Advertisement

Diagnose von Hirntumoren mit radioaktiven Isotopen

  • W. Maurer
  • O. Wilcke
Part of the Handbuch der Neurochirurgie book series (NEUROCHIRURGIE, volume 4 / 3)

Zusammenfassung

Die Diagnose von Hirntumoren hat ihren Ausgangspunkt in der Beobachtung, daß Tumorgewebe im Vergleich zu normalem Gewebe gewisse Farbstoffe anreichert. Wassermann, Keysser u. Wassermann führten bereits 1911 Versuche durch, bei denen der Farbstoff Peptobromo-Fluorescein (Eosin) als Vehikel für das toxische Selen zwecks Chemotherapie benutzt wurde.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

I. Diagnostische Verwendung von y-strahlenden Radio-Isotopen. Extrakranielle Messungen der γ- Aktivität

  1. Allen, H. C., J. R. Risser and J. A. Greene: Improvements in autlining of thyreoid and localisation of brain tumors by the application of sodium iodide gamma-ray spectomatry techniques. Radioisotope Conference 1954 Oxford.Google Scholar
  2. Ashkenazy, M.: The detection of intracranial lesions, especially recurrent tumors, by the use of radioactive isotopes and the scintillation counter. J. Amer, pharm. Ass. 42, 125–126 (1953).CrossRefGoogle Scholar
  3. Ashkenazy, M., and J.W. Crawley: The value of serial studies of cerebrovascular permeability with radioactive iodinated serum albumin and the scintillation counter, particularly in the detection of neurosurgical lesions. Amer. Surg. 19, 155–164 (1953).Google Scholar
  4. Ashkenazy, M., L. Davis and J. Martin: An evaluation of the technic and results of the radioactive di-jodo-fluorescein test for the localization of intracranial lesions. J. Neurosurg. 8, 300–314 (1951).PubMedCrossRefGoogle Scholar
  5. Ashkenazy, M., G. V. le Roy, T. Fields and L. Davis: The detection of intracranial tumors by the use of di-J-131-fluorescein. J. Lab. clin. Med. 34, 1580–1581 (1949).Google Scholar
  6. Askenasy, H. M., I. Z. Kosary, Z. Levitus and J. Braham: Orally administered radioactive sodium iodide in the detection of intra-cranial tumours. Acta neurochir. (Wien) 9, 539–542 (1961).CrossRefGoogle Scholar
  7. Baudouin, A., D. Petit-Dutaillis et T. Planiol-Dupeyron: Résultats obtenus par les isotopes radioactifs dans le diagnostic des tumeurs cérébrales d’après l’étude de 70 malades. Bull. Acad. nat. Méd. (Paris) 140, 567 (1956).Google Scholar
  8. Baudouin, A., et T. Planiol-Dupeyron: Utilisation de la sérum-albumine iodéoradio-active dans l’étude des affections cérébrales tumorales et vasculaires. Rev. neurol. 5, 387–397 (1955).Google Scholar
  9. Bauer, F. K., and E. T. Yuhl: Myelography by means of J-131. The myeloscintigram. Neurology (Minneap.) 3, 341–346 (1953).CrossRefGoogle Scholar
  10. Baumann, A., M. A. Rothschild, R. S. Yalow and S. A. Berson: Distribution and metabolism of j-131 labeled human serum albumin in congestive heart failure with and without proteinuria. J. clin. Invest. 34, 1359–1368 (1955).CrossRefGoogle Scholar
  11. Belcher, E. H., and H. D. Evans: The localization of cerebral tumors with radioactive derivatives of fluorescein. Physical limitations. Brit. J. Radiol. 24, 272–279 (1951).PubMedCrossRefGoogle Scholar
  12. Belcher, E. H., and H. D. Evans, J. G. de Winter: Use of radioactive di-iodo-fluorescein for the attempted localization of brain tumors. Brit. med. Bull. 8, Nr 2–3, 172–180 (1952).PubMedGoogle Scholar
  13. Bell, R. L.: Isotope transfer test for diagnosis of ventriculosubarachnoidal block. J. Neurosurg. 14, 674–679 (1957).PubMedCrossRefGoogle Scholar
  14. Bell, R. L.: Isotope transfer test in the diagnosis and treatment of hydrocephalus. Int. J. appl. Radiat. 5, 89–93 (1959).PubMedCrossRefGoogle Scholar
  15. Bell, R. L., and G. J. Hertsch: Automatic contour scanner for myelography. Int. J. appl. Radiat. 7, 19–22 (1959).PubMedCrossRefGoogle Scholar
  16. Bender, M. A., and M. Blau: A versatile, high contrast photoscanner for localization of human tumors with radioisotopes. Int. J. appl. Radiat. 4, 154–161 (1959).PubMedCrossRefGoogle Scholar
  17. Berson, S. A., and R. S. Yalow: The distribution of J-131 labeled human serum albumin introduced into ascitic fluid: analysis of the kinetics of a three compartment catenary transfer system in man and speculations on possible sites of degradation. J. clin. Invest. 33, 377–387 (1954).PubMedCrossRefGoogle Scholar
  18. Berson, S. A., and R. S. Yalow, S. S. Schreiber and J. Post: Tracer experiments with J-131 labeled human serum albumin: distribution and degradation studies. J. clin. Invest. 32, 746–768 (1953).PubMedCrossRefGoogle Scholar
  19. Boyack, Gr., G. E. Moore and D. F. Clausen: Localization of brain tumors with radiodyes. Part 1: Chemical and physical aspects, the synthesis of di-iodo-131-fluorescein. Nucleonics 3, Nr. 10, 62–68 (1948).PubMedGoogle Scholar
  20. Chiro, Gr. Di: Risa encephalography and conventional neurologic methods. Acta radiol. (Stockh.) Suppl. 201 (1961).Google Scholar
  21. Chou, S. N., J. B. Aust, Gr. E. Moore and W. T. Peyton: Radioactive iodinated human serum albumin as tracer agent for diagnosing and localizing intracranial lesions. Proc. Soc. exp. Biol. (N. Y.) 77, 193–195 (1951).Google Scholar
  22. Chou, S. N., J. B. Aust, W. T. Peyton and G. E. Moore: Radioactive isotopes in localization of intracranial lesions: A survey of various types of isotopes and „tagged compounds“ useful in the diagnosis and localization of intracranial lesions with special reference to the use of radioactive iodine-tagged human serum albumin. Arch. Surg. (Chicago) 63, 554–560 (1951).CrossRefGoogle Scholar
  23. Chou, S. N., and L. A. French: Systemic absorption and urinary excretion of Risa from subarachnoid space. Neurology (Minneap.) 5/8, 555–557 (1955).CrossRefGoogle Scholar
  24. Chou, S. N., and L. A. French: Graphic interpretation of isotope localization of intracranial lesions. J. Neurosurg. 14, 421–429 (1957).PubMedCrossRefGoogle Scholar
  25. Chou, S. N., G. E. Moore and J. F. Marvin: Localization of brain tumors with radio-iodide-131. Science 115, 119–120 (1952).PubMedCrossRefGoogle Scholar
  26. Cohen, S., R. C. Holloway, C. Matthews and A. S. McFarlane: Distribution and elimination of J-131 and C-14 labelled plasma proteins in rabbit. Biochem. J. 62, 143–154 (1956).PubMedGoogle Scholar
  27. Davis, L.: The radioactive di-iodo-fluorescein tests for the lokalisation of intracranial lesion. Ann. roy. Coll. Surg. Engl. 9, 349–365 (1951).Google Scholar
  28. Davis, L., and T. Craigmile: Results of radioactive isotope encephalography. J. Neurosurg. 11, 262–267 (1954).PubMedCrossRefGoogle Scholar
  29. Davis, L., and S. L. Goldstein: Diagnosis and localization of organic lesions of the central nervous system using radioactive diiodofluorescein. Radiology 59, 514–520 (1952).PubMedGoogle Scholar
  30. Davis, L., J. Martin and M. Ashkenazy: Clinical use of di-iodofluorescein in diagnosis and localization of tumors of the central nervous system in one hundred and five consecutive patients. Arch. Neurol. Psych. 65, 97–99 (1951).Google Scholar
  31. Davis, L., J. Martin and M. Ashkenaz, G. V. Le Roy and Th. Fields: Radioactive di-iodo-fluorescein in diagnosis and localization of central nervous system tumors. J. Amer. med. Ass. 144, 1424–1432 (1950).CrossRefGoogle Scholar
  32. Dunbar, H. S., and B. S. Ray: Localization of brain tumors and other intracranial lesions with radioactive iodinated human serum albumin. Surg. Gynec. Obstet. 98, 433–436 (1954).PubMedGoogle Scholar
  33. Entzian, W.: Zur Diagnostik von Hirntumoren mit markiertem Albumin. Acta neurochir. (Wien) Suppl. 6, 140–154 (1959).Google Scholar
  34. Escobar, A.: The use of radioactive iodinated human serum albumin (RISA) as an aid in localizing intracranial tumors. Acta neurol. lat.-amer. 2, 143–152 (1956).Google Scholar
  35. Fischgold, H., et J. Buisson-Ferey: Les méthodes ambulatoires dans l’examen de l’épilepsie tardive de l’adulte. Rev. neurol. 101, 2, 149–162 (1959).PubMedGoogle Scholar
  36. Griffin, M. A., P. P. Goland and R. H. Chamberlain: Localization of radioactive materials in the phantom brain. Nucleonics 6, Nr 4, 37–43 (1950).Google Scholar
  37. Haines, G. L., L. A. French and G. E. Moore: Radioisotope investigations on the blood-brain and blood-liquor barrier. Neurology (Minneap.) 3, 460–465 (1953).CrossRefGoogle Scholar
  38. Kohl, D. A., G. E. Moore and S. N. Chou: A szintillation counter für clinical use. Nucleonics 9, Nr 7, 68–73 (1951).PubMedGoogle Scholar
  39. Kramer, S., L. M. Burton and M.G. Trott: Radioactive isotopes in the localization of brain tumors. Acta radiol. (Stockh.) 46, 415 (1956).Google Scholar
  40. Krupin, E.N.: Anwendung von Radon zur topischen Diagnose der Rückenmarks-Tumoren. Vop. Nejrohir. H. 4, 18–21 (1956). [Russisch.]Google Scholar
  41. Langer, A., and R. Loevinger: A computational procedure for the isotope method of brain tumor localization. Science 117, 247–248 (1953).PubMedCrossRefGoogle Scholar
  42. Lyass, F. M., and B. I. Smagin: Employment of the method of scanning for making more accurate the localization of spinal cord tumors. Med. Radiol. (Mosk.) 5, 51–52 (1960).Google Scholar
  43. Magalotti, M. F., and I. F. Hummon: Localization of intracranial lesions by radioactive isotopes. (D.I.F.) Amer. J. Roentgenol. 83, 135–144 (1960).PubMedGoogle Scholar
  44. Martinelli, V., D. Marini e A. Sabato: Localizzazione di tumori cerebrali con la siero-albumina umana radioiodata. Ann. ital. Chir. 36, 726–738 (1959).PubMedGoogle Scholar
  45. Marvin, J. F., and G. E. Moore: Lokalization of brain tumors with radio-dyes. Part. II: Experimental evaluation of the physical limitations. Nucleonics 3, Nr 10, 63–65 (1948).PubMedGoogle Scholar
  46. Mayneord, W. V.: The use of radioactive isotopes in diagnostic procedures. Internat. Confer. Geneva, 1955, Vol. X, S. 209–217.Google Scholar
  47. Moore, G. E.: Fluorescein as an agent in the differentiation of normal and malignant tissues. Science 106, 130–131 (1947).PubMedCrossRefGoogle Scholar
  48. Moore, G. E.: Use of radioactive diiodofluorescein in the diagnosis and localization of brain tumors. Science 107, 569–571 (1948).PubMedCrossRefGoogle Scholar
  49. Moore, G. E.: Radioactive localization of brain tumors. J. Amer. med. Ass. 137, 1228–1229 (1948).Google Scholar
  50. Moore, G. E.: Isotope encephalometry: External localization techniques for the diagnosis of brain tumors. J. Amer. pharm. Ass. 42, 126–129 (1953).CrossRefGoogle Scholar
  51. Moore, G. E., C. M. Caudill, J. F. Marvin, J. B. Aust, S. N. Chou and G. A. Smith: Clinical and experimental studies of intracranial tumors with fluorescein dyes. With an additional note concerning the possible use of K-42 and iodine-131 tagged human albumin. Amer. J. Roentgenol. 66, 1–8 (1951).Google Scholar
  52. Moore, G. E., S. W. Hunter and T. B. Hubbard: Clinical and experimental studies of fluorescein dyes with special reference to their use for the diagnosis of central nervous system tumors. Ann. Surg. 130, 637–642 (1949).PubMedCrossRefGoogle Scholar
  53. Moore, G. E., D. A. Kohl, J. F. Marvin, J. C. Wang and C. M. Caudill: Biophysical studies of methods utilizing fluorescein and its derivatives to diagnose brain tumors. Radiology 55, 344–362 (1950).PubMedGoogle Scholar
  54. Moore, G. E., W. T. Peyton, L. A. French and W. W. Walker: The clinical use of fluorescein in neurosurgery. The localization of brain tumors. J. Neurosurg. 5, 392–398 (1948).PubMedCrossRefGoogle Scholar
  55. Moore, G. E., W. T. Peyton, S. W. Hunter and L. A. French: The clinical use of sodium fluorescein and radioactive diodofluorescein in the localization of tumors of the central nervous system. Minn. Med. 31, 1073 bis 1076 (1948).Google Scholar
  56. Mundinger, F.: Tierexperimentelle und klinische Untersuchungen mit Radio-Wismut (Math) zur Lokalisationsdiagnostik von Tumoren. Fortschr. Röntgenstr. 86, 118–123 (1957).CrossRefGoogle Scholar
  57. Mundinger, F.: Un nuovo radioisotopo per lalokalizzazione diagnostica di affezione cerbrali. Minerva med. (Torino) 48, 4478–4484 (1957).Google Scholar
  58. Mundinger, F.: Radio-Wismut (Bi83206) als neues, spezifisches Hirntumordiagnostikum. Acta neurochir. (Wien) Suppl. 6, 140–153 (1959).Google Scholar
  59. Mundinger, F.: Ergebnisse der extrakraniellen Lokalisation und Artdiagnose von Hirntumoren mit Bi206. Nucl. Med. (Stuttg.) 1, 2, 167–174 (1959).Google Scholar
  60. Mundinger, F.: Radioactive bismuth (Bi206), its biological basis and results in the localization and possible specific diagnosis of intracranial expanding lesions. 2. Internat. Kongr. für Neurochirurgie, Washington 1961.Google Scholar
  61. Oeff, K., u. P. Körtge: Abbau und Verteilung von J-131-markiertem Albumin bei Normalpersonen und Patienten mit Lebercirrhose. Klin. Wschr. 1956, 75–80.Google Scholar
  62. Perryman, C.R., P. R. Noble and F. H. Bragdon: Myeloscmtigraphy: A useful procedure for localization of spinal block lesions. Amer. J. Roentgenol. 80, 101–111 (1958).Google Scholar
  63. Peyton, W. T.: Isotope localization in brain tumor. Amer. J. Surg. 93, 952–956 (1957).PubMedCrossRefGoogle Scholar
  64. Peyton, W. T., B. E. Moore, L. A. French and S. N. Chou: Localization or intracranial lesions by radioactive isotopes. J. Neurosurg. 9, 432–442 (1952).PubMedCrossRefGoogle Scholar
  65. Planiol, T.: Diagnostic des tumeurs cérébrales par les radioisotopes. Thérapie 12, 747–762 (1957).PubMedGoogle Scholar
  66. Planiol, T.: Diagnostic lésions intracraniennes par les radio-isotopes. Paris: Masson & Cie. 1959.Google Scholar
  67. Planiol, T.: Diagnostic. uses of radioisotopes. 2. Internat. Kongr. für Neurochirurgie, Washington 1961.Google Scholar
  68. Reid, W. B., and H. E. Johns: An automatic brain scanner. Int. J. appl. Radiol. 3, 1–7 (1958).CrossRefGoogle Scholar
  69. Rhody, R. B., and G. R. Nowlis: The use of radioactive iodinated serum albumin in the localization of intracranial lesions. J. Neurosurg. 14, 413–420 (1957).PubMedCrossRefGoogle Scholar
  70. Rocca, E. D., y J. Bedoya: Los isotopos radioactivos en neurocirurgica. Acta neurol. lat.-amer. 3, 400–409 (1957).Google Scholar
  71. Rothenberg, S. F., E. J. Penka and R. W. Garrity: A new isotope method for detection continued or recurrent bleeding after subarachnoid hemoorhage. J. Neurosurg. 15, 215–222 (1958).PubMedCrossRefGoogle Scholar
  72. Roy, G. V. Le, W. R. Tweedy and M. Ashkenazy: Radioactive di-iodo-131 -fluorescein: The health physics aspects of its use for diagnostic studies. J. Lab. clin. Med. 37, 122–128 (1951).Google Scholar
  73. Rushton, J. G., H. J. Svien and E. J. Baldes: Localization of brain lesions by means of Risa. Proc. Staff. Meet. Mayo Clin. 29, 478–485 (1954).PubMedGoogle Scholar
  74. Schütze, R., u. E. Klar: Die Vitalfluorochromierung von Hirntumoren mit Atebrin als diagnostisches Hilfsmittel bei Hirngeschwulstoperationen. Chirurg 22, 166–169 (1951).PubMedGoogle Scholar
  75. Schumacher, W.: Die Darstellung von Hirn- und Nierentumoren durch die positiven oder negativen Kontraste im nicht linearen Photogramm. Strahlentherapie 113, 432–442 (1960).PubMedGoogle Scholar
  76. Seaman, W. B., M. M. Ter-Pogossian and H. G. Schwartz: Localization of intracranial neoplasms with radioactive isotopes. Radiology 62, 30–36 (1954).PubMedGoogle Scholar
  77. Selverstone, B., W. H. Sweet and R. J. Ireton: Radioactive potassium, a new isotope for brain tumor localization. Surg. Forum, pp. 371–375. Philadelphia: W. B. Saunders Company 1951.Google Scholar
  78. Shamov, V.M., C. N. Badmayev and N. P. Bekthereva: Application of isotope encephalography and electroencephaloscopy for localization of brain tumors. Isotopes in Medicine 26, 191–195 (1958).Google Scholar
  79. Shy, G. M., R.B. Bradley and W. Matthews: External collimation detection of intracranial neoplasia with unstable nuclides. With a chapter on Scintillation spectrometrie by J. E. Francis, P. R. Bell and C. C. Harris, VII. Edinburgh and London: E. & S. Livingstone 1958.Google Scholar
  80. Sjögren, S. E.: Experiences in localization of brain tumors by means of diiodo-131-fluorescein. Acta radiol. (Stockh.) 40, 356–360 (1953).CrossRefGoogle Scholar
  81. Sorsby, A. A.: Vital staining in brain surgery. Proc. roy. Soc. Med. 36, 137 (1943).PubMedGoogle Scholar
  82. Sterling, K.: The turnover rate of serum albumin in man as measured by J-131-tagged albumin. J. clin. Invest. 30, 1228–1237 (1951).PubMedCrossRefGoogle Scholar
  83. Strange, B., J. Therkelsen and P.G. Jensen: Employment of radioactive iodinated serum albumin in the localization of intracranial lesions. Ugeskr. Laeg. 1956, 1125–1129 [Dänisch].Google Scholar
  84. Svien, H. J., and A. B. Johnson: Fluorescein in the localization of brain tumors. Proc. Staff. Meet. Mayo Clin. 26, 142–152 (1951).PubMedGoogle Scholar
  85. Taxdal, D. R., and J. McAfee: The radioisotopic localization of intracranial neoplasia utilizing the focusing collimator scintillation counter with photoscan attachment (Symposium). Sth. med. J. (Bgham, Ala.) 53, 418–424 (1960).CrossRefGoogle Scholar
  86. Ter-Pogossion, M., W. B. Ittner, W. B. Seaman and H. G. Schwartz: A scintillation counter for the diagnosis and localization of intracranial neoplasms. Amer. J. Roentgenol. 67, 351–357 (1952).Google Scholar
  87. Thoma, G. E., and R. D. Woolsey: The localization of intracranial neoplasms with radioactive diiodofluorescein. J. Lab. clin. Med. 36, 998 (1950).PubMedGoogle Scholar
  88. Vigne, J., and J. Fondarai: Simple synthesis of diiodo-131-fluorescein. Nucleonics 11, Nr 9, 68 (1953).Google Scholar
  89. Walder, H. A. D., and I. Th. v. d. Werff: Gamma-encephalography with bismuth206. 2. Internat. Kongr. Neurochirurgie, Washington 1961.Google Scholar
  90. Wassermann, A. v., F. Keysser u. M. Wassermann: Beiträge zum Problem: Geschwülste von der Blutbahn aus therapeutisch zu beeinflussen. Dtsch. med. Wschr. 1911, 2389–2391.Google Scholar
  91. Winkler, C.: The use of increase of contrast in automatic photoscanning for visualization of organs and tumors by means of radioactive isotopes. Peaceful Uses of Atomic Energy, United Nations. Isotopes in Medicine 26, 252–257 (1958).Google Scholar
  92. Winter, J. G. de: Some preliminary clinical observations on the use of radioactive isotopes for the localization of brain tumors. Brit. J. Radiol. 24, 280–284 (1951).CrossRefGoogle Scholar
  93. Woolsey, R. D., and G. E. Thoma: Localization of intracranial neoplasms with radioactive diiodofluorescein. J. Mo. med. Ass. 47, 885–889 (1950).Google Scholar
  94. Woolsey, K. D., G. E. Thoma and E. E. Mack: Localization of intracranial neoplasms with radioactive diiodofluorescein. South med. J. (Bgham, Ala.) 45, 789–792 (1952).CrossRefGoogle Scholar
  95. Yuhl, E. T., L. A. Stirret and R. L. Libby: A comparative study of the use of diiodofluorescein and iodinated human serum albumin for the diagnosis and localization of intracranial neoplasms. Ann. Surg. 137, 184–188 (1953).PubMedCrossRefGoogle Scholar

II. Diagnose von Hirntumoren mit dem Positronenstrahler Badio-Arsen

  1. Aronow, S., and G. L. Brownell: An apparatus for brain tumor lacalization using positron emitting radioactive isotopes. I.R.E. (Inst. Radio Engeneers) Convention Record 4, pt. 9, 8–16 (1956).Google Scholar
  2. Bagnall, H. J., P. Benda, G. L. Brownell and W. H. Sweet: Positron-scanning with Copper-64 in the diagnosis of intracranial lesions. J. Neurosurg. 15, 411–426 (1958).PubMedCrossRefGoogle Scholar
  3. Benda, P., M. David et J. Constans: Arsenic radio-actif As-76 et détection peropératoire des tumeurs cérébrales. Rev. neurol. 89, 101–109 (1953).Google Scholar
  4. Brownell, G. L., and W. H. Sweet: Localization of brain tumors with positron emitters. Nucleonics 11, Nr 11, 40–45 (1953).Google Scholar
  5. Brownell, G. L., and W. H. Sweet: Scanning of positron-emitting isotopes in diagnosis of intracranial and other lesions. Intern. Confer. Geneva 1955, Vol. X, S. 249–254.Google Scholar
  6. Horst, W., K. J. Thiemann and G. Tralau: Methodische Verbesserungen einer Scanneranlage zum Tumornachweis mit Positronen- und Gammastrahlern. Fortschr. Röntgenstr. 93, 344–349 (1960).CrossRefGoogle Scholar
  7. Locksley, H., W. H. Sweet, H. Powsner and J. le Poire: Im Druck.Google Scholar
  8. Mealy, J.: Radioarsenic in plasma, urine, normal tissues, and intracranial neoplasms. Arch. Neurol. Psychiat. 81, 310 (1959).CrossRefGoogle Scholar
  9. Sweet, W. H., and G. L. Brownell: Localization of intracranial lesions by scanning with positron-emitting arsenic. J. Amer. med. Ass. 157, 1183–1188 (1955).CrossRefGoogle Scholar
  10. Sweet, W. H., J. Mealy, G. L. Brownell and S. Aronow: Coincidence scanning with positron-emitting arsenic or Copper in the diagnosis of focal intracranial disease. Int. J. appl. Radiat. 5, 152–153 (1959).Google Scholar
  11. Thiemann, K.J., G. Tralau u. W. Horst: Zur Methode der Tumorlokalisation mit Positronenstrahlern. Krebsbehandl., Strahlenbehandl. u. Strahlenforschiung, 43, 332–338 (1959).Google Scholar
  12. Wilcke, O.: Hirntumordiagnostik mit Positronenstrahlern. Acta neurochir. (Wien) 10, 301 (1962).CrossRefGoogle Scholar
  13. Wrenn, F. R., M. L. Good and P. Handler: The use of positron-emitting radioisotopes for the localization of brain tumors. Science 113, Nr 2940, 525–527 (1951).PubMedCrossRefGoogle Scholar
  14. Zipser, A., and A. St. Freedberg: The distribution of administered radioactive rubidium (Rb-86) in normal and neoplastic tissues of mice and humans. Cancer Res. 12, 867–870 (1952).PubMedGoogle Scholar

III. Diagnose von Hirntumoren mit Nadel-Zählrohren

  1. Adams, J. E.: Tracer studies with radioactive phosphorus (P32) on the absorption of cerebrospinal fluid and the problem of hydrocephalus. J. Neurosurg. 8, 279–288 (1951).PubMedCrossRefGoogle Scholar
  2. Bakay, L.: The blood-brain barrier. Springfield, Illinois U.S.A.: Scharles C. Thomas.Google Scholar
  3. Bakay, L.: Studies on blood-brain barrier with radioactive phosphorus. Arch. Neurol. Psychiat. 71, 673–683 (1954).CrossRefGoogle Scholar
  4. Corrigan, K. E., and H. S. Hayden: Surgical probe scintillation counters. J. Mich. med. Soc. 58, 598–607 (1959).PubMedGoogle Scholar
  5. Erickson, T. C., F. Larson and E. S. Gordon: The uptake of radioactive phosphorus by maligne brain tumors. J. Lab. clin. Med. 34, 587–591 (1949).PubMedGoogle Scholar
  6. Garrity, R. W., and L. W. Matthews: Radioactive phosphorus in management of brain tumors. Neurol. (Minneap.) 4, 929–934 (1954).CrossRefGoogle Scholar
  7. Hevesy, v. G.: Radioactive indicators. New York u. London: Interscience Publishers 1948.Google Scholar
  8. Joyet, G.: La distribution du potassium radioactif K-42 dans l’organisme cancéreux. Bull. Schweiz. Akad. med. Wiss. 2, 363–376 (1946).Google Scholar
  9. Kohl, D.: Scintillation-counter brain needle. Nucleonics 8, Nr 3, 79–83 (1951).PubMedGoogle Scholar
  10. Locksley, H. B., W. H. Sweet, H. J. Powsner and E. Dow: Suitability of tumor-bearing mice for predicting relative usefulness of isotopes in brain tumors. Arch. Neurol. 71, 684–698 (1954).CrossRefGoogle Scholar
  11. Morley, T. P.: Localization of brain tumors with radioactive phosphorus P-32. Proc. roy. Soc. B 46, 231–232 (1955).Google Scholar
  12. Morley, T. P.:, and G. Jefferson: Use of radioactive phosphorus in mapping brain tumors at operation. Brit. med. J. 1952, No 4784, 575–578.Google Scholar
  13. Robinson, C.V.: Small probing Geiger-Müller-counters. Rev. Sci. Instr. 21, 82–84 (1950).CrossRefGoogle Scholar
  14. Robinson, C.V., and R. E. Peterson: A study of small ether-argon Geiger-Müller counters. Rev. Sci. Instr. 19, 911–914 (1948).CrossRefGoogle Scholar
  15. Robinson, C.V., and B. Selverstone: Localization of brain tumors at operation with radioactive phosphorus. An improved technique using proportional counter. J. Neurosurg. 15, 76–83 (1958).PubMedCrossRefGoogle Scholar
  16. Roeder, F.: Der Stoffwechsel des Zentral-Nervensystems, untersucht mit radioaktivem Phosphor P32 im Tierversuch. „P32 im Nervensystem“. Göttingen: Musterschmidt 1948.Google Scholar
  17. Kushton, J. Gr., H. J. Svien and E. J. Baldes: Localization of brain lesions by means of Eisa. Proc. Staff. Meet. Mayo Clin. 29, 478–485 (1954).Google Scholar
  18. Selverstone, B.: The physiopathology of cancer, Chap. 32. Applied radiation in diagnosis (Isotopes). Ed.Hornberger and Fishman. New York: Hoeber-Harper 1953.Google Scholar
  19. Selverstone, B.: Les isotopes radioactifs dans la localisation des tumeur cérébrales. Presse méd. 58, 1093–1094 (1951).Google Scholar
  20. Selverstone, B.: Tumores intracraneales. 6. Los isotopes radioactivos en la localization de los tumores cerebrales. Monografia del Instituto National de Oncologia, Madrid 1955.Google Scholar
  21. Selverstone, B., and A. K. Solomon: Radioactive isotopes in the study of intracranial tumors. Trans. Amer. Neurol. Ass. 73rd Meeting, S. 115–119 (1948).PubMedGoogle Scholar
  22. Selverstone, B., and A. K. Solomon, W. H. Sweet: Location of brains tumors by means of radioactive phosphorus. J. Amer. med. Ass. 140, 277–278 (1949).CrossRefGoogle Scholar
  23. Selverstone, B., and A. K. Solomon, C. V. Robinson: The clinical use of radioactive phosphorus in the surgery of brain tumors. Ann. Surg. 130, 643–651 (1949).CrossRefGoogle Scholar
  24. Selverstone, B., and J. C. White: Evaluation of the radioactive mapping technic in the surgery of brain tumors. Ann. Surg. 134, 387–396 (1951).PubMedGoogle Scholar
  25. Stapleton, J. E., W. McKissock and H. E. A. Farran: The uptake of radioactive phosphorus in normal brain and brain tumors. Brit. J. Radiol. 25, 69–75 (1952).PubMedCrossRefGoogle Scholar
  26. Steinberg, D., and B. Selverstone: Radioautography of cerebral tumors employing P-32. Proc. Soc. exp. Biol. (N. Y.) 74, 304–308 (1950).Google Scholar
  27. Stern, W. E., and C. Marshall: Distribution of radioactive phosphorus in normal and diseased brain tissue. Experimental and clinical observations. Proc. Soc. exp. Biol. (N. Y.) 78, 16–20 (1951).Google Scholar
  28. Sweet, W. H.: The uses of nuclear disintegration in the diagnosis and treatment of brain tumor, New Engl. J. Med. 245, 875–878 (1951).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1962

Authors and Affiliations

  • W. Maurer
  • O. Wilcke

There are no affiliations available

Personalised recommendations