Determination of Neuronal Membrane Properties Using Intracellular Staining Techniques

  • John N. Barrett


As previous chapters in this book demonstrate, recently developed Procion dye injection techniques make it possible to study both the electrophysiological and the morphological properties of single neurons. This chapter describes how the electrophysiological and anatomical information derived from the use of dye-filled pipettes can be used to calculate passive membrane properties of nerve cells. Knowledge of the membrane parameters enables prediction of the size and relative effectiveness of synaptic potentials originating on the dendritic tree (Rall, 1962, 1967, 1970). In order to obtain accurate data, particular attention must be paid to micropipette recording techniques, and these will be discussed in the first part of this chapter. The experiments reported here were performed on cat motoneurons, but the techniques should be applicable to many other cells.


Dendritic Tree Voltage Response Synaptic Potential Concentric Electrode Input Admittance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrett, J. N.: The passive properties of cat motoneurons and their influence on the effective ness of dendritic synapses. Ph.D. thesis. University of Washington, Seattle, Washington, U.S.A. (1972).Google Scholar
  2. Barrett, J. N., and W. E. Crill: Specific membrane resistivity of dye-injected cat motoneurons. Brain Res. 28, 556–561 (1971).PubMedCrossRefGoogle Scholar
  3. Barrett, J. N., and K. Graubard: Fluorescent staining of cat motoneurons in vivo with bevelled micropipettes. Brain Res. 18, 565–568 (1970).PubMedCrossRefGoogle Scholar
  4. Burke, R. E., and G. ten Bruggencate: Electrotonic characteristics of alpha motoneurones of varying size. J. Physiol., Lond. 212, 1–20 (1971).Google Scholar
  5. Crawford, G. N. C., and R. Barer: The action of formaldehyde on living cells as studied by phase contrast microscopy. Q. Jl microsc. Sci. 92, 403–452 (1951).Google Scholar
  6. Davis, W. J.: Motoneuron morphology and synaptic contacts: determination by intracellular dye injection. Science 168, 1358–1360 (1970).PubMedCrossRefGoogle Scholar
  7. Jack, J. J. B., S. Miller, R. Porter, and S. J. Redman: The time course of minimal excitatory post-synaptic potentials evoked in spinal motoneurone by Group Ia afferent fibres. J. Physiol., Lond. 215, 353–380 (1971).PubMedGoogle Scholar
  8. Jack, J. J. B., S. Miller, R. Porter, and S. J. Redman: The propagation of transient potentials in some linear cable structures. J. Physiol., Lond. 215, 283–320 (1971a).PubMedGoogle Scholar
  9. Jack, J. J. B., S. Miller, R. Porter, and S. J. Redman: An electrical description of the motoneurone, and its application to the analysis of synaptic potentials. J. Physiol., Lond. 215, 321–352 (1971b).PubMedGoogle Scholar
  10. Jankowska, E., and S. Lindström: Morphological identification of physiological defined neurones in the cat spinal cord. Brain Res. 20, 323–326 (1970a).PubMedCrossRefGoogle Scholar
  11. Kaneko, A.: Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J. Physiol., Lond. 207, 623–633 (1970).PubMedGoogle Scholar
  12. Kuno, M.: Quantal components of excitatory synaptic potentials in spinal motoneurones. J. Physiol., Lond. 175, 81–99 (1964).PubMedGoogle Scholar
  13. Kuno, M., and J. T. Miyahara: Non-linear summation of unit synaptic potentials in spinal motoneurones of the cat. J. Physiol., Lond. 201, 465–477 (1969).PubMedGoogle Scholar
  14. Kuno, M., and J. N. Weakly: Quantal components of the inhibitory synaptic potential in spinal motoneurons of the cat. J. Physiol., Lond. 224, 287–303 (1972).PubMedGoogle Scholar
  15. Lux, H. D., P. Schubert, and G. W. Kreutzberg: Direct matching of morphological and electrophysiological data in cat spinal motoneurons. In: Excitatory Synaptic Mechanisms. Ed. P. Anderson and J. K. S. Jansen. pp. 189–198. Oslo: Universitetsforlaget, 1970b.Google Scholar
  16. McMahan, U. J., and D. Purves: An electron-microscopic study of a physiologically identified motoneurone in the leech C.N.S. after injection of the fluorescent dye Procion yellow. J. Physiol., Lond. 222, 64–66 (1972).Google Scholar
  17. Nelson, P. G., and K. Frank: Anomalous rectification in cat spinal motoneurons and effect of polarizing currents on excitatory postsynaptic potential. J. Neurophysiol. 30, 1097–1113 (1967).PubMedGoogle Scholar
  18. Nelson, P. G., and H. D. Lux: Some electrical measurements of motoneuron parameters. Biophys. J. 10, 55–73 (1970).PubMedCrossRefGoogle Scholar
  19. Norman, R. S.: Cable theory for finite length dendritic cylinders with initial and boundary conditions. Biophys. J. 12, 25–45 (1972).PubMedCrossRefGoogle Scholar
  20. Rall, W.: Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1, 491–527 (1959).PubMedCrossRefGoogle Scholar
  21. Rall, W.: Theory of physiological properties of dendrites. Ann. N.Y. Acad. Sci. 96, 1071–1092.Google Scholar
  22. Rall, W.: Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic inputs. J. Neurophysiol. 30, 1138–1168 (1967).PubMedGoogle Scholar
  23. Rall, W.: Time constants and electrotonic length of membrane cylinders and neurons. Biophys. J. 9, 1482–1508 (1969).Google Scholar
  24. Rall, W.: Cable properties of dendrites and effect of synaptic location. In: Excitatory Synaptic Mechanisms, Proceedings of the Fifth International Meeting of Neurobiologists. Ed. P. Andersen and J. K. S. Jansen. Oslo: Universitetsforlaget, 1970.Google Scholar
  25. Remler, M. P., and A. I. Selverston, and D. Kennedy: Lateral giant fibers of crayfish: location of somata by dye injection. Science 162, 281–283 (1968).PubMedCrossRefGoogle Scholar
  26. Stretton, A. O. W., and E. A. Kravitz: Neuronal geometry: determination with a technique of intracellular dye injection. Science 162, 132–134 (1968).PubMedCrossRefGoogle Scholar
  27. Weakly, J. N: Effect of barbiturates on ‘quantaF synaptic transmission in spinal motoneurones. J. Physiol., Lond. 204, 63–77 (1969).PubMedGoogle Scholar
  28. Westrum, R. E., and R. D. Lund: Formalin perfusion for correlative light- and electron-microscopical studies of the nervous system. J. Cell Sci. 1, 229–238 (1966).Google Scholar
  29. Peter, A., S. L. Palay, and H. deF Webster: The fine structure of the nervous system: the cells and their processes. New York: Harper and Row, 1970Google Scholar
  30. Barrett, J. N. and K. Graubard: Fluorescent staining of cat motoneurons in vivo with beveled micropipettes. Brain Res. 18, 565–568 (1970).PubMedCrossRefGoogle Scholar
  31. Burke, R. E. and G. ten Bruggencate: Electronic characteristics of alpha motoneurones of varying size. J. Physiol., Lond. 212, 1–20.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1973

Authors and Affiliations

  • John N. Barrett

There are no affiliations available

Personalised recommendations