The Form of Nerve Cells: Determination by Cobalt Impregnation

  • Robert M. Pitman
  • Charles D. Tweedle
  • Melvin J. Cohen


Form and function are perhaps more closely related in neurons than in any other cell type. A major approach to understanding the cellular events underlying behavior concentrates on relatively simple invertebrate systems that give rise to specific behavioral acts. The general procedure followed is (1) to identify the individual neurons that generate the behavior, and (2) to analyze the particular pattern of connections between neurons to determine the properties of the circuit that might directly govern the form of the behavioral act. Initial studies dealt primarily with identification of nerve cell bodies because of their relative accessibility. This led to the production of neuron soma maps for several invertebrates (Hughes and Tauc, 1962; Otsuka et al., 1967; Nicholls and Baylor, 1968). One such cell body map for the cockroach is shown in Fig. 1 (Cohen and Jacklet, 1967). The distribution of about 50 bilateral pairs of motoneurons is defined in relation to the nerve trunks through which their axons leave the ganglion.


Dendritic Tree Nerve Cell Body Dendritic Branch Abdominal Ganglion Cobalt Sulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blackstad, T. W.: Electronmicroscopy of Golgi preparations for the study of neuronal relations. In: Contemporary Research Methods in Neuroanatomy. Ed. W. J. H. Nauta and S. O. E. Ebbesson. pp. 186–216. New York: Springer-Verlag, 1970.Google Scholar
  2. Cohen, M. J.: A comparison of invertebrate and vertebrate central neurons. In: The Neurosciences: Second Study Program. Ed. F. O. Schmitt, pp. 798–812. New York: Rockefeller University Press, 1970.Google Scholar
  3. Cohen, M. J., and J. W. Jacklet: The functional organization of motor neurons in an insect ganglion. Phil. Trans. R. Soc., Lond. B 252, 561–572 (1967).CrossRefGoogle Scholar
  4. Hoyle, G.: Cellular mechanisms underlying behavior. In: Advances in Insect Physiology. Ed. J. W. L. Beament, J. E. Treherne and V. B. Wigglesworth. pp. 349–444. London: Academic Press, 1970.Google Scholar
  5. Hughes, G. M., and L. Tauc: Aspects of the organization of central nervous pathways in Aplysia depilans. J. exp. Biol. 39, 45–69 (1962).PubMedGoogle Scholar
  6. Iles, J. F., and B. Mulloney: Procion yellow staining of cockroach motor neurones without the use of microelectrodes. Brain Res. 30, 397–400 (1971).PubMedCrossRefGoogle Scholar
  7. Karnovsky, M. J.: A formaldehyde-glutaraldehyde fixation of high osmolality for use in electron microscopy. J. Cell. Biol. 27, 137A (1965).Google Scholar
  8. Kerkut, G. A., R. M. Pitman, and R. J. Walker: Iontophoretic application of acetylcholine and GABA onto insect central neurones. Comp. Biochem. Physiol. 31, 611–633 (1969).PubMedCrossRefGoogle Scholar
  9. Nicholls, J. G. and D. A. Baylor: Specific modalities and receptive fields of sensory neurons in CNS of the leech. J. Neurophysiol. 31, 740–756 (1968).PubMedGoogle Scholar
  10. Otsuka, M., E. A. Kravitz, and D. D. Potter: Physiological and chemical architecture of a lobster ganglion with particular reference to gamma-aminobutyrate and glutamate. J. Neurophysiol. 30, 725–752 (1967).PubMedGoogle Scholar
  11. Pitman, R. M., C. D. Tweedle, and M. J. Cohen: Branching of central neurons: intracellular cobalt injection for light and electron microscopy. Science 176, 412–414 (1972a).PubMedCrossRefGoogle Scholar
  12. Pitman, R. M., C. D. Tweedle, and M. J. Cohen: Electrical responses of insect central neurons: augmentation by nerve section or colchicine. Science 178, 507–509 (1972b).PubMedCrossRefGoogle Scholar
  13. Shepherd, G. M.: The olfactory bulb as a simple cortical system: experimental analysis and functional implications. In: The Neurosciences: Second Study Program. Ed. F. O. Schmitt, pp. 539–552. New York: The Rockefeller University Press, 1970.Google Scholar
  14. Spurr, A. R.: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969).PubMedCrossRefGoogle Scholar
  15. Stretton, A. O. W., and E. A. Kravitz: Neuronal geometry: determination with a technique of intracellular dye injection. Science 162, 132–134 (1968).PubMedCrossRefGoogle Scholar
  16. Trujillo-Cenoz, O., and J. Melamed: Light and electronmicroscope study of one of the systems of centrifugal fibers found in the lamina of muscoid flies. Z. Zeilforsch. mikrosk. Anat. 110, 336–349 (1970).CrossRefGoogle Scholar
  17. Zawarzin, A.: Zur Morphologie der Nervenzentren. Das Bauchmark der Insekten. Ein Beitrag zur vergleichenden Histologie (Histologische Studien über Insekten VI). Z. wiss. Zool. 122, 323–424 (1924).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1973

Authors and Affiliations

  • Robert M. Pitman
  • Charles D. Tweedle
  • Melvin J. Cohen

There are no affiliations available

Personalised recommendations