Skip to main content

Micropuncture and Microanalysis in Kidney Physiology

  • Chapter
Book cover Laboratory Techniques in Membrane Biophysics

Abstract

Micropuncture techniques and microanalysis have been the prerequisites for the investigation of two major questions in kidney physiology:

  1. 1.

    At what sites along the nephron are the different substances transported into or out of the tubular urine;

  2. 2.

    How do these transport mechanisms work, e.g. by what forces and through which mediating structures are substances moved from one compartement into another and how are these processes regulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R. H.: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (Lond.) 133, 631 (1956).

    CAS  Google Scholar 

  2. Alexander, J. T., and W. L. Nastuk: An instrument for the production of microelectrodes used in electrophysiological studies. Rev. Sci. Instrum. 24, 528 (1953).

    Article  Google Scholar 

  3. Baumann, K.: Unpublished observations.

    Google Scholar 

  4. Bloomer, A. H., F. C. Rector Jr., and D. W. Seldin: The mechanism of potassium reabsorption in the proximal tubule of the rat. J. clin. Invest. 42, 277 (1963).

    Article  PubMed  CAS  Google Scholar 

  5. Boroffka, I.: Elektrolyt-Transport im Nephridium von Lumbricus Terrestris. Z. vergl. Physiol. 51, 25 (1965).

    Article  Google Scholar 

  6. Bott, P. A.: Renal excretion of creatinine in necturus. A reinvestigation by direct analysis of glomerular and tubular fluid for creatinine and inulin. Amer. J. Physiol. 168, 107 (1952).

    PubMed  CAS  Google Scholar 

  7. Brandis, M., G. Braun-Schubert, and K. H. Gertz: Retrograde flow of fluid within superficial tubules after blockade of glomerular filtration by aortic clamping. V. Symposium der Gesellschaft für Nephrologie, Lausanne 1967 (in press).

    Google Scholar 

  8. Burg, M.: Concentration steps in diodrast transport by flounder proximal tubules. Fed. Proc. 26, 266 (1967).

    Google Scholar 

  9. Burg, M., J. Grantham, M. Abramow, and J. Orloff: Preparation and study of fragments of single rabbit nephrons. Amer. J. Physiol. 210, 1293 (1966).

    PubMed  CAS  Google Scholar 

  10. Burkhardt, D.: Ultramikroelektroden aus Glas. Herstellung und Verwendung bei elektrophysiologischen Messungen. Glas und Instrumententechnik 3, 115 (1959).

    Google Scholar 

  11. Capek, K., G. Fuchs, G. Rumrich und K. J. Ullrich: Harnstoffpermeabilität der corticalen Tubulusabschnitte von Ratten in Antidiurese und Wasser-diurese. Pflügers Arch. ges. Physiol. 290, 237 (1966).

    Article  CAS  Google Scholar 

  12. Clapp, J. R., F. C. Rector, and D. W. Seldin: Effect of unreabsorbed anions on proximal and distal transtubular potentials in the rat. Amer. J. Physiol. 202, 781 (1962).

    PubMed  CAS  Google Scholar 

  13. Deetjen, P., u. H. Sonnenberg: Der tubuläre Transport von p-Aminohippur-säure. Mikroperfusionsversuche am Einzelnephron der Rattenniere in situ. Pflügers Arch. ges. Physiol. 285, 35 (1965).

    Article  CAS  Google Scholar 

  14. Donaldson, P. E. K.: Electronic apparatus for biological research. London: Butterworth 1958.

    Google Scholar 

  15. Eigler, F. W.: Short-circuit current measurements in proximal tubule of necturus kidney. Amer. J. Physiol. 201, 157 (1961).

    PubMed  CAS  Google Scholar 

  16. Fatt, P.: Intracellular microelectrodes. In: Methods in Medical Research, Vol. 9, p. 381. Chicago: J. H. Quastel (Editor-in Chief).

    Google Scholar 

  17. Fatt, P., and B. Katz: The electrical properties of crustacean muscle fibers. J. Physiol. (Lond.) 120, 171 (1953).

    CAS  Google Scholar 

  18. Flanigan, W. J., and D. E. Oken Renal micropuncture study of the develop-ment of anuria in the rat with mercury-induced acute renal failure. J. clin. Invest. 44, 449 (1965).

    Article  PubMed  CAS  Google Scholar 

  19. Frank, K., and M. C. Becker: Microelectrodes for recording and stimulation, In: W. L. Nastuk Ed., Physical techniques in biological research, Vol. V. Part A, p. 23. New York and London: Academic press 1964.

    Google Scholar 

  20. Frick, A., G. Rumrich, K. J. Ullrich, and W. E. Lassiter: Microperfusion study of calcium transport in the proximal tubule of the rat kidney. Pflügers Arch. ges. Physiol. 286, 109 (1965).

    Article  CAS  Google Scholar 

  21. Frömter, E., u. U. Hegel: Transtubuläre Potentialdifferenzen an proxi-malen und distalen Tubuli der Rattenniere. Pflügers Arch. ges. Physiol. 291, 107 (1966).

    Article  Google Scholar 

  22. Frömter, E., C. W. Müller und H. Knauf: Fixe negative Wandladungen im proximalen Konvolut der Rattenniere uud ihre Beeinflussung durch Calciumionen. VI. Symposium der Gesellschaft für Nephrologie, Wien 1968 (in press).

    Google Scholar 

  23. Frömter, E., T. Wick und U. Hegel: Untersuchungen zur Ausspritzmethode für die Lokalisation der Mikroelektrodenspitze bei transtubulären Potentialmessungen an der Ratte. Pflügers Arch. ges. Physiol. 294, 265 (1967).

    Article  Google Scholar 

  24. Gertz, K. H.: Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol. 276, 336 (1962).

    Article  Google Scholar 

  25. Gertz, K. H., J. A. Mangos, G. Braun, and H. D. Pagel: Pressure in the glomerular capillaries of the rat kidney and its relation to arterial blood pressure. Pflügers Arch. ges. Physiol. 288, 369 (1966).

    Article  CAS  Google Scholar 

  26. Giebisch, G.: Electrical potential measurements on single nephrons of necturus. J. cell. comp. Physiol. 51, 221 (1958).

    Article  CAS  Google Scholar 

  27. Glabman, S., R. M. Klose, and G. Giebisch: Micropuncture study of ammonia excretion in the rat. Amer. J. Physiol. 205, 127 (1963).

    PubMed  CAS  Google Scholar 

  28. Gottschalk, C. W., and M. Mylle: Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressure. Amer. J. Physiol. 185, 430 (1956).

    PubMed  CAS  Google Scholar 

  29. Grantham, J., and J. Orloff: Mechanism of potassium secretion in isolated perfused collecting tubules. Fed. Proc. 26, 375 (1967).

    Google Scholar 

  30. Hegel, U., u. E. Frömter: Erfahrungen mit der Öltropfenmethode zur Lokalisation der Mikroelektrodenspitze bei transtubulären Potentialmessungen an der Rattenniere. Pflügers Arch. ges. Physiol. 291, 121 (1966).

    Article  CAS  Google Scholar 

  31. Hegel, U., und T. Wick: Der elektrische Wandwiderstand des proximalen Konvolutes der Rattenniere. Pflügers Arch. ges. Physiol. 294, 274 (1967).

    Article  CAS  Google Scholar 

  32. Hierholzer, K., and K. J. Ullrich: Grundzüge der Nierenphysiologie. In: Handb. Pharmakol. (In press.)

    Google Scholar 

  33. Hierholzer, K., M. Wiederholt, H. Holzgreve, G. Giebisch, R. M. Klose, and E. E. Windhager: Micropuncture study of renal transtubular concentration gradients of sodium and potassium in adrenalectomized rats. Pflügers Arch. ges. Physiol. 285, 193 (1965).

    Article  Google Scholar 

  34. Hilger, H. H., J. D. Klümper und K. J. Ullrich: Wasserrückresorption und Ionentransport durch die Sammelrohrzellen der Säugetierniere. Pflügers Arch. ges. Physiol. 267, 218 (1958).

    Article  CAS  Google Scholar 

  35. Kalbert, F.: Direct reading biological cryostat. Clifton technical physics, Wanamassa N. J. USA.

    Google Scholar 

  36. Kashgarian, M., H. Stöckle, C. W. Gottschalk, K. J. Ullrich, and G. Rumrich: Transtubular electrochemical potentials of sodium and chloride in proximal and distal renal tubules of rats during antidiuresis and water diuresis. Pflügers Arch. ges. Physiol. 277, 89 (1963).

    Article  CAS  Google Scholar 

  37. Kashgarian, M., Y. Warren, and H. Levitin (with the technical assistance of M. Garzasty): Micropuncture study of proximal renal tubular chloride transport durin hypercapnea in the rat. Amer. J. Physiol. 209, 655 (1965).

    PubMed  CAS  Google Scholar 

  38. Khuri, R. M., S. K. Agulian, H. Oelert, and R. I. Harik: A single unit pH glass ultramicroelectrode. Pflügers Arch. ges. Physiol. 294, 291 (1967).

    Article  CAS  Google Scholar 

  39. Klümper, J. D., K. J. Ullrich und H. H. Hilger: Das Verhalten des Harn-stoffs in den Sammelrohren der Säugetierniere. Pflügers Arch. ges. Physiol. 267, 238 (1958).

    Article  Google Scholar 

  40. Knauf, H., u. E. Frömter: Messung des Kurzschlußstroms an den Speichel-drüsengängen des Menschen. Pflügers Arch. ges. Physiol. (In preparation.)

    Google Scholar 

  41. Langer, K. H., W. Thoenes und M. Wiederholt: Licht- und elektronen-mikroskopische Untersuchungen am proximalen Tubuluskonvolut der Rattenniere nach intraluminaler Ölinjektion. Pflügers Arch. 302, 149 (1968).

    Article  PubMed  CAS  Google Scholar 

  42. Lechene, C., et F. Morel: Microinjections de sodium et d’inuline marqués dans les capillaires du rein de hamster. I. Perméabilité au sodium des segments tubulaires corticaux. Nephron 2, 207 (1964).

    Google Scholar 

  43. Leyssac, P. P.: Dependence of glomerular filtration rate on proximal tubular reabsorption of salt. Acta physiol. scand. 58, 236 (1963).

    Article  PubMed  CAS  Google Scholar 

  44. Loeschke, K., u. K. Baumann: Kinetische Studien der D-Glukoseresorption im proximalen Konvolut der Rattenniere. Pflügers Arch. 305, 139 (1969).

    Article  PubMed  CAS  Google Scholar 

  45. Loeschke, K., H. Renschler und K. J. Ullrich: Differenzierung zwischen aktiver und passiver Komponente des D-Glukosetransports am proximalen Konvolut der Rattenniere. Pflügers Arch. ges. Physiol. 305, 118 (1969).

    Article  CAS  Google Scholar 

  46. Loewenstein, W., and Y. Kanno: Some electrical properties of a nuclear membrane examined with a microelectrode. J. gen. Physiol. 46, 1123 (1963).

    Article  PubMed  CAS  Google Scholar 

  47. Malnic, G., R. M. Klose, and G. Giebisch: Micropuncture study of renal potassium excretion in the rat. Amer. J. Physiol. 206, 674 (1964).

    PubMed  CAS  Google Scholar 

  48. Marsh, D. J., Ch. Frazier, and J. Dector: Measurement of urea concentration in nanoliter specimens of renal tubular fluid and capillary blood. Analyt. Biochem. 11, 73 (1965).

    Article  PubMed  CAS  Google Scholar 

  49. Marsh, D. J., and S. Solomon: Relationship of electrical potential differences to net ion fluxes in rat proximal tubules. Nature (Lond.) 201, 714 (1964).

    Article  CAS  Google Scholar 

  50. Müller, P.: Experiments on current flow and ionic movements in single myelinated nerve fibers. Exp. Cell. Res. Suppl. 5, 118 (1958).

    Google Scholar 

  51. Nastuk, W. L., Ed.: Physical techniques in biological research, Vol. V. Elec-trophysiological methods. New York and London: Academic Press 1964.

    Google Scholar 

  52. Oelert, H., E. Uhlich und A. G. Hills: Messungen des Ammoniakdruckes in den cortikalen Tubuli der Rattenniere. Pflügers Arch. ges. Physiol. 300, 35 (1968).

    Article  CAS  Google Scholar 

  53. Pillat, B., u. P. Heistracher: Ein einfaches Verfahren zur Sichtbarmachung von Glasmikroelektroden mit Hilfe von Fluorescin. Experientia (Basel) 16, 519 (1960).

    Article  CAS  Google Scholar 

  54. Prager, D. J., and R. L. Bowman: Freezing point depression. New method for measuring ultramicro quantities of fluid. Science 142, 237 (1963).

    Article  PubMed  CAS  Google Scholar 

  55. Ramsay, J. A., and R. H. J. Brown: Simplified apparatus and procedure for freezing-point determination upon small volumes of fluid. J. sci. Instrum. 32, 372 (1955).

    Article  CAS  Google Scholar 

  56. Ramsay, J. A., R. M. J. Brown, and P. C. Croghan: Electrometric titration of chloride in small volumes. J. exp. Biol. 32, 822 (1955).

    CAS  Google Scholar 

  57. Ruiz-Guinazu, A., G. Pehling, G. Rumrich und K. J. Ullrich: Glukose-und Milchsäurekonzentration an der Spitze des vaskulären Gegenstrom-systems im Nierenmark. Pflügers Arch. Ges. Physiol. 274, 311 (1961).

    Article  CAS  Google Scholar 

  58. Sakai, F., R. L. Jamison, and R. W. Berliner: A method for exposing the rat renal medulla in vivo: micropuncture of the collecting duct. Amer. J. Physiol. 209, 663 (1965).

    PubMed  CAS  Google Scholar 

  59. Sonnenberg, H., P. Deetjen und W. Hampel: Methode zur Durchströmung einzelner Nephronabschnitte. Pflügers Arch. ges. Physiol. 278, 669 (1964).

    Article  CAS  Google Scholar 

  60. Sonnenberg, H., H. Oelert, and K. Baumann: Proximal tubular reabsorption of some organic acids in the rat kidney in vivo. Pflügers Arch. ges. Physiol. 286, 171 (1965).

    Article  CAS  Google Scholar 

  61. Steinhausen, M.: Eine Methode zur Differenzierung proximaler und distaler Tubuli der Nierenrinde von Ratten in vivo und ihre Anwendung zur Bestimmung tubulärer Strömungsgeschwindigkeiten. Pflügers Arch. ges. Physiol. 277, 23 (1963).

    Article  Google Scholar 

  62. Tasaki, I., E. H. Polley, and F. Orrego: Action potentials from individual elements in cat geniculate and striate cortex. J. Neurophysiol. 17, 454 (1954).

    PubMed  CAS  Google Scholar 

  63. Uhlich, E., C. F. Baldamus und K. J. Ullrich: CO2-Druck und Bicarbonat-konzentration im Gegenstromsystem der Nierenpapille. Pflügers Arch. ges. Physiol. 303, 31 (1968).

    Article  CAS  Google Scholar 

  64. Ullrich, K. J., F. W. Eigler und G. Pehling: Sekretion von Wasserstoff-ionen in den Sammelrohren der Säugetierniere. Pflügers Arch. ges. Physiol. 267, 491 (1958).

    Article  CAS  Google Scholar 

  65. Ullrich, K. J., u. A. Hampel: Eine einfache Mikroküvette für Monochromator Zeiss und Beckman Modell DU. Pflügers Arch. ges. Physiol. 268, 177 (1958).

    Article  CAS  Google Scholar 

  66. Ullrich, K. J., H. H. Hilger und D. J. Klümper: Sekretion von Ammoniumionen in den Sammelrohren der Säugetierniere. Pflügers Arch. ges. Physiol. 267, 244 (1958).

    Article  CAS  Google Scholar 

  67. Ullrich, K. J., G. Pehling und M. Espinar-Lafuente: Wasser- und Elektrolytfluß im vaskulären Gegenstromsystem des Nierenmarks. Pflügers Arch. ges. Physiol. 273, 562 (1961).

    Article  CAS  Google Scholar 

  68. Ullrich, K. J., G. Pehling und H. Stöckle: Hämoglobinkonzentration, Erythrocytenzahl und Hämatokrit im vasa recta Blut. Pflügers Arch. ges. Physiol. 273, 573 (1961).

    Article  CAS  Google Scholar 

  69. Ullrich, K. J., G. Pehling and G. Rumrich: The minimum requirements for the maintenance of sodium chloride reabsorption in the proximal convolution of mammalian kidney. J. Physiol. (Lond.) 197, 69–70 P (1968).

    Google Scholar 

  70. Ullrich, K. J., G. Pehling, and B. Schmidt-Nielsen: Urea transport in the collecting ducts of rats on normal and low protein diet. Pflügers Arch. ges. Physiol. 295, 147 (1967).

    Article  CAS  Google Scholar 

  71. Ullrich, K. J., B. Schmidt-Nielsen, R. O’Dell, G. Pehling, C. W. Gottschalk, W. E. Lassiter and M. Mylle: Micropuncture study of composition of proximal and distal tubular fluid in rat kidney. Amer. J. Physiol. 204, 527 (1963).

    PubMed  CAS  Google Scholar 

  72. Vurek, G. G., C. M. Bennett, R. L. Jamison, and J. L. Troy: An air-driven micropipette sharpener. J. appl. Physiol. 22, 191 (1967).

    PubMed  CAS  Google Scholar 

  73. Vurek, G. G., C. M. Bennett, R. L. Jamison, and R. L. Bowman: Helium-glow photometer for picomole analysis of alkali metals. Science 149, 448 (1965).

    Article  PubMed  CAS  Google Scholar 

  74. Vurek, G. G., C. M. Bennett, R. L. Jamison, and S. E. Pegram: Fluorometric method for the determination of nanogram quantities of inulin. Anal. Biochem. 16, 409 (1966).

    Article  CAS  Google Scholar 

  75. Wahl, M., W. Nagel, H. Fischbach, and K. Thurau: On the application of the occlusion time method for measurements of lateral net fluxes in the proximal convolution of the rat kidney. Pflügers Arch. ges. Physiol. 298, 141 (1967).

    Article  CAS  Google Scholar 

  76. Walker, A. M., and J. Oliver: Methods for the collection of fluid from single glomeruli and tubules of the mammalian kidney. Amer. J. Physiol. 134, 562 (1941).

    CAS  Google Scholar 

  77. Whittembury, G.: Site of potential difference measurements in single renal proximal tubules of necturus. Amer. J. Physiol. 204, 401 (1963).

    PubMed  CAS  Google Scholar 

  78. Whittembury, G., u. E. E. Windhager: Electrical potential difference measurements in perfused single proximal tubules of necturus kidney. J. gen. Physiol. 44, 679 (1961).

    Article  PubMed  CAS  Google Scholar 

  79. Wick, T., u. E. Frömter: Das Zellpotential des proximalen Konvoluts der Rattenniere in Abhängigkeit von der peritubulären Ionenkonzentration. Pflügers Arch. ges. Physiol. 294, R 17 (1967).

    Article  Google Scholar 

  80. Wiederholt, M., K. H. Langer, W. Thoenes und K. Hierholzer: Funk-tionelle und morphologische Untersuchungen am proximalen und distalen Konvolut der Rattenniere zur Methode der gespaltenen Ölsäule (split oil droplet method). Pflügers Arch. 302, 166 (1968).

    Article  PubMed  CAS  Google Scholar 

  81. Windhager, E. E.: Peritubuläre Kontrolle der Natriumresorption im proxi-malen Tubulus. VI. Symposium der Gesellschaft für Nephrologie, Wien 1968 (in press).

    Google Scholar 

  82. Windhager, E. E., E. L. Boulpaep, and G. Giebisch: Electrophysiological studies on single nephrons. Proc. 3rd. int. Congr. Nephrol. Washington 1966, Vol. 1, pp. 35. Basel/New York: Karger 1967.

    Google Scholar 

  83. Windhager, E. E., and G. Giebisch: Comparison of short-circuit current and net water movement in single perfused proximal tubules of rat kidneys. Nature (Lond.) 191, 1205 (1961).

    Article  CAS  Google Scholar 

  84. Wirz, H.: Druckmessungen in Kapillaren und Tubuli der Niere durch Mikro-punktion. Helv. physiol. pharmacol. Acta 13, 42 (1955).

    PubMed  CAS  Google Scholar 

  85. Zwiebel, R., B. Höhmann, P. Frohnert und K. Baumann: Fluorometrisch-enzymatische Mikro- und Ultramikrobestimmung von Inulin und Glucose. Pflügers Arch. 307, 127 (1969).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Ullrich, K.J., Frömter, E., Baumann, K. (1969). Micropuncture and Microanalysis in Kidney Physiology. In: Passow, H., Stämpfli, R. (eds) Laboratory Techniques in Membrane Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87259-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87259-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-04592-2

  • Online ISBN: 978-3-642-87259-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics