Advertisement

High Energy Heavy-Ion Induced Desorption (Review)

  • Ronald D. Macfarlane
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 25)

Abstract

Since the first studies on high-energy heavy-ion induced desorption were reported in 1974 [1], there has been not only considerable progress in the understanding of the mechanisms and utilization of the phenomenon of mass spectrometry but also a diversification of the general principles that has spawned “molecular” — SIMS [2], laser desorption [3] and fast atom bombardment [4]. What was for a few years a unique capability for 252Cf-plasma desorption (252Cf-PD) in the analysis of complex biomolecules is now being shared amongst these other techniques. There remain, however, some curious fundamental questions relating to mechanism and an extra incentive that in studying the dramatic action of a hundred megavolt heavy ion coursing through a matrix of biomolecules, one is observing a part of nature that is on the fringe of the fabric of accessible knowledge, that cannot be completely simulated by a million or a billion keV particles. While the source of these high-energy heavy ions was initially the fission fragments from 252Cf decay (252Cf-PD), this has now been expanded to include ion beams from nuclear accelerators that can give ions in the same mass and energy range as fission fragments [heavy-ion induced desorption (HIID)]. The added advantage is that the parameters relating to the incident ion can be controlled. Most of the fundamentals of the primary process have been obtained from these studies [5], [6].

Keywords

Fission Fragment Kinetic Energy Spectrum Metastable Decay Desorption Yield Projectile Charge State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. F. Torgerson, R. P. Skowronski, and R. D. Macfarlane, Biochem. Biophys. Res. Comm. 60, 616 (1974).CrossRefGoogle Scholar
  2. 2.
    A. Benninghoven, D. Jaspers, and W. Sichtermann, Appl. Phys. 11, 35 (1976).CrossRefGoogle Scholar
  3. 3.
    M. A. Posthumus, P. G. Kistemaker, H. L. C. Meuzelaar, and M. C. Ten Noever de Brau, Anal. Chem. 50, 985 (1978).CrossRefGoogle Scholar
  4. 4.
    M. Barber, R. S. Bordoli, R. D. Sedgwick, and A. N. Tyler, J. C. S. Chem. Comm. 325 (1981).Google Scholar
  5. 5.
    P. Hâkansson, I. Kamensky, and B. Sundquist, Nucl. Instr. and Meth. 198, 43 (1982).CrossRefGoogle Scholar
  6. 6.
    P. Duck, W. Treu, W. Galster, H. Frohlich, and H. Voit, Nucl. Instr. and Meth. 168, 601 (1980).CrossRefGoogle Scholar
  7. 7.
    R. D. Macfarlane, Biomed. Mass Spec. 8, 449 (1981).CrossRefGoogle Scholar
  8. 8.
    C. J. McNeal, S. A. Narang, R. D. Macfarlane, H. ri. Hsiung and R. Brousseau, Proc. Nat’l. Acad. Sci. U.S.A. 77, 735 (1980).CrossRefGoogle Scholar
  9. 9.
    B. T. Chait, W. C. Angosta, and F. H. Field, Int. J. Mass Spectrom. Ion Phys. 39, 339 (1981).CrossRefGoogle Scholar
  10. 10.
    P. Duck, H. Frohlich, W. Treu, and H. Voit, Nucl. Instr. and Meth. 191, 245 (1981).CrossRefGoogle Scholar
  11. 11.
    L. E. Seiberling, J. E. Griffith, and T. A. Tombrello, Rad. Effects 52, 201 (1980).CrossRefGoogle Scholar
  12. 12.
    B. T. Chait and F. H. Field, Int. J. Mass Spectrom. Ion Phys. 41, 17 (1981).CrossRefGoogle Scholar
  13. 13.
    C. J. McNeal, Anal. Chem. 54, 43A (1982).CrossRefGoogle Scholar
  14. 14.
    C. J. McNeal and R. D. Macfarlane, J. Amer. Chem. Soc. 103, 1609 (1981).CrossRefGoogle Scholar
  15. 15.
    N. Furstenau, W. Knippenbera, F. R. Krueger, G. Weiss, and K. Wien, 7. Naturforsch 32a, 711 (1977).Google Scholar
  16. 16.
    R. D. Macfarlane, Nucl. Instr. and Meth. 198, 75 (1982).CrossRefGoogle Scholar
  17. 17.
    R. D. Macfarlane and K. Wien (unpublished results).Google Scholar
  18. 18.
    Becker, Nucl. Instr. and Meth. 198, 53 (1982).CrossRefGoogle Scholar
  19. 19.
    R. D. Macfarlane, and B. Sundquist (unpublished results).Google Scholar
  20. 20.
    R. D. Macfarlane, C. J. McNeal and J. E. Hunt, Adv. in Mass Spec. 8A, 349 (1979).Google Scholar
  21. 21.
    R. D. Macfarlane and C. J. McNeal, unpublished results.Google Scholar
  22. 22.
    R. D. Macfarlane, Acc. Chem. Res. 15, 268 (1982).CrossRefGoogle Scholar
  23. 23.
    T. A. Tombrello, CalTech Report, BAP-28 (1982).Google Scholar
  24. 24.
    R. L. Fleischer, P. B. Price, and R. M. Walker, J. Appl. Phys. 36, 3645 (1965).CrossRefGoogle Scholar
  25. 25.
    Proceed. Nordic Symposium on Ion Induced Desorption of Molecules from Biorganic Solids (Nucl. Instr. and Meth. 198, 1–173 (1982).CrossRefGoogle Scholar
  26. 26.
    W. Knippelberg, 0. Becker, and K. Wien, Nucl. Instr. and Meth. 198, 59 (1982).CrossRefGoogle Scholar
  27. 27.
    R. W. Ollerhead, J. B4ttinger, J. A. Davies, J. L. ‘Ecuyer, H. K. Haugen and N. Matsunami, Rad. Effects 49, 203 (1980).CrossRefGoogle Scholar
  28. 28.
    R. D. Macfarlane and J. E. Hunt, unpublished results.Google Scholar
  29. 29.
    R. D. Macfarlane and D. Jacobs, unpublished results.Google Scholar
  30. 30.
    L. Larsson and R. Katz, Nucl. Instr. and Meth. 138, 631 (1976).CrossRefGoogle Scholar
  31. 31.
    R. H. Ritchie and C. Claussen, Nucl. Instr. and Meth. 198, 133 (1982).CrossRefGoogle Scholar
  32. 32.
    W. L. Brown, W. M. Augustyniak, E. Simmons, K. J. Marcantonio, L. J. Lanzerotti, R. E. Johnson, J. W. Boring, C. T. Reimann, G. Fotti, and V. Pirronello, Nucl. Instr. and Meth. 198, 1 (1982).CrossRefGoogle Scholar
  33. 33.
    R. D. Macfarlane and D. F. Torperson, Phys. Rev. Lett. 36, 486 (1976).CrossRefGoogle Scholar
  34. 34.
    F. R. Krueger, Surf. Science 86, 246 (1979).CrossRefGoogle Scholar
  35. 35.
    C. C. Watson and T. A. Tombrello, Proc. Lunar Planet Sci. Conf. 135th, 845 (1982).Google Scholar
  36. 36.
    H. J. Kreuzer and D. N. Lowy, Chem. Phys. Lett. 78, 50 (1981).CrossRefGoogle Scholar
  37. 37.
    J. K. Norskov and B. I. Lundquist, Phys. Rev. B 19, 5661 (1979).CrossRefGoogle Scholar
  38. 38.
    Z. Sroubek, K. Zdansky and J. Zavadil, Phys. Rev. Lett. 45, 580 (1979).CrossRefGoogle Scholar
  39. 39.
    R. G. Orth, H. T. Jonkman, and J.,Lichl, J. Amer. Chem. Soc. 104, 1834 (1982).CrossRefGoogle Scholar
  40. 40.
    L. Schmidt, H. Daniqel, and H. Jungelas, Nucl. Instr. and Meth. 198, 165 (1982).CrossRefGoogle Scholar
  41. 41.
    P. Dlick, Ph.D. Dissertation, Erlangen (1981).Google Scholar
  42. 42.
    B. A. Mamyrin and D. V. Shmikk, Eng. Trans. Soviet Phys., J. Exp. Theor. Phys. 49, 762 (1979).Google Scholar
  43. 43.
    R. J. Beuhler and L. Friedman, Int. J. Mass Spectrom. Ion Phys. 23, 81 (1977).CrossRefGoogle Scholar
  44. 44.
    R. F. Bonner, D. V. Bowen, B. T. Chait, A. B. Lipton, F. H. Field and W. F. Sippach, Anal. Chem. 52, 1923 (1980).CrossRefGoogle Scholar
  45. 45.
    E. Festa and R. Sellem, Nucl. Instr. and Meth. 188, 99 (1981).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • Ronald D. Macfarlane
    • 1
  1. 1.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations