Skip to main content

Morphological Identification of Simple, Complex and Hypercomplex Cells in the Visual Cortex of the Cat

  • Chapter

Abstract

The visual cortex of the brain has been intensively studied for many years, and as a consequence a large body of data concerning its anatomy and physiology is now available for a variety of species. The neurons in area 17 of the cat respond to bars or edges of light in such a way that Hubel and Wiesel (1962, 1965) were able to classify the receptive field of each cell as simple, complex, or hypercomplex. The study of Golgi impregnated material from this region indicates that, within a given layer, most cells are either stellate or pyramidal, as judged principally by the shapes of the cell somata and the patterns of dendritic arborization (Ramón y Cajal, 1922). Given this information, it is natural to ask whether the structural and functional properties of cells in the visual cortex are related in a consistent manner. The technique of Procion yellow dye injection (Stretton and Kravitz, 1968) has enabled questions of this type to be tackled in a number of preparations, including the retinas of the goldfish (Kaneko, 1970, and Chapter 11) and turtle (Baylor, Fuortes and O’Bryan, 1971; Hashimoto et al., Chapter 12). In the present report, we describe the application of this technique to the analysis of cells in the visual cortex.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrett, J. N., and K. Graubard: Fluorescent staining of cat motoneurons in vivo with bevelled micropipettes. Brain Res. 18, 565–568 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Baylor, D. A., M. G. F. Fuortes, and P. M. O’Bryan: Receptive fields of cones in the retina of the turtle. J. Physiol., Lond. 214, 265–294 (1971).

    PubMed  CAS  Google Scholar 

  • Baylor, D. A., M. G. F. Fuortes, and J. Nicholls: Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech. J. Physiol., Lond. 203, 565–569 (1969).

    Google Scholar 

  • Dennis, M. J., and H. Gerschenfeld: Some physiological properties of identified mammalian glial cells. J. Physiol., Lond. 203, 211–222 (1969).

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and T. N. Wiesel: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol., Lond. 160, 106–154 (1962).

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and T. N. Wiesel: Shape and arrangement of columns in the cat’s striate cortex. J. Physiol., Lond. 165, 559–568 (1963).

    PubMed  CAS  Google Scholar 

  • Kaneko, A.: Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J. Physiol., Lond. 207, 623–633 (1970).

    PubMed  CAS  Google Scholar 

  • Kaneko, A.: Electrical connexions between horizontal cells in the dogfish retina. J. Physiol., Lond. 213, 95–105 (1971).

    PubMed  CAS  Google Scholar 

  • Karahashi, Y., and S. Goldring: Intracellular potentials from “idle” cells in cerebral cortex of cat. Electroenceph. Clin. Neurophysiol 20, 600–607 (1965).

    Google Scholar 

  • Kuffler, S. W., J. Nicholls, and R. Orkand: Physiological properties of glial cells in the central nervous system of amphibia. J. Neurophysiol 29, 768–787 (1966).

    PubMed  CAS  Google Scholar 

  • Miller, R. I., and J. E. Dowling: Intracellular responses of the Müller (glial) cells of mudpuppy retina: their relation to b-wave of the electroretinogram. J. Neurophysiol 33, 323–341 (1970).

    PubMed  CAS  Google Scholar 

  • O’Leary, J. L.: Structure of the area striata of the cat. J. comp. Neurol. 75, 131–164 (1941).

    Article  Google Scholar 

  • Orkand, R., J. Nicholls, and S. W. Kurier: Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol 29, 788–806 (1966).

    PubMed  CAS  Google Scholar 

  • Otsuka, R., and R. Hassler: Über Aufbau und Gliederung der corticalen Sehsphare bei der Katze. Arch. Psychiatr. Nervenkr. 203, 212–234 (1962).

    Article  CAS  Google Scholar 

  • Ramón y Cajal, S.: Studien uber die sehrinde der katze. J. Psychol Neurol. 29, 161–181 (1922).

    Google Scholar 

  • Stretton, A. O. W., and E. A. Kravitz: Neuronal geometry: determination with a technique of intracellular dye injection. Science 162, 132–134 (1968).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Van Essen, D., Kelly, J. (1973). Morphological Identification of Simple, Complex and Hypercomplex Cells in the Visual Cortex of the Cat. In: Kater, S.B., Nicholson, C. (eds) Intracellular Staining in Neurobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87123-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87123-8_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87125-2

  • Online ISBN: 978-3-642-87123-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics