Comments on induction during cell differentiation

  • Howard Holtzer
Part of the Colloquium der Gesellschaft für Biologische Chemie in Mosbach Baden book series (MOSBACH, volume 13)


I suspect that this symposium was convoked because many share the conviction that embryological “induction” involves mechanisms similar to those implicated in the induction of enzymes in micro-organisms. This article of faith is summarized in the axiom that anything found to be true for E. coli must also be true for elephants (Monod and Jacob, 1962). For myself, I am not sure how one compares elephants with E. coli; how, so to speak, one focuses simultaneously on both these forms. True, in both proteins may be ultimately programmed by the sequence of bases in the DNA, polysaccharides synthesized by way of uridine nucleotides and so forth, but this does not describe how the elephant, consisting of billions of individual, specialized, and generally non-dividing cells, has developed. Yet this is the crux of morphogenesis and cell differentiation — how, by way of mitotic divisions, a zygote yields so many spatially-oriented muscle, cartilage, nerve, liver and other specialized cells whose activities, when integrated, form the elephant. The problem is not primarily how a muscle cell orders smaller molecules into myosin, actin, or creatine kinase, but how one group of cells is instructed to become muscle, whereas another group, descendents from the same parent cell, is instructed to fabricate a protein-chondroitin sulphate complex and hence becomes cartilage.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aveby, G., M. Chow and H. Holtzer: J. exp. Zool. 132, 409–426 (1956).CrossRefGoogle Scholar
  2. 2.
    Babth, L., and S. Graff: Cold. Spr. Harb. Symp. quant. Biol. 6, 385–391 (1938).Google Scholar
  3. 3.
    Barth, L., and L. Barth: J. Embryol exp. Morph. 7, 210–222 (1959).PubMedGoogle Scholar
  4. 4.
    Berensot, G., W. Lumpkin and V. Shipp: Anat. Ree. 132, 585–596 (1958).CrossRefGoogle Scholar
  5. 5.
    Cohen, S.: 13th Growth Symp., D. Rudnick, ed. Princeton Univ. Press 1954.Google Scholar
  6. 6.
    Ebert, J.: J. exp. Zool. 142, 587–613 (1959).PubMedCrossRefGoogle Scholar
  7. 7.
    Ebert, J.: The Cell, Vol. I, ed. J. Brächet and A. Mirsky. Academic Press. 1959.Google Scholar
  8. 8.
    Ebert, J., and F. Wilt: Quart. Rev. Biol. 35, 261–312 (1960).PubMedCrossRefGoogle Scholar
  9. 9.
    Glinds, A.: The Chemical Basis of Development, McElroy and Glass eds. Baltimore: Johns Hopkins Press 1958.Google Scholar
  10. 10.
    Grobstein, C., and H. Holtzer: J. exp. Zool. 128, 333–356 (1955).CrossRefGoogle Scholar
  11. 11.
    Grossfeld, H., K. Meyer and G. Grodman: Anat. Ree. 124, 489 (1955).Google Scholar
  12. 12.
    Holtfreter, J.: Growth 15, suppl. 117, 152 (1951).Google Scholar
  13. 13.
    Holtfreter, J.: The Chemical Basis of Development, pp, 253–255, McElroy and Glass eds. Baltimore: Johns Hopkins Press 1958.Google Scholar
  14. 14.
    Holtfreter, J., and V. Hamburger: Analysis of Development, pp. 230–296, Willier Weiss and Hamburger eds. Philadelphia-London: W. B. Saunders Co. 1955.Google Scholar
  15. 15.
    Holtzer, H.: Synthesis of Molecular and Cellular Structure, 19th Growth Symp., D. Rudnick, ed. Ronald Press Co. 1961.Google Scholar
  16. 16.
    Holtzer, H., and S. Detwiler: J. exp. Zool. 123, 335–370 (1953).CrossRefGoogle Scholar
  17. 17.
    Holtzer, H., F. Stockdale and J. Abbott: Abstracts of 1st Annual Meeting. Amer. Soc. Cell Biol. 1, 90 (1961).Google Scholar
  18. 18.
    Holtzer, H., J. Abbott, J. Lash and S. Holtzer: PNAS 46, 1533–1542. 1960PubMedCrossRefGoogle Scholar
  19. 19.
    Hommes, F., van Leeuwen, G. and F. Zilliken: Biochim. bioph. Acta (Amst.) 56, 320–325 (1962).CrossRefGoogle Scholar
  20. 20.
    Hotchkiss, R.: The Chemical Basis of Heredity pp. 321–335, McElroy and Glass eds. Baltimore: Johns Hopkins Press 1957.Google Scholar
  21. 21.
    Jacob, F., and S. Monod: J. molec. Biol. 3, 318–356 (1961).PubMedCrossRefGoogle Scholar
  22. 22.
    Knox, W. E.: Synthesis of Molecular and Cellular Structure. 19 th Growth Symp., D. Rudnik, ed. Ronald Press Co. 1961. 23Google Scholar
  23. 23.
    Langman, J.: J. Embryol exp. Morph. 7, pt. 2, 264–274 (1959).PubMedGoogle Scholar
  24. 24.
    Langman, J., and P. Presscott: J. Embryol exp. Morph. 7, pt. 4, 549–555 (1959).PubMedGoogle Scholar
  25. 25.
    Lash, J., S. Holtzer and H. Holtzer: Exp. Cell Res. 13, 292–303 (1957).PubMedCrossRefGoogle Scholar
  26. 26.
    Lash, J., F. Hommes and F. Zilliken: Biochim. biophys. Acta (Amst.) 56, 313–319 (1962).CrossRefGoogle Scholar
  27. 27.
    Lash, J., F. Zilliken and F. Hommes: Amer. Zool. 1, 367 (1961).Google Scholar
  28. 28.
    Maaløe, O.: Cold Spr. Harb. Symp. quant. Biol., 26, 45–52 (1961).CrossRefGoogle Scholar
  29. 29.
    Mazia, D.: The Cell Vol. III. Brächet and Mirsky eds. Academic Press 1961.Google Scholar
  30. 30.
    Monod, J., and F. Jacob: Cold Spr. Harb. Symp. quant. Biol. 26, 389–401. 1961Google Scholar
  31. 31.
    Nemeth, A.: J. biol. Chem. 234, 2921–2924 (1959).PubMedGoogle Scholar
  32. 32.
    Niu, M. C.: Cellular Mechanisms in Differentiation and Growth. 14th Growth Symp., D. Rudnick, ed., Princetown Univ. Press. 1956.Google Scholar
  33. 33.
    Rose, S. M.: Amer. Nat. 86, 337–354 (1952).CrossRefGoogle Scholar
  34. 34.
    Schaechter, M.: Cold Spr. Harb. Symp. quant. Biol. 26, 53–62 (1961).Google Scholar
  35. 35.
    Schindler, R., M. Day and G. Fisher: Cancer Res. 19, 47–51 (1959).PubMedGoogle Scholar
  36. 36.
    Signer, E., A. Torriani and C. Levinthal: Cold Spr. Harb. Symp. quant. Biol. 26, 31–34 (1961).Google Scholar
  37. 37.
    Spemann, H.: Embryonic Development and Induction, Yale Univ. Press. 1938.Google Scholar
  38. 38.
    sorieul, S., and B. Ephrussi: Nature (Lond.) 190, 653–654 (1961).CrossRefGoogle Scholar
  39. 39.
    Stockdale, F., J. Abbott and H. Holtzer: Amer. Zool. 1, 392 (1961).Google Scholar
  40. 40.
    Stockdale, F., H. Holtzer and J. Lash: Acta Embryol. Morph, exp. 4, 40–46 (1961).Google Scholar
  41. 41.
    Strudel, G.: Dev. Biol. 4, 67–86 (1962).PubMedCrossRefGoogle Scholar
  42. 42.
    Tiedemann, H., and H. Tiedemann: Hoppe-Seylers Z. Physiol Chem. 314, 156–176 (1959).PubMedCrossRefGoogle Scholar
  43. 43.
    Toivonen, S., and L. Soxen: Exp. Cell Res. Suppl. 3, 346–357 (1955).Google Scholar
  44. 44.
    Waddington, C. H.: Principles of Embryology, London: G. Allen and Unwin LTD 1960.Google Scholar
  45. 45.
    Weiss, P.: The Principles of Development, New York: Holt 1939.Google Scholar
  46. 46.
    Wilde, C.: Advances in Morphogenesis, Vol. 1 267–298, Abercombie and Brächet eds. New York: Academic Press 1961.Google Scholar
  47. 47.
    Yamada, T.: Advances in Morphogenesis, Vol. 1: 50, Abercombie and Brächet eds. New York: Academic Press 1961. 48Google Scholar
  48. 48.
    Zinder, N., and J. Lederberg: J. Bact. 64, 679 (1952).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1963

Authors and Affiliations

  • Howard Holtzer
    • 1
  1. 1.Dept. of Anatomy, School of MedicineUniversity of PennsylvaniaUSA

Personalised recommendations