Skip to main content

The Development of Intracellular Staining

  • Chapter

Abstract

If a neurobiologist were asked to select the two most indispensible experimental techniques in his field, he would probably choose the histological method of impregnation named after Golgi and an electrophysiological recording system using the glass micro-pipette invented by Ling and Gerard. It is quite true that our understanding of the nervous system owes a great debt to many other techniques, including multitudinous histological stains based on normal and. degenerating material, ablation methods, gross electrical stimulation and recording, sophisticated chemical assays, and electron microscopy. Nevertheless it was the Golgi method and the micropipette which furnished the major advances in the understanding of basic neural mechanisms. In 1968 a technique was announced (Kravitz et al., 1968; Stretton and Kravitz, 1968) which combined features of both the Golgi method and the micropipette and led many to forecast a new era of progress in neurobiology. The present book surveys the results which have stemmed from the new technique; it documents unexpected findings and applications, and, above all, brings together the experience gained by the many people who have used the new methods. This chapter will begin with a brief review of the staining techniques which were available prior to 1968. The chapter will then indicate the scope of research that has been carried out with the new intracellular staining methods, introduce subsequent chapters of the book, and comment on future trends.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, E. D., and G. Moruzzi: Impulses in the pyramidal tract. J. Physiol., Lond. 97, 153–199 (1939).

    PubMed  CAS  Google Scholar 

  • Alawi, A. A., and W. L. Pak: On-transient of insect electroretinogram: its cellular origin.

    Google Scholar 

  • Science 172, 1056–1057 (1971).

    Google Scholar 

  • Alawi, A. A., V. Jennings, J. Crossfield, and W. L. Pak: Phototransduction mutants of Drosophila melanogaster. In: The Visual System: Neurophysiology, Biophysics and their Clinical Applications. Ed. G. B. Arden, pp. 1–21. New York: Plenum Press, 1972.

    Google Scholar 

  • Anderson, M. E. and D. S. Smith: Electrophysiological and structural studies on the heart uscle of the lobster Homarus americanus. Tissue and Cell 3, 191–205 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Anderson, P., J. C. Eccles, and Y. Løyning: Location of postsynaptic inhibitory synapses on hippocampal pyramids. J. Neurophysiol. 27, 592–607 (1964a).

    Google Scholar 

  • Anderson, P., J. C. Eccles, and Y. Løyning:: Pathway of postsynaptic inhibition in the hippocampus. J. Neurophysiol. 27, 608–619 (1964b).

    Google Scholar 

  • Anonymous: Fluorescent neurones. Nature. Lond. 220, 332–333 (1968).

    Google Scholar 

  • Anonymous: How to dye cells. Nature. Lond. 226, 1003 (1970).

    Google Scholar 

  • Autrum, H., F. Zettler, and M. Järvilehto: Postsynaptic potentials from a single monopolar neuron of the ganglion opticum I of the blowfly Calliphora. Z. vergi. Physiol. 70, 414–424 (1970).

    Article  Google Scholar 

  • Barrett, J. N., and W. E. Crill: Specific membrane resistivity of dye-injected cat motoneurons. Brain Res. 28, 556–561 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Barrett, J. N., and K. Graubard: Fluorescent staining of cat motoneurons in vivo with bevelled micropipettes. Brain Res. 18, 565–568 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Baylor, D. A., and J. G. Nicholls: Chemical and electrical synaptic connexions between cutaneous mechanoreceptor neurones in the central nervous system of the leech. J. Physiol, Lond. 203, 591–609 (1969).

    PubMed  CAS  Google Scholar 

  • Baylor, D. A., and P. M. O’Bryan: Electrical signaling in vertebrate photoreceptors. Fedn Proc. Fedn Am. Socs exp. Biol. 30, 79–83 (1971).

    CAS  Google Scholar 

  • Behrens, M. E., and V. J. Wulff: Light-initiated responses of retinula and eccentric cells in the Limulus lateral eye. J. gen. Physiol. 48, 1081–1093 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Bentley, D. R.: A topological map of the locust flight system motor neurons. J. Insect Physiol. 16, 905–918 (1970).

    Article  Google Scholar 

  • Bortoff, A.: Localization of slow potential responses in the Necturus retina. Vision Res. 4, 627–636 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Bullock, T. H., and G. A. Horridge: Structure and Function in the Nervous Systems of Invertebrates. San Francisco: W. H. Freeman and Co., 1965.

    Google Scholar 

  • Bultitude, K. H.: A technique for marking the site of recording with capillary microelectrodes. Q. Jl microsc. Sci. 99, 61–63 (1958).

    Google Scholar 

  • Curtis, D. R.: Microelectrophoresis. In: Physical Techniques in Biological Research, Vol. VA. Ed. W. L. Nastuk. pp. 144–192. New York: Academic Press, 1964.

    Google Scholar 

  • Davis, W. J.: Motoneuron morphology and synaptic contacts: determination by intracellular dye injection. Science 168, 1358–1360 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Dennis, M. J., and H. Gerschenfeld: Some physiological properties of identified mammalian glial cells. J. Physiol., Lond. 203, 211–222 (1969).

    PubMed  CAS  Google Scholar 

  • Eccles, J. C.: The Physiology of Nerve Cells. Baltimore: Johns Hopkins Press, 1957.

    Google Scholar 

  • Eccles, J. C.: The Inhibitory Pathways of the Central Nervous System. Springfield, 111., U.S.A.: Charles C. Thomas and Liverpool, England: Liverpool University Press, 1969.

    Google Scholar 

  • Ehrlich, P.: Über die Methylenblaureaktion der lebenden Nervensubstanz. Biol. Centralbl. 6, 214–224 (1886).

    Google Scholar 

  • Erulkar, S. D., C. W. Nichols, M. B. Popp, and G. B. Koelle: Renshaw elements: localization and acetylcholinesterase content. J. Histochem. Cytochem. 16, 128–135 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Frank, K., and M. C. Becker: Microelectrodes for recording and stimulation. In: Physical Techniques in Biological Research. Vol. VA. Ed. W. L. Nastuk. pp. 23–88. New York: Academic Press, 1964.

    Google Scholar 

  • Fregerslev, S., T. W. Blackstad, K. Fredens, and M. J. Holm: Golgi potassium-dichromate silver-nitrate impregnation. Histochemie 25, 63–71 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Furshpan, E. J., and T. Furukawa: Intracellular and extracellular responses of the neural region of the Mauthner cell of the goldfish. J. Neurophysiol. 25, 732–771 (1962).

    PubMed  CAS  Google Scholar 

  • Galifret, Y., and T. H. Szabo: Locating capillary microelectrode tips within nervous tissue. Nature. Lond. 188, 1033–1034 (1960).

    Article  CAS  Google Scholar 

  • Geduldig, D., and D. Junge: Sodium and calcium components of action potentials in the Aplysia giant neurone. J. Physiol, Lond. 199, 347–365 (1968).

    PubMed  CAS  Google Scholar 

  • Geisler, C. D., E. N. Lightfoot, F P. Schmidt, and F. Sy: Diffusion effects of liquid-filled micropipette: a pseudobinary analysis of electrolyte leakage. IEEE Trans. Biomed. 19, 372–375 (1972).

    Article  CAS  Google Scholar 

  • Gillette, R., and B. Pomeranz: A study of neuron morphology in Aplysia californica using Procion Yellow dye. Comp. Biochem. Physiol. 44A, 1257–1260 (1973).

    Article  Google Scholar 

  • Globus, A., H. D. Lux, and P. Schubert: Soma dendritic spread of intracellularly injected tritiated glycine in cat spinal motoneurons. Brain Res. 11, 440–445 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Gouras, P.: Graded potentials of bream retina. J. Physiol., Lond. 152, 487–505 (1960).

    PubMed  CAS  Google Scholar 

  • Green, J. D.: A simple microelectrode for recording from the central nervous system. Nature. Lond. 182, 962 (1958).

    Article  CAS  Google Scholar 

  • Hagiwara, S., and K. Takahashi: Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane. J. gen. Physiol. 50, 583–601 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Harris, G. G., L. S. Frishkopf, and A. Flock: Receptor potentials from hair cells of the lateral line. Science 167, 76–79 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Hayward, J. N.: Physiological properties of dye-injected preoptic neurons in the hypothalamus of the goldfish (Carassius auratus). Anat. Rec. 172, 454 (1972).

    Google Scholar 

  • Hess, R.: Beiträge zur Physiologie des Hirnstammes. Leipzig: Thieme, 1932.

    Google Scholar 

  • Hodgkin, A. L.: Address of the President Professor A. L. Hodgkin at the Anniversary Meeting, 30 November 1971. Proc. R. Soc., Lond. B. 180, v-xx (1972).

    Google Scholar 

  • Holubář, J., B. Hanke, and V. Malik: Intracellular recording from cortical pyramids and small interneurons as identified by subsequent staining with the recording microelectrode. Exp. Neurol. 19, 257–264 (1967).

    Article  PubMed  Google Scholar 

  • Hubel, D. H., and T. N. Wiesel: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol., Lond. 160, 106–154 (1962).

    PubMed  CAS  Google Scholar 

  • Iles, J. F.: Structure and synaptic activation of the fast coxal depressor motor neurone of the cockroach, Periplaneta americana. J. exp. Biol. 56, 641–656 (1972).

    Google Scholar 

  • Iles, J. F., and B. Mulloney: Procion yellow staining of cockroach motor neurones without the use of microelectrodes. Brain Res. 30, 397–400 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Jankowska, E., and S. Lindström: Morphological identification of physiologically defined neurones in the cat spinal cord. Brain Res. 20, 323–326 (1970a).

    Article  PubMed  CAS  Google Scholar 

  • Jankowska, E., and S. Lindström:: Intracellular staining of physiologically identified interneurones in the cat spinal cord. Acta physiol. scand. 79, 4A-5A (1970b).

    PubMed  CAS  Google Scholar 

  • Jankowska, E., and S. Lindström:: Morphological identification of Renshaw cells. Acta physiol. scand. 81, 428–430 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Jankowska, E., and S. Lindström: Morphology* of interneurones mediating la reciprocal inhibition of moto-neurones in the spinal cord of the cat. J. Physiol, Lond. 226, 805–824 (1972).

    PubMed  CAS  Google Scholar 

  • Järvilehto, M., and F. Zettler: Micro-localisation of lamina-located visual cell activities in the compound eye of the blowfly Calliphora. Z. vergi. Physiol. 69, 134–138 (1970).

    Article  Google Scholar 

  • Järvilehto, M., and F. Zettler:: Localized intracellular potentials from pre- and postsynaptic components in the external plexiform layer of an insect retina. Z. vergi. Physiol. 75, 422–440 (1971).

    Article  Google Scholar 

  • Jones, C., J. Nolte, and J. E. Brown: The anatomy of the median ocellus of Limulus. Z. Zellforsch. mikrosk. Anat. 188, 297–309 (1971).

    Article  Google Scholar 

  • Kaneko, A.: Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J. Physiol, Lond. 207, 623–633 (1970).

    PubMed  CAS  Google Scholar 

  • Kaneko, A.: Electrical connexions between horizontal cells in the dogfish retina. J. Physiol, Lond. 213, 95–105 (1971).

    PubMed  CAS  Google Scholar 

  • Kaneko, A., and H. Hashimoto: Recording site of the single cone response determined by an electrode marking technique. Vision Res. 7, 847–851 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Kater, S. B., C. B. Heyer, and J. P. Hegmann: Neuromuscular transmission in the gastropod mollusc Helisoma trivolvis: identification of motoneurons. J. Comp. Physiol. 74, 127–139 (1971).

    Google Scholar 

  • Kater, S. B., and C. H. F. Rowell: Integration of sensory and centrally programmed components in generation of cyclical feeding activity of Helisoma trivolvis. J. Neurophysiol 36, 142–155 (1973).

    PubMed  CAS  Google Scholar 

  • Kato, M., B. Fujimori, and Y. Hirata: An electron microscopic study of intracellularly stained neurons. Brain Res. 9, 390–393 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Kellerth, J-O.: Intracellular staining of cat spinal motoneurons with Procion Yellow for ultrastructural studies. Brain Res. 50, 415–418 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Kelly, J. S., K. Krnjevic, and G. K. W. Yim: Unresponsive cells in cerebral cortex. Brain Res. 6, 767–769 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Kennedy, D.: Nerve cells and behavior. Am. Scient. 59, 36–42 (1971).

    CAS  Google Scholar 

  • Kennedy, A. I. Selverston, and M. P. Remler: Analysis of restricted neural networks. Science 164, 1488–1496 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Kerkut, G. A., R. M. Pitman, and R. J. Walker: Iontophoretic application of acetylcholine and GABA onto insect central neurones. Comp. Biochem. Physiol 31, 611–633 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Kerkut, G. A., M. C. French, and R. J. Walker: The location of axonal pathways of identifiable neurones of Helix aspersa using the dye Procion yellow M-4R. Comp. Biochem. Physiol 32, 681–690 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Kerkut, G. A., M. C. French, and R. J. Walker: Marking individual nerve cells through electrophoresis of ferro-cyanide from a microelectrode. Stain Technol. 37, 217–219 (1962).

    PubMed  CAS  Google Scholar 

  • Klug, A., and R. A. Crowther: Three-dimensional image reconstruction from the viewpoint of information theory. Nature. Lond. 238, 435–440 (1972).

    Article  Google Scholar 

  • Kravitz, E. A., A. O. W. Stretton, J. Alvarez, and E. J. Furshpan: Determination of neuronal geometry using an intracellular dye injection technique. Fedn Proc. Fedn Am. Socs exp. Biol 27, 749 (1968).

    Google Scholar 

  • Kriebel, M. E., M. V. L. Bennett, S. G. Waxman, and G. D. Pappas: Oculomotor neurons in fish: electrotonic coupling and multiple sites of impulse initiation. Science 166, 520–524 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Larimer, J. L., A. C. Eggleston, L. M. Masukawa, and D. Kennedy: The different connections and motor outputs of lateral and medial giant fibres in the crayfish. J. exp. Biol. 54, 391–402 (1971).

    PubMed  CAS  Google Scholar 

  • Laties, A. M.: Specific neurohistology comes of age—look back and a look forward. Inv. Ophth. 11, 555–584 (1972).

    CAS  Google Scholar 

  • Laties, A. M., and P. A. Liebman: Cones of living amphibian eye: selective staining. Science 168, 1475–1477 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Lavallée, M., O. F. Schanne, and N. C. Hebert: Glass Microelectrodes. London: Wiley, 1969.

    Google Scholar 

  • Ledley, R. S.: Analysis of cells. IEEE Transactions on Computers 21, 740–753 (1972).

    Article  Google Scholar 

  • Lee, B. B., G. Mandi, and J. P. B. Stean: Micro-electrode tip position marking in nervous tissue: a new dye method. Electroenceph. clin. Neurophysiol. 27, 610–613 (1969).

    CAS  Google Scholar 

  • Lent, C. M.: Retzius’ cells from segmental ganglia of four species of leeches: comparative neuronal geometry. Comp. Biochem. Physiol. 44A, 35–40 (1973).

    Article  Google Scholar 

  • Levinthal, C. and R. Ware: Three dimensional reconstruction from serial sections. Nature. Lond. 236, 207–210 (1972).

    Article  Google Scholar 

  • Lillie, R. D.: H. J. Conn’s Biological Stains. Baltimore: William and Wilkin Co., 1969.

    Google Scholar 

  • Ling, G. and R. W. Gerard: The normal membrane potential of frog sartorius muscle fibers. J. Cell comp. Physiol. 34, 383–396 (1949).

    Article  CAS  Google Scholar 

  • Llinás, R., and C. Nicholson: Electrophysiological properties of dendrites and somata in alligator Purkinje cells. J. Neurophysiol. 34, 532–551 (1971).

    PubMed  Google Scholar 

  • Lopresti, V., E. R. Macagno, and C. Levinthal: Structure and development of neuronal connections in isogenic organisms: cellular interaction in the development of the optic lamina of Daphnia. Proc. natn Acad. Sci. U.S.A. 70, 433–437 (1973).

    Article  CAS  Google Scholar 

  • Lux, H. D., and A. Globus: Effect on IPSPs of cat spinal motoneurones due to intra- and extracellular iontophoresis of CuSO4. Brain Res. 9, 377–380 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Lux, H. D., and P. Schubert: Postsynaptic inhibition: intracellular effects of various ions in spinal motoneurons. Science 166, 625–626 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Lux, H. D., G. W. Kreutzberg, and A. Globus: Excitation and axonal flow: autoradiographic study on motoneurons intracellularly injected with a 3H-amino acid. Exp. Brain Res. 10, 197–204 (1970a).

    Article  PubMed  CAS  Google Scholar 

  • Lux, H. D., G. W. Kreutzberg, and A. Globus: Lux, H. D., G. W. Kreutzberg, and A. Globus: Direct matching of morphological and electrophysiological data in cat spinal motoneurons. In: Excitatory Synaptic Mechanisms. Ed. P. Anderson and J. K. S. Jansen, pp. 189–198. Oslo: Universitetsforlaget, 1970b.

    Google Scholar 

  • Macagno, E. R., V. Lopresti, and C. Levinthal: Structure and development of neuronal connections in isogenic organisms: variations and similarities in the optic system of Daphnia magna. Proc. natn Acad. Sci. U.S.A. 70, 57–61 (1973).

    Article  CAS  Google Scholar 

  • MacNichol, E. F. Jr., and G. Svaetichin: Electrical responses from the isolated retinas of fishes. Am. J. Ophthal. 46, 26–40 (1958).

    PubMed  CAS  Google Scholar 

  • Marshall, W. H.: An application of the frozen sectioning technic for cutting serial sections thru the brain. Stain Technol. 15, 133–138 (1940).

    Google Scholar 

  • Matsumoto, N., and K.-I Naka: Identification of intracellular responses in the frog retina. Brain Res. 42, 59–71 (1972).

    Article  PubMed  CAS  Google Scholar 

  • McMahan, U. J., and S. W. Kuffler: Visual identification of synaptic boutons on living ganglion cells and of varicosities in postganglionic axons in the heart of the frog. Proc. R. Soc., Lond. B 177, 485–508 (1971).

    Article  CAS  Google Scholar 

  • McMahan, U. J., and D. Purves: An electron-microscopic study of a physiologically identified moto-neurone in the leech C.N.S. after injection of the fluorescent dye Procion yellow. J. Physiol, Lond. 222, 64P–66P (1972).

    PubMed  CAS  Google Scholar 

  • McMahan, U. J., and N. C. Spitzer: Viewing neuromuscular junctions in live, unstained skeletal muscle. J. Physiol, Lond. 213, 35P–37P (1971).

    Google Scholar 

  • Milburn, N., and D. R. Bentley: On the dendritic topology and activation of cockroach giant interneurons. J. Insect Physiol. 17, 607–623 (1971).

    Article  Google Scholar 

  • Mitarai, G.: The origin of the so-called cone potential. Proc. Japan Acad. 34, 299–304 (1958).

    Article  Google Scholar 

  • Mitarai, G.: Determination of ultramicroelectrode tip position in the retina in relation to S potential. J. gen. Physiol. 43, 95–99 (1960).

    Article  PubMed  Google Scholar 

  • Mittenthal, J. E., and J. J. Wine: Connectivity patterns of crayfish giant interneurons: visualization of synaptic regions with cobalt dye. Science 179, 182–184 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Mote, M. I., and T. H. Goldsmith: Compound eyes: localization of two color receptors in the same ommatidium. Science 171, 1254–1255 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Motokawa, K., T. Oikawa, and K. Tasaki: Receptor potential of vertebrate retina. J. Neurophysiol. 20, 186–199 (1957).

    PubMed  CAS  Google Scholar 

  • Mulloney, B.: The structure of the giant fibres of earthworms, as disclosed by Procion yellow injections. J. Physiol., Lond. 210, 22P (1970a).

    PubMed  CAS  Google Scholar 

  • Mulloney, B.: Structure of the giant fibers of earthworms. Science 168, 994–996 (1970b).

    Article  PubMed  CAS  Google Scholar 

  • Nauta, W. J. M., and S. O. E. Ebbesson: Contemporary Research Methods in Neuroanatomy. New York, Heidelberg, Berlin: Springer-Verlag, 1970.

    Google Scholar 

  • Nicholls, J. G., and D. Purves: Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech. J. Physiol., Lond. 209, 647–667 (1970).

    PubMed  CAS  Google Scholar 

  • Oikawa, T., T. Ogawa, and K. Motokawa: Origin of the so-called cone action potential. J. Neurophysiol. 22, 102–111 (1959).

    PubMed  CAS  Google Scholar 

  • Paul, D. H.: Decrementai conduction over “giant” afferent processes in an arthropod. Science 176, 680–682 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Payton, B. W.: Histological staining properties of Procion yellow. J. Cell Biol. 45, 659–662 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Payton, B. W., M. V. L. Bennett, and G. D. Pappas: Permeability and structure of junctional membranes at an electrotonic synapse. Science 166, 1641–1643 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Perls, M.: Nachweis von Eisenoxid in gewissen Pigmenten. Virch. Arch. 39, 42–48 (1867).

    Article  Google Scholar 

  • Pitman, R. M., C. D. Tweedle, and M. J. Cohen: Branching of central neurons: intracellular cobalt injection for light and electron microscopy. Science 176, 412–414 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Potter, D. D., E. J. Furshpan, and E. S. Lennox: Connections between cells of the developing squid as revealed by electrophysiological methods. Proc. natn. Acad. Sci. U.S.A. 55, 328–336 (1966).

    Article  CAS  Google Scholar 

  • Purves, D., and U. J. McMahan: The distribution of synapses on a physiologically identified motor neuron in the central nervous system of the leech: an electron microscopic study after the injection of the fluorescent dye Procion yellow. J. Cell Biol. 55, 205–220 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Rall, W.: Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1, 491–527 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Rall, W.: Theory of physiological properties of dendrites. Ann. N.Y. Acad. Sci. 96, 1071–1092 (1962).

    Article  PubMed  CAS  Google Scholar 

  • Rall, W.: Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic inputs. J. Neurophysiol. 30, 1138–1168 (1967).

    PubMed  CAS  Google Scholar 

  • Rall, W.: Time constants and electrotonic length of membrane cylinders and neurons. Biophys. J. 9, 1482–1508 (1969).

    Google Scholar 

  • Ramachandran, G. N., and A. V. Lakshminarayan: Three-dimensional reconstruction from radiographs and electron micrographs: application of correlation instead of fourier transform. Proc. natn. Acad. Sci. U.S.A. 68, 2236–2240 (1971).

    Article  CAS  Google Scholar 

  • Ramóny Cajal, S.: Histologie du système Nerveux de l’homme et des Vertébrés. 2 vol. Paris: Maloine, 1909, 1911.

    Google Scholar 

  • Rayport, M.: Anatomical identification of somatic sensory cortical neurons responding with short latencies to specific afferent volleys. Fedn Proc. Fedn Am. Socs exp Biol. 16, 104 (1957).

    Google Scholar 

  • Remler, M. P., A. I. Selverston, and D. Kennedy: Lateral giant fibers of crayfish: location of somata by dye injection. Science 162, 281–283 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Rovainen, C. M., and K. L. Birnberger: Identification and properties of motoneurons to fin muscle of the sea lamprey. J. Neurophysiol. 34, 974–981 (1971).

    PubMed  CAS  Google Scholar 

  • Sakharov, D. A., and J. Salánki: Study of neurosecretory cells of Helix pomatia by intracellular dye injection. Experientia 27, 655–656 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Sandeman, D. C.: Integrative properties of a reflex motoneuron in the brain of the crab Carcinus maenas. Z. vergi. Physiol. 64, 450–464 (1969).

    Article  Google Scholar 

  • Sandeman, D. C.: The excitation and electrical coupling of four identified motoneurons in the brain of the Australian mud crab, Scylla serrata. Z. vergl. Physiol. 72, 111–130 (1971).

    Article  Google Scholar 

  • Scheere, B. T., and M. W. Mumbach: The locus of the electromotive force in frog skin. J. cell. comp. Physiol. 55, 259–266 (1960).

    Article  Google Scholar 

  • Scheibel, M. E., and A. B. Scheibel: Histological localization of microelectrode placement in brain by ferrocyanide and silver staining. Stain Technol. 31, 1–5 (1956).

    PubMed  CAS  Google Scholar 

  • Selverston, A. I., and D. Kennedy: Structure and function of identified nerve cells in the crayfish. Endeavour 28, 107–113 (1969).

    PubMed  CAS  Google Scholar 

  • Shaw, S. R.: Decremental conduction of the visual signal in barnacle lateral eye. J. Physiol., Lond. 220, 143–175 (1972).

    Google Scholar 

  • Sivitz, M., R. G. Kallen, and A. M. Laties: Procion Yellow and Catecholamine derivatives: chemical relationships. J. Histochem. Cytochem. 21, 87–92 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, R. H., and R. Schmidt: Identification of horizontal cells as S-potential generators in the cat retina by intracellular dye injection. Vision Res. 10, 817–820 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Stretton, A. O. W., and E. A. Kravitz: Neuronal geometry: determination with a technique of intracellular dye injection. Science 162, 132–134 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Stuart, A. E.: Excitatory and inhibitory motoneurons in the central nervous system of the leech. Science 165, 817–819 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Stuart, A. E.: Physiological and morphological properties of motoneurones in the central nervous system of the leech. J. Physiol., Lond. 209, 627–646 (1970).

    PubMed  CAS  Google Scholar 

  • Talbott, R. E., A. L. Towe, and T. T. Kennedy: Physiological and histological classification of cerebellar neurons in chloralose-anesthetized cats. Exp. Neurol. 19, 46–64 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Tasaki, I.: Correlation of two stable states of the nerve membrane in potassium-rich media. J. Physiol., Lond. 148, 306–331 (1959).

    PubMed  CAS  Google Scholar 

  • Tasaki, I., A. Watanabe, and M. Hallett: Fluorescence of squid axon membrane labelled with hydrophobic probes. J. Mem. Biol 8, 109–132 (1972).

    Article  CAS  Google Scholar 

  • Teräväinen, N., and C. M. Rovainen: Fast and slow motoneurons to body muscle of the sea lamprey. J. Neurophysiol. 34, 990–998 (1971).

    PubMed  Google Scholar 

  • Thomas, R. C., and V. J. Wilson: Precise localization of Renshaw cells with a new marking technique. Nature 206, 211–213 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Thomas, R. C., and V. J. Wilson: Marking single neurons by staining with intracellular recording micro-electrodes. Science 151, 1538–1539 (1966).

    Article  PubMed  CAS  Google Scholar 

  • Van Essen, D., and J. Kelly: Correlation of cell shape and function in the visual cortex of the cat. Nature. Lond. 241, 403–405 (1973).

    Article  PubMed  Google Scholar 

  • Van Keulen, L. C. M.: Morphology of Renshaw cells. Pflügers Arch. ges. Physiol. 328, 235–236 (1971).

    Google Scholar 

  • von Baumgarten, R., E. Kanzoe, M. P. Kowpchen, and F. Timm: Beitrag zur Technik deiextra- und intracellulären sowie der stereotaktischen Mikroableitung im Gehirn. Pflügers Arch. ges. Physiol. 271, 245–256 (1960).

    Article  Google Scholar 

  • Wald, F.: Ionic differences between somatic and axonal action potentials in snail giant neurons. J. Physiol., Lond. 220, 267–281 (1972).

    PubMed  CAS  Google Scholar 

  • Zettler, F., and M. Järvilehto: Decrement-free conduction of graded potentials along the axon of a monopolar neuron. Z. vergl. Physiol. 75, 402–421 (1971).

    Article  Google Scholar 

  • Zucker, R. S., D. Kennedy, and A. I. Selverston: Neuronal circuit mediating escape responses in crayfish. Science 173, 645–650 (1971).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1973 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Nicholson, C., Kater, S.B. (1973). The Development of Intracellular Staining. In: Kater, S.B., Nicholson, C. (eds) Intracellular Staining in Neurobiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87123-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87123-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87125-2

  • Online ISBN: 978-3-642-87123-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics