3O8-CaAl2Si2O8-Na2CO3-H2O. Am J Sci 273: 465–487Google Scholar
  75. Kosukhin ON (1978) Low-temperature melt inclusions in the quartz of chambered pegmatites. Sov Geol Geophys 18: 56–61Google Scholar
  76. Kwon ST, Tilton GR (1986) Comparative isotopic studies of Cargill and Borden carbonatite complexes from the Kapuskasing gravity high zone, Ontario. Joint Annu Meet GAC, MAC, CGU, Ottawa, 11: 92Google Scholar
  77. Lausch J, Möller P, Morteani G (1974) Distribution of rare earth elements between carbonates and gneisses of the Pennine zone in the Zillertal Alps (Tyrol, Austria). N Jahrb Miner Monatsh 1974: 490–507Google Scholar
  78. Le Bas MJ (1977): Carbonatite magmas. Mineral Mag 44: 133–140Google Scholar
  79. Le Bas MJ, Handley CD (1979) Variation in apatite composition in ijolitic and carbonatitic igneous rocks. Nature (London) 279: 54–56Google Scholar
  80. Lloyd FE, Bailey PK (1975) Light element metasomatism of the continental mantle: the evidence and the consequences. Phys Chem Earth 9: 389–416Google Scholar
  81. London D (1984) Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O: a petrogenetic grid for lithium-rich pegmatites. Am Mineral 69: 995–1004Google Scholar
  82. London D (1986a) Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase-equilibrium experiments. Am Mineral 71: 376–395Google Scholar
  83. London D (1986b) Formation of tourmaline-rich gem pockets in miarolitic pegmatites. Am Mineral 71: 396–405Google Scholar
  84. London D (1987) Internal differentiation of rare-element pegmatites: effects on boron, phosphorus, and fluorine. Geochim Cosmochim Acta 51: 403–420Google Scholar
  85. London D, Burt DM (1982) Chemical models for lithium aluminosilicate stabilities in pegmatites and granites. Am Mineral 67: 494–509Google Scholar
  86. London D, Spooner ETC, Roedder E (1982) Fluid-solid inclusions in spodumene from the Tanco pegmatite, Bernic Lake, Manitoba. Carnegie Inst Washington Yearb 81: 334–339Google Scholar
  87. Longstaffe FJ (1982) Stable isotopes in the study of granitic pegmatites and related rocks. In: Černý P (ed) Granitic pegmatites in science and technology. Mineral Assoc Can, Winnipeg, 8: 373-404Google Scholar
  88. Manning DAC (1981) The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess of water at 1 kb. Contrib Mineral Petrol 76: 206–215Google Scholar
  89. Manning DAC, Henderson CMB (1984) The behaviour of tungsten in granitic melt vapour systems Contrib Mineral Petrol 86: 286–293Google Scholar
  90. Manning DAC, Hamilton DL, Henderson CMB, Dempsey MJ (1980) The probable occurrence of interstitial Al in hydrous, F-bearing and F-free aluminous melts. Contrib Mineral Petrol 75: 257–262Google Scholar
  91. Maravic H von (1983) Geochemische und petrographische Untersuchungen zur Genese des niobführenden Karbonatit/Cancrinit-Syenitkomplexes von Lueshe, Kivu/NE-Zaire. Thesis, Tech Univ Berlin D83: 330 ppGoogle Scholar
  92. Middlemost EAK (1974) Petrogenetic model for the origin of carbonatites. Lithos 7: 275–278Google Scholar
  93. Mitchell RH, Brunfelt AO (1975) Rare Earth element geochemistry of the Fen alkaline complex, Norway. Contrib Mineral Petrol 52: 247–259Google Scholar
  94. Möller P (1983) Lanthanoids as a chemical probe and problems in lanthanoid geochemistry. Distribution and behaviour of lanthanoids in non-magmatic phases. In Sinha SP (ed) Systematics and properties of the lanthanides. Reidel, Dordrecht Lancaster, pp 561-616Google Scholar
  95. Möller P (1988) The dependence of partition coefficients on differences of ionic volumes in crystal-melt systems. Contrib Mineral Petrol 99: 62–69Google Scholar
  96. Möller P, Dulski P (1983) Fractionation of Zr and Hf in cassiterite. Chem Geol 40: 1–12Google Scholar
  97. Möller P, Muecke GK (1984) Significance of the Eu anomalies in silicate melts and crystal melt equilibria: a re-evaluation. Contrib Mineral Petrol 87: 242–250Google Scholar
  98. Möller P, Maus H, Gundlach H (1982) Die Entwicklung von Flußspatmineralistionen im Bereich des Schwarzwaldes. Jahresh Geol Landesamt Baden-Württemberg 24: 35–70Google Scholar
  99. Montgomery A (1950) Geochemistry of Ta in the Harding pegmatite, Taos County, New Mexico: Am Mineral 35: 853–866Google Scholar
  100. Morey GW (1957) The solubility of solids in gases. Econ Geol 52: 225–251Google Scholar
  101. Mysen BO (1977) The solubility of CO2 and H2O under predicted magma genesis conditions and some petrological and geophysical implications. Rev Geophys Space Phys 15 (3): 351–361Google Scholar
  102. Mysen BO (1986) Structure and petrologically important properties of silicate melts relevant to natural magmatic liquids. In: Short course handbook. Mineral Assoc Canada, Winnipeg, pp 180-209Google Scholar
  103. Mysen BO, Virgo D (1985) Interaction between fluorine and silica in quenched melts on the joints SiO2-AlF3 and SiO2-NaF determined by Raman spectroscopy. Phys Chem Mineral 12: 77–85Google Scholar
  104. Nekrasov IYa (1970) Distribution of tantalum and niobium in magmatic and postmagmatic rocks and minerals of the northeastern USSR. Geochem Int 7: 378–394Google Scholar
  105. Neuman ER (1980) Petrogenesis of the Oslo Region larvikites and associated rocks. J Petrol 21: 499–531Google Scholar
  106. O’Hara MJ, Mathews RE (1981) Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber. J Geol Soc (London) 138: 237–277Google Scholar
  107. Oxburgh ER, Turcotte DL (1968) Mid-ocean ridges and geotherm distribution during mantle convection. J Geophys Res 73: 2643–2661Google Scholar
  108. Pichavant M (1981) An experimental study of the effect of boron on a water saturated haplogranite at 1 kbar vapour pressure. Contrib Mineral Petrol 76: 430–439Google Scholar
  109. Pichavant M (1983) Melt-fluid interaction deduced from studies of silicate-B2O3-H2O systems at 1 kb. Bull Mineral 106: 201–211Google Scholar
  110. Rankama K (1944) On the geochemistry of tantalum. Bull Commun Geol Finl 133: 1–78Google Scholar
  111. Rankin AH, Le Bas MJ (1974) Nahcolite (NaHCO3) in inclusions in apatites from some East African ijolites and carbonatites. Mineral Mag 39: 564–570Google Scholar
  112. Register ME (1979) Geochemistry and geochronology of the Harding pegmatite, Taos County, New Mexico. Thesis, Dep Geol, Univ New Mexico, 145 ppGoogle Scholar
  113. Riley GH (1970) Excess 87Sr in pegmatitic phosphates. Geochim Cosmochim Acta 34: 727–731Google Scholar
  114. Roedder E (1963) Studies of fluid inclusions II: Freezing data and their interpretation. Econ Geol 58: 167–211Google Scholar
  115. Roedder E (1965) Liquid CO2 inclusions in olivine-bearing nodules and phenocrysts from basalts. Am Mineral 50: 1746–1782Google Scholar
  116. Roedder E (1984) Fluid inclusions. Rev Mineral 12: 644Google Scholar
  117. Ryabchikov ID, MacKenzie WS (1984) Fluid compositions on the join Na AlSi2 O6-H2O at 20-30 kbar and 650°C. In: Progress in experimental petrology. Nat Environ Res Council Publ Ser D 25: 19–21Google Scholar
  118. Saunders AD, Tarney J, Weaver SD (1980) Transverse geochemical variations across the Antarctic Peninsula: implications for the genesis of calc-alkaline magmas. Earth Planet Sci Lett 46: 344–360Google Scholar
  119. Shaw HR, Smith RL, Hildreth W (1976) Thermogravitational mechanism for chemical variations in zoned magma chambers. Geol Soc Am Abstr Progr 8: 1102Google Scholar
  120. Shearer CK, Papike JJ, Simon SB, Laul JC (1986) Pegmatite-wall rock interaction, Black Hills, South Dakota: interaction between pegmatite-derived fluids and quartz-mica schist wall rock. Am Mineral 71: 339–518Google Scholar
  121. Shearer CK, Papike JJ, Laul JC (1987) Mineral and chemical evolution of a rare-element granite-pegmatite system: Harney Peak Granite, Black Hills, South Dakota. Geochim Cosmochim Acta 51: 473–486Google Scholar
  122. Simmons WB, Heinrich EW (1980) Rare earth pegmatites of the South Platte District, Colorado. Col Geol Surv Denver, Resource Ser 11: 131 ppGoogle Scholar
  123. Simmons WB, Lee MT, Brewster RH (1987) Geochemistry and evolution of the South Platte granite-pegmatite system, Jefferson County, Colorado. Geochim Cosmochim Acta 51: 455–472Google Scholar
  124. Sörensen H (1979) The alkaline rocks. Wiley & Sons, Chichester, New York, Brisbane, Toronto, 622 ppGoogle Scholar
  125. Sörensen H (1986) The alkaline rocks — a review. Fortschr Mineral 64 (1): 63–86Google Scholar
  126. Stewart DB (1978) Petrogenesis of lithium-rich pegmatites. Am Mineral 63: 970–980Google Scholar
  127. Sun SS (1982) Chemical composition and origin of the earth’s primitive mantle. Geochim Cosmochim Acta 46: 179–192Google Scholar
  128. Sun SS, Hanson GN (1975) Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle sources for alkali basalts and nephelinites. Contrib Mineral Petrol 52: 77–106Google Scholar
  129. Sun SS, Nesbitt RW (1977) Chemical heterogeneity of the Archean mantle, composition of the earth and the mantle evolution. Earth Planet Sci Lett 35: 429–448Google Scholar
  130. Tarney J, Wood DA, Saunders AD, Cann JR, Varet J (1980) Nature of mantle heterogeneity in the North Atlantic: evidence from deep sea drilling. Philos Trans R Soc London Ser A 297: 179–202Google Scholar
  131. Taylor BE, Foord EE, Friedrichsen H (1979) Stable isotope and fluid-inclusion studies of gem-bearing granitic pegmatite-aplite dikes, San Diego Co., California. Contrib Mineral Petrol 68: 187–205Google Scholar
  132. Taylor HP, Epstein S (1962) Relationship between 18O/16O ratios in coexisting minerals of igneous and metamorphic rocks. Principles and experimental results. Geol Soc Am Bull 73: 461–480Google Scholar
  133. Taylor HP, Frechen J, Degens ET (1967) Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany, and Alnö district, Sweden. Geochim Cosmochim Acta 31: 407–430Google Scholar
  134. Taylor RP, Fryer BJ (1983) Rare earth lithogeochemistry of granitoid mineral deposits. CIM Bull 76: 74–84Google Scholar
  135. Tingle TN, Fenn PM (1984) Transport and concentration of molybdenum in granite systems: effects of fluorine and sulfur. Geology 12: 156–158Google Scholar
  136. Thompson RN, Morrison MA, Hendry GL, Parry SJ (1984) An assessment of the relative roles of crust and mantle in magma genesis: an elemental approach. Philos Trans R Soc London Ser A 310: 549–590Google Scholar
  137. Treiman AH ( 1986) A petrogenetic grid for carbonatites. Geol Assoc Can, Joint Annu Meet Ottawa 1986, Abstr 11: 138Google Scholar
  138. Verwoerd WJ (1978) Liquid immiscibility and the carbonate-ijolite relationship: preliminary data on the join NaFe3+ Si2O6-CaCO3 and related compositions. Carnegie Inst Washington Yearb 77: 767–774Google Scholar
  139. Vlasov KA (1966) Geochemistry and mineralogy of rare elements and genetic types of their deposits. I. Geochemistry of rare elements. Isr Progr Sci Transi, Jerusalem, 688 ppGoogle Scholar
  140. Walker RJ, Hanson GN, Papike JJ, O’Neil RJ, Laul JC (1986) Internal evolution of the Tin Mountain pegmatite, Black Hills, South Dakota. Am Mineral 71: 440–459Google Scholar
  141. Watkinson DH, Wyllie PJ (1971) Experimental studies of the compositional join NaAlSiO4-CaCO3-H2O and the genesis of alkali rock-carbonatite complexes. J Petrol 12: 357–378Google Scholar
  142. Watson EB, Green TH (1981) Apatite/liquid partition coefficients for the rare earth elements and strontium. Earth Planet Sci Lett 56: 405–421Google Scholar
  143. Wedepohl KH (ed) (1969) Tantalum. In: Handbook of geochemistry. Springer, Berlin Heidelberg New York, II: 73 B-GGoogle Scholar
  144. Wendlandt RF, Harrison WJ (1979) Rare earth partitioning between immiscible carbonate and silicate liquids and CO2 vapour: results and implications for the formation of light rare earth-enriched rocks. Contrib Mineral Petrol 69: 409–419Google Scholar
  145. Winkler HGF (1976) Petrogenesis of metamorphic rocks. Springer, Berlin Heidelberg New York, 334 ppGoogle Scholar
  146. Wood DA (1979) A variable veined suboceanic upper mantle — genetic significance for mid-oceanic ridge basalts from geochemical evidence. Geology 7: 499–503Google Scholar
  147. Woolley AR (1986) The distribution of carbonatites in space and time. Joint Annu Meet GAC, MAC, CGU, Ottawa 11: 147Google Scholar
  148. Wyllie PJ (1987) Volcanic rocks: boundaries from experimental petrology. Fortschr Mineral 65: 249–284Google Scholar
  149. Wyllie PJ, Huang WL (1975) Peridotite, kimberlite, and carbonatite explained in the system CaO-MgO-SiO2-CO2. Geology 3: 621–624Google Scholar
  150. Wyllie PJ, Tuttle O (1964) Experimental investigation of silicate systems containing two volatile components. III Am J Sci 262: 930–939Google Scholar
  151. Zakharchenko AI (1964) Physicochemical conditions and processes of formation of granitic pegmatites. Geochem Int 1057Google Scholar
  152. Zakharchenko AI (1973) Pegmatite-forming melt-solutions, on the basis of their inclusions in minerals of granitic-chamber pegmatites. COFFI 6: 172–183Google Scholar
  153. Znamenskii EB, Konysova VV, Krinberg IA, Popolitov EI, Flerova KV, and Tsykhanskii VD (1962) Distribution of titanium, niobium, and tantalum in granitic rocks containing titanite. Geochemistry 919-925Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • P. Möller
    • 1
  1. 1.Hahn-Meitner-Institut Berlin GmbH, AG GeochemieBerlin 30Germany

Personalised recommendations