Advertisement

Information Processing in the Motorsensory Cortex

  • Vernon B. Brooks

Abstract

In order to discuss the processing of information in the motorsensory cortex, we need to know what information reaches this part of the brain, how it is processed, and to what purpose. We will begin by defining the motorsensory cortex, and by making some first guesses at the functions that it might serve. Next, we will consider the kinds of information that reach it, and how the target cells for these sensory inputs are distributed and grouped in the cortical tissue. After examining the motor outputs of these cells, we can formulate some input-output properties for cell groups that can be defined anatomically. Having established the minimal input-output building blocks of motorsensory cortex, we will then re-examine our guesses about its functions.

Keywords

Motor Cortex Receptive Field Pyramidal Tract Voluntary Movement Primary Sensory Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adkins, R. J., Morse, R. W. and Towe, A. L. (1966). Control of somatosensory input by cerebral cortex. Science, 153: 1020–1022.PubMedCrossRefGoogle Scholar
  2. Albe-Fessard, D. and Liebeskind, J. (1966). Origine des messages somato-sensitifs activant les cellules du cortex moteur chez le singe. Exp. Brain Res., 1: 127–146.PubMedGoogle Scholar
  3. Amassian, V. E. and Weiner, H. (1966). Monosynaptic and polysynaptic activation of pyramidal tract neurons by thalamic stimulation. In D. P. Purpura and M. D. Yahr (eds.), The thalamus. New York: Columbia University Press.Google Scholar
  4. Asanuma, H., Stoney, S. D., Jr. and Abzug, C. (1968). Relationship between afferent input and motor outflow in cat motorsensory cortex. J. Neurophysiol., 57:670–681.Google Scholar
  5. Bard, P. (1938). Studies on the cortical representation of somatic sensibility. Bull. N.Y. Acad. Med. 14: 585–607.PubMedGoogle Scholar
  6. Brodai, A. (1962). Some anatomical considerations of the cortico-spinal tract and corticofugal fibres to the brain stem. In M. Bax and R. Mitchell (eds.), Acute hemiplegia in childhood. London: William Heinemann.Google Scholar
  7. Brooks, V. B. and Asanuma, H. (1965). Recurrent cortical effects following stimulation of medullary pyramid. Arch. Ital. Biol. 103: 247–278.PubMedGoogle Scholar
  8. Burns, B. D. (1968). The uncertain nervous system. London: Edward Arnold.Google Scholar
  9. Buser, P. (1966). Subcortical controls of pyramidal activity. In D. P. Purpura and M. D. Yahr (eds.), The thalamus. New York: Columbia University Press.Google Scholar
  10. Colonnier, M. (1966). The structural design of the neo-cortex. In J. C. Eccles (ed.), Brain and Conscious Experience. New York: Springer-Verlag.Google Scholar
  11. Denny-Brown, D. (1960). Motor mechanisms—introduction: the general principles of motor integration. In, Handbook of Physiology-Neurophysiology. Vol. 2. Chapt. 32. Washington, D.C.: Amer. Physiol. Soc.Google Scholar
  12. Evarts, E. V. (1967). Representation of movements and muscles by pyramidal tract neurons of the precentral motor cortex. In M. D. Yahr and D. P. Purpura (eds.), Neurophysiological basis of normal and abnormal motor activities. Hewlett, New York: Raven Press.Google Scholar
  13. Kornhuber, H. H. and Aschoff, J. C. (1963). Somatisch-vestibuläre konvergenz und interaktion an neuronen des motorischen und des somatosensiblen cortex der katze. Pflügers Arch. Physiol., 278: 72–73.Google Scholar
  14. Lawrence, D. G. and Kuypers, H. G. J. M. (1965). Pyramidal and nonpyramidal pathways in monkeys: anatomical and functional correlation. Science. 148: 973–975.PubMedCrossRefGoogle Scholar
  15. Levitt, M., Carreras, M., Liu, C. N. and Chambers, W. W. (1964). Pyramidal and extrapyramidal modulation of somatosensory activity in gracile and cuneate nuclei. Arch. Ital. Biol., 102: 197–229.PubMedGoogle Scholar
  16. Oscarson, O. (1966). The projection of group I muscle afférents to the cat cerebral cortex. In R. Granit (ed.), Muscular afferents and motor control. New York: John Wiley & Sons.Google Scholar
  17. Paillard, J. (1960). The patterning of skilled movements. In Handbook of Physiology-Neurophysiology. Vol. 3. Chap. LXVII. Washington, D.C.: Amer. Physiol. Soc.Google Scholar
  18. Patton, H. D. and Amassian, V. E. (1960). The pyramidal tract: its excitation and functions. In Handbook of Physiology-Neurophysiology. Vol. 2. Chap. 34. Washington, D.C.: American Physiol. Soc.Google Scholar
  19. Penfield, W. and Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, LX: 389–443.CrossRefGoogle Scholar
  20. Perl, E. R. and Whitlock, D. G. (1961). Somatic stimuli exciting spinothalamic projections to thalamic neurons in cat and monkey. Exp. Neurol., 3: 256–296.PubMedCrossRefGoogle Scholar
  21. Phillips, C. G. (1966). Changing concepts of the precentral motor area. In J. C. Eccles (ed.), Brain and conscious experience. New York: Springer-Verlag.Google Scholar
  22. Preston, J. B., Shende, M. C, Uemura, K. (1967). The motor cortex pyramidal system: patterns of facilitation and inhibition on motoneurons innervating limb musculature of cat ad baboon and their possible adaptive significance. In M. D. Yahr and D. P. Purpura (eds.), Neurophysiological basis of normal and abnormal motor activities. Hewlett, New York: Raven Press.Google Scholar
  23. Rose, J. E. and Mountcastle, V. B. (1959). Touch and kinesthesis. In Handbook of physiology-neurophysiology. Vol. 1. Chap. 17. Washington, D.C.: American Physiological Society.Google Scholar
  24. Rosen, I. (1968). Personal Communication.Google Scholar
  25. Sakata, H. and Miyamoto, J. (1968). Topographic relationship between the receptive fields of neurons in the motor cortex and the movements elicited by focal stimulation in freely moving cats. Jap. J. Physiol. 18: 489–507.CrossRefGoogle Scholar
  26. Taub, E., Ellman, S. J. and Berman, A. J. (1966). Deafferentation in monkeys: effect on conditioned grasp response. Science. 151: 593–594.PubMedCrossRefGoogle Scholar
  27. Terzuolo, C. A. and Adey, W. R. (1960). Sensorimotor cortical activities. In Handbook of physiology-neurophysiology. Vol. 2. Chap. 33. Washington, D.C.: American Physiological Society.Google Scholar
  28. Thompson, W. D., Asanuma, H. and Stoney, D. (1969). Organization of connections between sensory and motor cortex in cats. Fed. Proc. 28:456. Google Scholar
  29. Towe, A. L. (1965). Neuronal population analysis in the cerebral cortex. In P. W. Nye (ed.), Proc. Symp. Information Processing in Sight Sensory Systems. Pasadena, California: Cal. Inst. Techn.Google Scholar
  30. Towe, A. L., Whitehorn, D. and Nyquist, I. K. (1968). Differential activity among wide-field neurons of the cat postcruciate cerebral cortex. Exp. Neurol. 20:497–521.PubMedCrossRefGoogle Scholar
  31. Tsukahara, N., Fuller, D. R. G. and Brooks, V. B. (1968). Collateral pyramidal influences on the corticorubrospinal system. J. Neurophysiol. 31: 467–484.PubMedGoogle Scholar
  32. Watt, D. and Jones, G. M. (1968). Observations on the neuro-muscular control of purposeful movements. In Proceedings of the annual scientific meeting of the aerospace medical association, Bel Harbor. 174–175.Google Scholar
  33. Welt, C, Aschoff, J. C, Kameda, K. and Brooks, V. B. (1967). Intracortical organization of cat’ motorsensory neurons. In M. D. Yahr and D. P. Purpura (eds.), Neurophysiological basis of normal and abnormal motor activities. Hewlett, New York: Raven Press.Google Scholar
  34. Woolsey, C. N. (1958). Organization of somatic sensory and motor areas of the cerebral cortex. In H. F. Harlow and C. N. Woolsey (eds.), Biological and biochemical bases of behavior. Madison, Wisconsin: University of Wisconsin Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • Vernon B. Brooks
    • 1
  1. 1.Department of PhysiologyNew York Medical CollegeNew YorkUSA

Personalised recommendations