Advertisement

Procion Yellow and Cobalt as Tools for the Study of Structure-Function Relationships in Vertebrate Central Nervous Systems

  • Rodolfo Llinás

Abstract

The relationship between neuronal morphology and neuronal function may be approached from two different points of view. It has been stated in the past that neurons which have similar inputs and whose axons terminate on similar target cells have similar functions (“l’identité ou la dissemblance physiologique des neurones se jugera exclusivement par la similitude ou la difference de leurs relations”—Ramón y Cajal, 1909, p. 149). This statement summarizes the view held by many circuit analysts in neurobiology today, namely that the shape of neurons has little to do with their integrative properties. In a holistic sense, therefore, this approach postulates that connectivity is the dominant morphological parameter determining the functional properties of the nervous system.

Keywords

Purkinje Cell Cerebellar Purkinje Cell Synaptic Potential Intracellular Injection Renshaw Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett, J. N., and W. E. Crill: Specific membrane resistivity of dye-injected cat motoneurons. Brain Res. 28, 556–561 (1971).PubMedCrossRefGoogle Scholar
  2. Barrett, J. N., and K. Graubard: Fluorescent staining of cat motoneurons in vivo with bevelled micropipettes. Brain Res. 18, 565–568 (1970).PubMedCrossRefGoogle Scholar
  3. Burke, R. E.: Composite nature of the monosynaptic excitatory postsynaptic potential. J. Neurophysiol. 30, 1114–1137 (1967).PubMedGoogle Scholar
  4. Burke, R. E.: Group la synaptic input to fast and slow twitch motor units of cat triceps surae. J. Physiol., Lond. 196, 605–630 (1968).PubMedGoogle Scholar
  5. Burke, R., L. Fedina, and A. Lundberg: Spatial synaptic distribution of recurrent and group Ia inhibitory systems in cat spinal motoneurones. J. Physiol., Lond. 214, 305–326 (1971).PubMedGoogle Scholar
  6. Burke, R., and G. ten Bruggencate: Electrotonic characteristics of alpha motoneurones of varying size. J. Physiol., Lond. 212, 1–20 (1971).Google Scholar
  7. Dennis, M. J., and H. M. Gerschenfeld: Some physiological properties of identified mammalian glial cells. J. Physiol., Lond. 203, 211–222 (1969).PubMedGoogle Scholar
  8. Diamond, J.: The activation and distribution of GABA and L-glutamate receptors on goldfish Mauthner neurons: an analysis of dendritic remote inhibition (with appendix by A. F. Huxley). J. Physiol., Lond. 194, 669–723 (1968).PubMedGoogle Scholar
  9. Eccles, J. C., P. Fatt, and K. Koketsu: Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurons. J. Physiol., Lond. 126, 524–562 (1954).PubMedGoogle Scholar
  10. Eccles, J. C., B. Libet, and R. R. Young: The behaviour of chromatolysed motoneurones studied by intracellular recording. J. Physiol., Lond. 143, 11–40 (1958).PubMedGoogle Scholar
  11. Eccles, J. C., R. Llinás, and K. Sasaki: Intracellularly recorded responses of the cerebellar Purkinje cells. Exp. Brain Res. 1, 161–183 (1966).PubMedGoogle Scholar
  12. Fadiga, E., and J. M. Brookhart: Interactions of excitatory postsynaptic potentials generated at different sites on the frog motoneurons. J. Neurophysiol. 25, 790–804 (1962).Google Scholar
  13. Frazier, D. T., T. Narahashi, and M. Yamada: The site of action and active form of local anesthetics. II. Experiments with quaternary compounds. J. Pharmac. exp. Ther. 171, 45–51 (1970).Google Scholar
  14. Granit, R.: The Basis of Motor Control. London: Academic Press, 1970.Google Scholar
  15. Granit, R.: Mechanisms Regulating the Discharge of Motoneurons. Sherrington Lecture XI. Liverpool: Liverpool University Press, 1972.Google Scholar
  16. Henneman, E., G. Somjen, and D. O. Carpenter: Functional significance of cell size in spinal motoneurons. J. Neurophysiol. 28, 560–580 (1965a).PubMedGoogle Scholar
  17. Henneman, E., G. Somjen, and D. O. Carpenter: Excitability and inhibitability of motoneurons of different sizes. J. Neurophysiol. 28, 599–620 (1965b).PubMedGoogle Scholar
  18. Hild, W., and I. Tasaki: Morphological and physiological properties of neurons and glial cells in tissue culture. J. Neurophysiol 25, 277–304 (1962).PubMedGoogle Scholar
  19. Hille, B.: Ionic channels in nerve membranes. In: Progress in Biophysics and Molecular Biology. Ed. J. A. V. Butler and D. Noble. Vol. 21, pp. 1–32. Oxford: Pergamon Press, 1970.Google Scholar
  20. Hillman, D. E.: Light and electron microscopical study of the relationships between the cerebellum and the vestibular organ of the frog. Exp. Brain Res. 9, 1–15 (1969).PubMedGoogle Scholar
  21. Hultborn, H., E. Jankowska, and S. Lindström: Recurrent inhibition from motor axon collaterals of transmission in the la inhibitory pathway to motoneurones. J. Physiol., Lond. 215, 591–612 (1971).PubMedGoogle Scholar
  22. Iles, J. F. and B. Mulloney: Procion yellow staining of cockroach motor neurones without the use of microelectrodes. Brain Res. 30, 397–400 (1971).PubMedCrossRefGoogle Scholar
  23. Jack, J. J. B., S. Miller, R. Porter, and S. J. Redman: The distribution of group la synapses on lumbosacral spinal motoneurones in the cat. In: Excitatory Synaptic Mechanisms. Ed. P. Andersen and J. K. S. Jansen, pp. 199–205. Oslo: Universitetsforlaget, 1970.Google Scholar
  24. Jack, J. J. B., S. Miller, R. Porter, and S. J. Redman: The time course of minimal excitatory post-synaptic potentials evoked in spinal motoneurone by Group la afferent fibres. J. Physiol., Lond. 215, 353–380 (1971).PubMedGoogle Scholar
  25. Jack, J. J. B., and S. J. Redman: An electrical description of the motoneurone, and its application to the analysis of synaptic potentials. J. Physiol., Lond. 215, 321–352 (1971).PubMedGoogle Scholar
  26. Jankowska, E., and S. Lindström: Morphological identification of physiologically defined neurones in the cat spinal cord. Brain Res. 20, 323–326 (1970).PubMedCrossRefGoogle Scholar
  27. Jankowska, E., and S. Lindström: Morphological identification of Renshaw cells. Acta physiol. scand. 81, 428–430 (1971).PubMedCrossRefGoogle Scholar
  28. Kehoe, J.: Ionic mechanisms of a two-component cholinergic inhibition in Aplysia neurones. J. Physiol., Lond. 225, 85–114 (1972).PubMedGoogle Scholar
  29. Kelly, J. S., K. Krnjevic, and G. K. W. Yim: Unresponsive cells in cerebral cortex. Brain Res. 6, 767–769 (1967).PubMedCrossRefGoogle Scholar
  30. Kernell, D.: Input resistance, electrical excitability, and size of ventral horn cells in the cat spinal cord. Science 152, 1637–1640 (1966).PubMedCrossRefGoogle Scholar
  31. Kidokoro, Y., K. Kubota, S. Shuto, and R. Sumino: Reflex organization of cat masticatory muscles. J. Neurophysiol 31, 695–708 (1968).PubMedGoogle Scholar
  32. Kordas, M.: The effect of procaine on neuromuscular transmission. J. Physiol., Lond. 209, 689–699 (1970).PubMedGoogle Scholar
  33. Korn, H., and M. V. L. Bennett: Dendritic and somatic impulse initiation in fish oculomotor neurons during vestibular nystagmus. Brain Res. 21, 169–175 (1971).CrossRefGoogle Scholar
  34. Korn, H., and M. V. L. Bennett: Electrotonic coupling between teleost oculomotor neurons: restriction to omatic regions and relation to function of somatic and dendritic sites of impulse initiation. Brain Res. 38, 433–439 (1972).PubMedCrossRefGoogle Scholar
  35. Krnjevic, K. and S. Schwartz: Some properties of unresponsive cells in the cerebral cortex. Exp. Brain Res. 3, 306–319 (1967).PubMedCrossRefGoogle Scholar
  36. Kuffler, S. W., J. Nicholls, and R. Orkand: Physiological properties of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29, 768–787 (1966).PubMedGoogle Scholar
  37. Kuno, M., and R. Llinás: Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurones of the cat. J. Physiol., Lond. 210, 807–821 (1970a).PubMedGoogle Scholar
  38. Kuno, M., and R. Llinás: Alterations of synaptic action in chromatolysed motoneurones of the cat. J. Physiol., Lond. 210, 823–838 (1970b).PubMedGoogle Scholar
  39. Kuno, M., and J. T. Miyahara: Non-linear summation of unit synaptic potentials in spinal motoneurones of the cat. J. Physiol., Lond. 201, 465–477 (1969).PubMedGoogle Scholar
  40. Llinás, R., and C. Nicholson: Electrophysiological analysis of alligator cerebellum. A study on dendritic spikes: In: Neurobiology of Cerebellar Evolution and Development. Ed. R. Llinás. pp. 431–465. Chicago: Amer. Med. Assn., 1969.Google Scholar
  41. Llinás, R., and C. Nicholson:: Electrophysiological properties of dendritic and somata in alligator Purkinje cells. J. Neurophysiol 34, 532–551 (1971).PubMedGoogle Scholar
  42. Llinás, R., and W. Precht: The inhibitory vestibular efferent system and its relation to the cerebellum in the frog. Exp. Brain Res. 9, 16–29 (1969).PubMedCrossRefGoogle Scholar
  43. Llinás, R., and M. Clarke: Cerebellar Purkinje cell responses to physiological stimulation of the vestibular system in the frog. Exp. Brain Res. 13, 408–431 (1971).PubMedCrossRefGoogle Scholar
  44. Llinás, R., and C. A. Terzuolo: Mechanisms of supra-spinal actions upon spinal cord activities. Reticular inhibitory mechanisms upon flexor motoneurones. J. Neurophysiol. 28, 413–422 (1965).PubMedGoogle Scholar
  45. Lorente de Nó, R., and G. A. Condouris: Decrementai conduction in peripheral nerve. Integration of stimuli in the neuron. Proc. nath. Acad. Sci. U.S.A. 45, 592–617 (1959).CrossRefGoogle Scholar
  46. Lux, H. D.: Eigenschafter eines Neuron-Modells mit Dendriten begrenzter Lange. Pflügers Arch. ges. Physiol. 297, 238–255 (1967).CrossRefGoogle Scholar
  47. Lux, H. D., P. Schubert, and G. W. Kreutzberg: Direct matching of morphological and electrophysiological data in cat spinal motoneurons. In: Excitatory Synaptic Mechanisms. Ed. P. Anderson and J. K. S. Jansen, pp. 189–198. Oslo: Universitetsforlaget, 1970.Google Scholar
  48. Lux, H. D., and P. Winter: Studies on EPSPs in normal and retrograde reacting facial motoneurones. Proc. IUPS 7, 818 (abstract) (1968).Google Scholar
  49. Macintosh, F. C., R. I. Birks, and P. B. Sastry: Pharmacological inhibition of acetylcholine synthesis. Nature, Lond. 178, 1181 (1956).CrossRefGoogle Scholar
  50. Maeno, T.: Analysis of sodium and potassium conductances in the procaine end-plate potential. J. Physiol., Lond. 183, 592–606 (1966).PubMedGoogle Scholar
  51. Maeno, T., C. Edwards, and S. Hashimura: Difference in effects on the end-plate potentials between procaine and lidocaine as revealed by voltage-clamp experiments. J. Neurophysiol. 34, 32–46 (1971).PubMedGoogle Scholar
  52. Martinez, F. E., W. E. Crill, and T. T. Kennedy: Dendritic origin of climbing fiber responses in cat cerebellar Purkinje cells. Fedn Proc. Fedn Am. Socs exp. Biol. 29, 454a (1970).Google Scholar
  53. Miller, R. I., and J. E. Dowling: Intracellular responses of the Muller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J. Neurophysiol. 33, 323–341 (1970).PubMedGoogle Scholar
  54. Nelson, P. G., and H. D. Lux: Some electrical measurements of motoneuron parameters. Biophys. J. 10, 55–73 (1970).PubMedCrossRefGoogle Scholar
  55. Nicholls, J. G., and S. W. Kuffier: Extracellular space as a pathway for exchange between blood and neurons in the central nervous system of the leech: ionic composition of glial cells and neurons. J. Neurophysiol. 27, 645–671 (1964).PubMedGoogle Scholar
  56. Payton, B. W.: Histological staining properties of Procion yellow. J. Cell Biol. 45, 659–662 (1970).PubMedCrossRefGoogle Scholar
  57. Payton, B., M. V. L. Bennett, and G. D. Pappas: Permeability and structure of junctional membranes at an electrotonic synapse. Science 166, 1641–1643 (1969).PubMedCrossRefGoogle Scholar
  58. Phillips, C. G.: Intracellular recording from Betz cells in the cat. Q. Jl exp. Physiol. 41, 58–69 (1956).Google Scholar
  59. Pitman, R. M., C. D. Tweedle, and M. J. Cohen: Branching of central neurons: intracellular cobalt injection for light and electron microscopy. Science 176, 412–414 (1972).PubMedCrossRefGoogle Scholar
  60. Precht, W., R. Llinás, and M. Clarke: Physiological responses of frog vestibular fibers to horizontal angular rotation. Exp. Brain Res. 13, 378–407 (1971).PubMedCrossRefGoogle Scholar
  61. Purpura, D. P.: Comparative physiology of dendrites. In: The Neurosciences: A Study Program. Ed. G. C. Quarton, T. Melnechuk and F. O. Schmitt, pp. 372–393. New York: Rockefeller Univ. Press, 1967.Google Scholar
  62. Rall, W.: Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1, 491–527 (1959).PubMedCrossRefGoogle Scholar
  63. Rall, W.: Electrophysiology of a dendritic neuron model. Biophys. J. 2, 145–167 (1962).PubMedCrossRefGoogle Scholar
  64. Rall, W.: Theoretical significance of dendritic trees for neuronal input-output relations. In: Neural Theory and Modelling. Ed. R. F. Reiss. pp. 73–97. Stanford Univ. Press, 1964.Google Scholar
  65. Rall, W.: Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic inputs. J. Neurophysiol. 30, 1138–1168 (1967).PubMedGoogle Scholar
  66. Rall, W., R. E. Burke, T. G. Smith; P. G. Nelson, and K. Frank: Dendritic location, of synapses and possible mechanisms for the monosynaptic EPSP in motoneurons. J. Neurophysiol. 30, 1169–1193 (1967).PubMedGoogle Scholar
  67. Ramón y Cajal, S.: Histologie du Système Nerveux de L’homme et des Vertébrés, vol 1. Paris: Maloine, 1909.Google Scholar
  68. Ryall, R. W., and M. F. Piercey: Excitation and inhibition of Renshaw cells by impulses in peripheral afferent nerve fibers. J. Neurophysiol. 34, 242–251 (1971a).PubMedGoogle Scholar
  69. Ryall, R. W., and C. Polosa: Intersegmental and intrasegmental distribution of mutual inhibition of Renshaw cells. J. Neurophysiol. 34, 700–707 (1971b).PubMedGoogle Scholar
  70. Scheibel, M. E., and A. B. Scheibel: Inhibition and the Renshaw cell: a structural critique. Brain Behav. Evol. 4, 53–93 (1971).PubMedCrossRefGoogle Scholar
  71. Smith, T. G., R. B. Wuerker, and K. Frank: Membrane impedance changes during synaptic transmission in cat spinal motoneurones. J. Neurophysiol. 30, 1072–1096 (1967).PubMedGoogle Scholar
  72. Spencer, W. A., and E. R. Kandel: Electrophysiology of hippocampal neurons. IV. Fast prepotentials. J. Neurophysiol. 24, 272–285 (1961).Google Scholar
  73. Steinbach, A. B.: Alteration by Xylocaine (lidocaine) and its derivatives of the time course of the end-plate potential. J. gen. Physiol. 52, 144–161 (1968a).PubMedCrossRefGoogle Scholar
  74. Steinbach, A. B.: A kinetic model for the action of Xylocaine on receptors for acetylcholine. J. gen. Physiol. 52, 162–180 (1968b).PubMedCrossRefGoogle Scholar
  75. Stretton, A. O. W., and E. A. Kravitz: Neuronal geometry: determination with a technique of intracellular dye injection. Science 162, 132–134 (1968).PubMedCrossRefGoogle Scholar
  76. Tasaki, I., Y. Tsukahara, S. Ito, M. J. Wayner, and W. Y. Yu: A simple direct and rapid method for filling microelectrodes. Physiol. Behav. 3, 1009–1010 (1968).CrossRefGoogle Scholar
  77. Terzuolo, C. A., and T. Araki: An analysis of intra- versus extracellular potential changes associated with activity of single spinal motoneurons. Ann. NY. Acad. Sci. 94, 547–558 (1961).PubMedCrossRefGoogle Scholar
  78. Terzuolo, C. A., and R. Llinás: Distribution of synaptic inputs in the spinal motoneurone and its functional significance. In: Nobel Symposium I, Muscular Afferents and Motor Control. Ed. R. Granit. pp. 373–384. Stockholm: Almqvist and Wiksell, 1966.Google Scholar
  79. vanKeulen, L. C. M.: Morphology of Renshaw cells. Pflügers Arch. ges. Physiol. 328, 235–236 (1971).Google Scholar
  80. Wardell, W. M.: Electrical and pharamacological properties of mammalian neuroglial cells in tissue culture. Proc. R. Soc., Lond B 165, 326–361 (1966).CrossRefGoogle Scholar
  81. Werman, R.: CNS cellular level: membranes. Ann. Rev. Physiol. 34, 337–374 (1972).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1973

Authors and Affiliations

  • Rodolfo Llinás

There are no affiliations available

Personalised recommendations