Skip to main content

Image Sequence Analysis: What Can We Learn from Applications?

  • Chapter
Image Sequence Analysis

Part of the book series: Springer Series in Information Sciences ((SSINF,volume 5))

Abstract

The analysis of image sequences has only recently been recognized as a research area in its own right. A lot of isolated experience, however, had already been accumulated in various application-oriented investigations. It is the goal of this contribution to gather this experience in a coherent presentation, thus giving depth to an emerging discipline. The unifying idea underlying the organization of this review is an attempt to demonstrate that progress towards more automatic evaluation of image sequences has been intimately connected with improvements of the means to construct computer-internal descriptions — loosely called ‘models’ — of the depicted scene. This description has to take into account the spatial or temporal variations which are encountered throughout an image sequence. Attempts to describe the development of extractable subimages with time in a quantitative manner are abstracted from their application and presented in a separate chapter. A comprehensive bibliography, augmented by an author index, should facilitate access to the literature.

This chapter has been reproduced in its self-contained form, and consequently does not stylistically conform to the other chapters in this volume. The chapter number 2 has been omitted within the chapter from headings and cross-references. The references are according to the name-date method and contain the section numbers where the references are cited. An index relating the authors cited to the entries in the list of references concludes the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ==> 3.3; Quantitative Design and Evaluation of Enhancement/ Thresholding Edge Detectors I.E. Abdou and W.K. Pratt Proc. IEEE 67 (1979) 753–763

    Google Scholar 

  2. ==> 2.2.3; Thunderstorm Monitoring from a Geosynchronous Satellite R.F. Adler and D.D. Fenn 7th Conference on Aerospace and Aeronautical Meteorology (1976) pp. 307–311

    Google Scholar 

  3. ==> 2.2.1; 2.6.2; Computer Analysis of Moving Polygonal Images J.K. Aggarwal and R.O. Duda IEEE Trans. Computers C-24 (1975) 966–976

    Google Scholar 

  4. == >2.6. 1; Knowledge-Based Detection and Classification of Vehicles and Other Objects in Aerial Road Images G.J. Agin Proc. Image Understanding Workshop, L.S. Baumann (ed.) Palo Alto/CA, April 24–25, 1979, pp. 66–71 Science Applications, Inc., Arlington/VA 22209

    Google Scholar 

  5. ==> 2.2.4; Digital Registration of Multispectral Video Imagery P.E. Anuta SPIE J. 7 (1969) 168–175

    Google Scholar 

  6. ==> 2.2.4; 2.2.6; Spatial Registration of Multispectral and Multitemporal Digital Imagery Using Fast Fourier Transform Techniques P.E. Anuta IEEE Trans, on Geoscience Electronics GE-8 (1970) 353–368

    Google Scholar 

  7. ==> 2.1.3; Rectangular Region Coding for Image Data Compression M. Aoki Pattern Recognition 11 (1979) 297–312

    Google Scholar 

  8. ==> 2.4; 4; A System for Analyzing Time-Varying Image Patterns Y. Ariki Department of Information Science Technical Report (1978) Faculty of Engineering, Kyoto University, Kyoto

    Google Scholar 

  9. ==> 2.4; 4; An Interactive Image Modeling and Tracing System for Moving PicturesY. Ariki, T. Kanade, and T. Sakai IJCPR-78 Nov. 7–10, 1978 Kyoto/Japan, pp. 681–685

    Google Scholar 

  10. ==> 2.1.2; 2.2.1; An Evaluation of Fourier Transform Techniques for Cloud Motion Estimation A.A. Arking, R.C. Lo, and A. Rosenfeld TR-351 (January 1975) Computer Science Department, University of Maryland, College Park/MD

    Google Scholar 

  11. ==> 2.8.4 Display of Three-Dimensional Information in Computed Tomography E. Artzy Computer Graphics and Image Processing 9 (1979) 196–198

    Google Scholar 

  12. ==> 2.3.3; The Contour Extraction Problem with Biomedical Applications G.P. Ashkar and J.W. Modestino Computer Graphics and Image Processing 7 (1978) 331–355

    Google Scholar 

  13. ==> 2.6.1; Detektion bewegter Objekte in 2-dimensionalen Bildszenen S. Bach, H. Gerlach und H. Kazmierczak Bericht 58 (Maerz 1978) Forschungsinstitut fuer Informationsverarbeitung und Mustererkennung, Karlsruhe/Germany

    Google Scholar 

  14. ==> 2.8.8; Three-Dimensional Representations for Computer Graphics and Computer Vision N.I. Badler and R. Bajcsy Proc. SIGGRAPH ‘78, R.L. Phillips (ed.) Atlanta/GA, August 23–25, 1978, Computer Graphics 12 (1978) 153–160

    Google Scholar 

  15. ==> 2.8.8; Representation of Articulable, Quasi-Rigid, Three-Dimensional Objects N.I. Badler and J. O’Rourke Proc. NSF Workshop on the Representation of Three-Dimensional Objects R. Bajcsy (ed.), Philadelphia/PA, May 1–2, 1979

    Google Scholar 

  16. ==> 2.8.8; Representation of Knowledge in Computer Vision Systems: A Comparative Analysis of Pattern Recognition and Artificial Intelligence Approaches with Applications to Reconstruction of 3-D Objects R. Bajcsy and D.A. Bourne MS-CIS-78–38 (1978) Department of Computer and Information Science University of Pennsylvania, Philadelphia/PA

    Google Scholar 

  17. ==> 2.8.6; Steps Towards the Representation of Complex Three-Dimensional Objects R.K. Bajcsy and B.I. Soroka IJCAI-77, p. 596

    Google Scholar 

  18. ==> 2.8.1; 2.8.5; A Computer System for Reconstruction and Display of the Macrostructure of Brain from Radiographs of Serial Sections R. Bajcsy and I. Winston Proc. BIOSIGMA ‘78, Paris/France, April 1978 also MS-CIS-78–33 Computer and Information Science Department University of Pennsylvania, Philadelphia/PA

    Google Scholar 

  19. ==> 3.3; Three-Dimensional Modelling H.H. Baker IJCAI-77, pp. 649–655

    Google Scholar 

  20. ==> 2.2.1; A Clustering Technique for Summarizing Multivariate Data G.H. Ball and D.J. Hall Behavioral Science 12 (1967) 153–155

    Google Scholar 

  21. ==> 2.1.3; 3.1; 3.3; Motion Detection and Analysis J. Batali and S. Ullman Proc. Image Understanding Workshop, pp. 69–75 L.S. Baumann (ed.), Los Angeles/CA, Nov. 7–8, 1979 Science Applications, Inc., Arlington/VA 22209

    Google Scholar 

  22. ==> 2.1.3; 2.1.7; Picture Coding H.H. Bauch, H. Haeberle, H.G. Musmann, H. Ohnsorge, G.A. Wengenroth, and H.J. Woite IEEE Trans. Communications COM-22 (1974)

    Google Scholar 

  23. ==> 2.2.1; 2.2.3; A Comparison of Cloud Motion Winds with Coinciding Radiosonde Winds K.G. Bauer Monthly Weather Review 104 (1976) 922–931

    Google Scholar 

  24. ==> 2.2.4; 2.2.6; Digital Image Processing of Earth Observation Sensor Data R. Bernstein IBM Journal of Research and Development 20 (1976) 40–57

    MATH  Google Scholar 

  25. ==> 2.8.6; Visual Perception by Computer T.O. Binford presented to IEEE Conference on Systems and Control (Dec. 1971), Miami/Florida

    Google Scholar 

  26. ==> 2.7; Workpiece Orientation Correction with a Robot Arm Using Visual Information J.R. Birk, R.B. Kelley, and V.V. Badami IJCAI-77, p. 758

    Google Scholar 

  27. ==> 2.7; Theory of Image Control R.D. Bonnell and M.N. Huhns WCATVI-79, pp. 106–107

    Google Scholar 

  28. ==> 2.8.8; Three Dimensional Picture Processing and its Use in Bio-Medical Applications D.A. Bourne SPIE, Los Angeles 1978

    Google Scholar 

  29. ==> 2.2.1; 2.2.2; 2.2.4; An Experimental Model for the Automated Detection, Measurement, and Quality Control of Low-Level Cloud Motion Vectors from Geosynchronous Satellite Data R. Bradford, J.A. Leese, and C.S. Novak Proc. 8th Int. Symposium on Remote Sensing of Environment, October 2–6, 1972, pp. 441–462 University of Michigan, Ann Arbor/Michigan

    Google Scholar 

  30. ==> 2.3.1; 2.3.1; Digital Processing of Video-angiocardiographic Image Series Using a Minicomputer R. Brennecke, T.K. Brown, J. Buersch, and P.H. Heintzen Proc. IEEE Conference on Computers in Cardiology, St. Louis/MO 1976, pp. 255–260

    Google Scholar 

  31. ==> 2.3.1; 2.3.1; Computerized Video-Image Preprocessing with Applications to Cardio-Angiographic Roentgen-Image-Series R. Brennecke, T.K. Brown, J. Buersch, and P.H. Heintzen GI/NTG Fachtagung Digitale Bildverarbeitung Muenchen, 28.–30. Maerz 1977, (H.-H. Nagel, ed.) Informatik Fachberichte 8 (1977) 244–262 Springer Verlag Berlin-Heidelberg-New York, 1977

    Google Scholar 

  32. ==> 2.3.1; A Digital System for Roentgen Video Image Processing R. Brennecke, T.K. Brown, J. Buersch, and P.H. Heintzen in: Heintzen and Buersch 78, pp. 150–157

    Google Scholar 

  33. ==> 2.3.1; Improved Digital Real-Time Processing and Storage Techniques with Application to Intravenous Contrast Angiography R. Brennecke, H.J. Hahne, K. Moldenhauer, J.H. Buersch, and P.H. Heintzen Proc. Computers in Cardiology 1978, pp. 191–194

    Google Scholar 

  34. ==> 2.3; ISAAC: a Digital Computer System for Acquisition and Analysis of Time-Varying Imagery R. Brennecke, H.J. Hahne, K. Moldenhauer, and P.H. Heintzen WCATVI-79, pp. 119–120

    Google Scholar 

  35. ==> 2.3; A Special Purpose Processor for Digital Angiocardiography — Design and Application R. Brennecke, H.J. Hahne, K. Moldenhauer, J.H. Buersch, and P.H. Heintzen Proc. Computers in Cardiology 1979 IEEE Computer Society, Long Beach/CA

    Google Scholar 

  36. ==> 2.3.6; Shape Description and Shape Similarity Measurement for Two-Dimensional Regions E. Bribiesca and A. Guzman IJCPR-78, pp. 608–612

    Google Scholar 

  37. ==> 2.3.6; How to Describe Pure Form and How to Measure Differences in Shapes Using Shape Numbers E. Bribiesea and A. Guzman IEEE Conference on Pattern Recognition and Image Processing, Chicago/IL, August 6–8, 1979, pp. 427–436

    Google Scholar 

  38. == > 3.1; Scene Analysis Using Regions C.R. Brice and C.L. Fennema Artificial Intelligence 1 (1970) 205–226

    Google Scholar 

  39. ==> 2.2.1; Extracting Atmospheric Wind Estimates from Geostationary Satellite Image Data C.L. Bristor Proc. Symposium on Computer Image Processing and Recognition, (A.J. Carlson, ed.), Columbia/Missouri (August 1972), pp. 2–1–1 through 2–1–6

    Google Scholar 

  40. Central Processing and Analysis of Geostationary Satellite Data C.L. Bristor (ed.) NOAA Technical Memorandum NESS 64, U.S. Department of Commerce, Washington, D.C. (March 1975)

    Google Scholar 

  41. ==> 2.1.4; Interframe Redundancy Reduction of Video Signals Generated by Translating Objects S. Brofferio and F. Rocca IEEE Trans. Communications COM-25 (1977) 448–455

    Google Scholar 

  42. ==> 3.3; Rationalizing Edge Detectors M.J. Brooks Computer Graphics and Image Processing 8 (1978) 277–285

    Google Scholar 

  43. ==> 2.2.6; Integration of Socioeconomic Data and Remotely Sensed Imagery for Land Use Applications N.A. Bryant in: Green et al. 76, pp. 9–1 through 9–8

    Google Scholar 

  44. ==> 2.2.5; Finding Structure in Outdoor Scenes B.L. Bullock in: Pattern Recognition and Artificial Intelligence C.H. Chen (ed.) Academic Press, New York 1976, pp. 61–85

    Google Scholar 

  45. ==> 2.2.5; 2.6.2; The Necessity for a Theory of Specialized Vision B.L. Bullock in: Computer Vision Systems A.R. Hanson and E.M. Riseman (eds.) Academic Press, New York 1978, pp. 27–35

    Google Scholar 

  46. ==> 2.2.5; 2.6.2; FOOTPRINTS: a Representation for Restricted Motion in Outdoor Scenes B.L. Bullock and S.A. Dudani IJCPR-76, pp. 429–430

    Google Scholar 

  47. ==> 2.1.5; 2.1.6; 3.1; 3.2; 3.3; Methods for Measuring Small Displacements of Television Images C. Cafforio and F. Rocca IEEE Trans. Information Theory IT-22 (1976) 573–579

    Google Scholar 

  48. ==> 3.1; 3.2; 3.3; 3.3; Tracking Moving Objects in Television Images C. Cafforio and F. Rocca Signal Processing 1 (1979) 133–140

    Google Scholar 

  49. ==> 2.1.4; 2.1.5; 2.1.7; 2.1.7; Transmitting Television as Clusters of Frame-to-Frame Differences J.C. Candy, M.A. Franke, B.G. Haskell, and F.W. Mounts Bell System Techn. J. 50 (1971) 1889–1917

    Google Scholar 

  50. ==> 2.5; A Minicomputer-Multiple Microprocessor System for Gait Analysis Using Television and Force Plate Data H.J. Chen Ph.D. Thesis (August 1979) Department of Electrical Engineering, The Ohio State University, Columbus/OH

    Google Scholar 

  51. ==> 2.5; Computer-Television Analysis of Biped Locomotion I.-S. Cheng Ph.D. Thesis (December 1974) Department of Electrical Engineering, The Ohio State University, Columbus/OH

    Google Scholar 

  52. ==> 2.6.1; 2.7; Acquisition of Moving Objects and Hand-Eye Coordination R.T. Chien and V.C. Jones IJCAI-75, pp. 737–741

    Google Scholar 

  53. ==> 2.1.3; Image Compression with Feature Extraction and Reconstruction R.T. Chien and L.J. Peterson Proc. IEEE Workshop on Picture Data Description and Management, April 21–22, 1977, Chicago/Ill., pp. 96–99 see also Image Compression and Reconstruction Using Feature Extraction R.T. Chien and L.J. Peterson IJCAI-77, p. 658

    Google Scholar 

  54. ==> 2.6.1; Motion Detection and Analysis with Intermediate-Level Primitives R.T. Chien, C.J. Jacobus, and J.M. Selander WCATVI-79, pp. 23–24

    Google Scholar 

  55. ==> 2.6.2; Computer Analysis of Planar Curvilinear Moving Images W.K. Chow and J.K. Aggarwal IEEE Trans. Computers C-26 (1977) 179–185

    Google Scholar 

  56. ==> 2.3.1; 2.3.3; 2.3.3; Automatic Boundary Detection of the Left Ventricle from Cineangiograms C.K. Chow and T. Kaneko Computers and Biomedical Research 5 (1972) 388–410

    Google Scholar 

  57. ==> 2.3.1; X-Ray Image Subtraction by Digital Means C.K. Chow, S.K. Hilal, and K.E. Niebuhr IBM J. Res. Develop. 17 (1973) 206 – 218

    Google Scholar 

  58. ==> 2.8; 2.8.3; Conversion of Complex Contour Line Definitions into Polygonal Element Mosaics H.N. Christiansen and T.W. Sederberg Proc. SIGGRAPH ‘78, R.L. Philips (ed.) Atlanta/GA, August 23–25, 1978 Computer Graphics 12 (1978) 187–192

    Google Scholar 

  59. ==> 2.3.3; Left Ventricular Videometry P.D. Clayton, L.D. Harris, S.R. Rumel, and H.R. Warner Comp. Biomed. Res. 7 (1974) 369–379

    Google Scholar 

  60. ==> 3.2; Representations for the Generalized Inverse of a Partitioned Matrix R.E. Cline SIAM Journal 12 (1964) 588–600

    MathSciNet  MATH  Google Scholar 

  61. ==> 2.1.3; Adaptive Differential Coding of Picture Signals Based on Local Contour Prediction P. Cohen and J.P. Adoul National Telecommunications Conference Record 1976, pp. 6.1–1 to 6.1–5

    Google Scholar 

  62. ==> 2.1.3; Image Segmentation by Clustering G.B. Coleman and H.C. Andrews Proc. IEEE 67 (1979) 773–785

    Google Scholar 

  63. ==> 2.1.1; Image Activity Characteristics in Broadcast Television D.C. Coll and G.K. Choma IEEE Trans. Communications COM-24 (1976) 1201–1206

    Google Scholar 

  64. ==> 2.8.8; Combined Light and Electron Microscopy of Serially Sectioned Cells and Tissues Y. Collan Proc. 4th Int. Congress for Stereology Gaithersburg/MD, Sept. 4–9, 1975 NBS, Washington/DC 1976, pp. 375–378

    Google Scholar 

  65. ==> 2.1.4; Properties of Frame-Difference Signals Generated by Moving Images D.J. Connor and J.O. Limb IEEE Trans, on Communications COM-22 (1974) 1564–1575

    Google Scholar 

  66. ==> 2.1.3; Television Coding Using Two-Dimensional Spatial Prediction D.J. Connor, R.F.W. Pease, and W.G. Scholes Bell System Technical Journal BSTJ 50 (1971) 1049–1061

    Google Scholar 

  67. ==> 2.1.3; 2.1.4; 2.1.5; 2.1.7; 3; A Frame-to-Frame Picturephone Coder for Signals Containing Differential Quantizing Noise D.J. Connor, B.G. Haskell, F.W. Mounts, Bell System Techn. J. 52 (1973) 35–51

    Google Scholar 

  68. ==> 2.1.3; Feature Selection and Super Data Compression for Pictures Occurring in Remote Conference and Classroom Communications D.B. Cooper IJCPR-74, pp. 111–115

    Google Scholar 

  69. ==> 2.1.3; Super High Compression of Line Drawing Data D.B. Cooper IJCPR-76, pp. 638–642

    Google Scholar 

  70. ==> 2.4; Analysis of Images of Colonies of Tissue Culture Cells and Microorganisms J.L. Couch, M.W. Konrad, and D.A. Glaser IEEE Conference on Pattern Recognition and Image Processing, Chicago/IL, August 6–8, 1979, pp. 473–478

    Google Scholar 

  71. ==> 2.6.1; Use of Multiple Time-Lapse Cameras for Traffic Studies P.D. Cribbins Proc. SPIE 37 (1973) 53–58

    Google Scholar 

  72. ==> 2.4; The Investigation of the Behavior of Microorganisms by Computerized Television D. Davenport, G.J. Culler, J.O.B. Greaves, R.B. Forward, and W.G. Hand IEEE Trans. Biomedical Eng. BME-17 (1970) 230–237

    Google Scholar 

  73. ==> 2.7; Digital Analysis of Internal Machine Part Motion in a Time Series of Radiographs D.L. Davies and P.H. Smith WCATVI-79, pp. 128–130

    Google Scholar 

  74. ==> 2.2.2; Cloud Information in Three Spatial Dimensions Using IR Thermal Imagery and Vertical Temperature Profile Data A.G. DeCotiis and E. Conlan Proc. 7th Int. Symposium on Remote Sensing of the Environment, Ann Arbor/Ml 1971, pp. 595–606

    Google Scholar 

  75. ==> 2.3.3; Automatic Detection of the Left Ventricular Outline in Angiographs Using Television Signal Processing Techniques L.P. DeJong and C.J. Slager IEEE Trans. Biomedical Engineering BME-22 (1975) 230–237

    Google Scholar 

  76. ==> 2.7; Computer Vision and Sensor-Based Robots G.G. Dodd and L. Rossol Plenum Press New York 1979

    Google Scholar 

  77. ==> 2.2.4; Attitude Determination Support for the SMS/GOES Satellites R.C. Doolittle, J. Ellickson, and J.R. DeMeo paper no. 3 (pp. 26–32) in Bristor 75

    Google Scholar 

  78. ==> 3.2; Vector Space Approach to Models and Optimization C.N. Dorny J.. Wiley and Sons, New York/NY 1975

    Google Scholar 

  79. ==> 2.6.1; 2.6.2; Using “Affinity” for Extracting Images of Moving Objects from TV-Frame Sequences L. Dreschler and H.-H. Nagel IfI-HH-B-44/78 (February 1978)

    Google Scholar 

  80. ==> 2.1.7; Effects of Digital Demodulation on Component Coding of NTSC Color Signals E. Dubois IEEE Trans. Communications COM-27 (1979) 1342–1348

    Google Scholar 

  81. ==> 2.2.1; 2.3.4; Pattern Classification and Scene Analysis R.O. Duda and P.E. Hart John Wiley & Sons, New York, 1973

    MATH  Google Scholar 

  82. ==> 2.2.6; Likely Effects of Solar Elevation on the Quantification of Changes in Vegetation with Maturity Using Sequential LANDSAT Images M.J. Duggin Applied Optics 16 (1977) 521–523

    Google Scholar 

  83. Dukhovich and O’Neal 78 ==> 2.1.3; 2.1.6; A Three-Dimensional Spatial Non-Linear Predictor for Television I.J. Dukhovich and J.B. O’Neal IEEE Trans. Communications COM-26 (1978) 578–583

    Google Scholar 

  84. ==> 2.8.1; Graphic Three-Dimensional Representations from Serial Sections R.F. Dunn J. Microscopy 96 (1972) 301–307

    Google Scholar 

  85. ==> 2.2.5; K-S Test for Detecting Changes from LANDSAT Imagery Data H.J. Eghbali IEEE Trans. Systems, Man, and Cybernetics SMC-9 (1979) 17–23

    Google Scholar 

  86. ==> 2.3.3; Automatic Processing of Cineangiographic Images of Left Ventricle S. Eiho, M. Kuwahara, M. Fujita, S. Sasayama, and C. Kawai IJCPR-78, pp. 740–743

    Google Scholar 

  87. ==> 2.2.1; 2.2.2; Use of a Pattern Recognition Technique for Determining Cloud Motions from Sequences of Satellite Photographs R.M. Endlich, D.E. Wolf, D.J. Hall, and A.E. Brain J. of Applied Meteorology 10 (1971) 105–117

    Google Scholar 

  88. ==> 2.2.6; Pattern Recognition of LANDSAT Data Based Upon Temporal Trend Analysis J.L. Engvall, J.D. Tubbs, and Q.A. Holmes Remote Sensing of Environment 6 (1977) 303–314

    Google Scholar 

  89. ==> 2.7; A Random Access Picture Digitizer, Display, and Memory System R. Eskenazi and R.T. Cunningham IJCAI-77, pp. 769–770

    Google Scholar 

  90. ==> 2.7; Real-Time Tracking of Moving Objects in TV Images R. Eskenazi and R.T. Cunningham IEEE Workshop on Pattern Recognition and Artificial Intelligence, Princeton/NJ, April 12–14, 1978, pp. 4–6

    Google Scholar 

  91. ==> 2.3.6; A Syntactic Approach to Time Varying Image Analysis T.I. Fan and K.S. Fu Computer Graphics and Image Processing 11 (1979) 138–149 see, too: IEEE Conference on Pattern Recognition and Image Processing, Chicago/IL, August 6–8, 1979, pp. 638–645

    Google Scholar 

  92. ==> 3.1; 3.2; 3.3; 3.3; Velocity Determination in Scenes Containing Several Moving Objects C.L. Fennema and W.B. Thompson Computer Graphics and Image Processing 9 (1979) 301–315

    Google Scholar 

  93. ==> 3.1; The Viterbi Algorithm G.D. Forney, Jr. Proc. IEEE 61 (1973) 268–276

    MathSciNet  Google Scholar 

  94. ==> 2.2.3; 2.2.3; Use of a Model of Mesoscale Flow to Aid the Determination of Winds from a Geostationary Satellite J.C. Freeman Proc. Symposium on Meteorological Observations from Space: Their Contribution to the First GARP Global Experiment, Philadelphia/PA June 8–10, 1976, pp. 248–251

    Google Scholar 

  95. ==> 2.1.7; Rate-Distortion Coding Simulation for Color Images W. Frei and B. Baxter IEEE Trans. Communications COM-25 (1977) 1385–1392

    Google Scholar 

  96. ==> 2.8.3; 2.8.3; 2.8.3; Optimal Surface Reconstruction from Planar Contours H. Fuchs, Z.M. Kedem, and S.P. Uselton C.ACM 20 (1977) 693–702

    MathSciNet  MATH  Google Scholar 

  97. ==> 2.2.1; 2.2.1; 2.2.3; Present Status of Cloud Velocity Computations from the ATS I and ATS III Satellites T.T. Fujita Space Research IX, pp. 557–570, North Holland Publ. Co., Amsterdam 1969

    Google Scholar 

  98. ==> 2.2.1; 2.2.3; Formation and Structure of Anticyclones Caused by Large-Scale Cross-Equatorial Flows Determined by ATS-I Photographs T.T. Fujita, K. Watanabe, and T. Izawa J. of Applied Meteorology 8 (1969) 649–667

    Google Scholar 

  99. ==> 2.2.3; Satellite-Tracked Cumulus Velocities T.T. Fujita, E.W. Pearl, and W.E. Shenk J. of Applied Meteorology 14 (1975) 407–413

    Google Scholar 

  100. ==> 2.1.6; 3.2; Measurement of Movement and Velocity of Moving Objects with Picture Signals T. Fukinuki Record of Technical Group on Image Technology of the Institute of Electronics and Communications Engineers (IECE) of Japan October 29, 1978 (IE 78–67, pp. 35–41)

    Google Scholar 

  101. ==> 2.1.5; Improvement of Inter-Frame Predictive Coding of TV-Signals by Utilizing Visual Properties for Moving Objects T. Fukinuki, H. Yoshigi, and K. Fukushima Trans, of the IECE of Japan E 59 (Sept. 1976) 28–29 and 59-A (1976) 764–771 (the latter in Japanese)

    Google Scholar 

  102. ==> 2.3.3; 2.4; 4; GALATEA: Interactive Graphics for the Analysis of Moving Images R.P. Futrelle Proc. IFIP-74 (J.L. Rosenfeld, ed.) North-Holland Publ. Co., Amsterdam 1974, pp. 712–716

    Google Scholar 

  103. ==> 2.4; 4; Data Abstractions for the Description of Complex Ongoing Activities — the Design of a Moving Image Analysis System R.P. Futrelle and W.K. Cheng WCATVI-79, pp. 131–133

    Google Scholar 

  104. ==> 2.3.3; 2.4; 4; The System Design for GALATEA, an Interactive Real-Time Computer Graphics System for Movie and Video Analysis R.P. Futrelle and M.J. Potei Computers and Graphics 1 (1975) 115–121

    Google Scholar 

  105. ==> 2.4; 2.6.2; Extraction of Motion Data by Interactive Image Processing R.P. Futrelle and G.C. Speckert Proc. IEEE Conference on Pattern Recognition and Image Processing Chicago/Ill., May 31 — June 2, 1978, pp. 405–408

    Google Scholar 

  106. ==> 2.1.5; Television Band Compression by Contour Interpolation D. Gabor and P.C.J. Hill Proc. Inst. Elect. Eng. 108 part B (1961) 303–324

    Google Scholar 

  107. ==> 2.3.1; 2.3.2; 2.3.5; 2.3.5; 2.3.5; Image Processing and Pattern Recognition in Nuclear Medicine J.H. Gallagher, D.F. Preston, R.G. Robinson, W.F. Herrin, W. Servoss, and S. Fritz IEEE Conference on Pattern Recognition and Image Processing, Troy/NY, June 6–8, 1977, pp. 55–60

    Google Scholar 

  108. ==> 2.6.1; Extraction of an Aircraft Silhouette when the Aircraft is Moving across the Background G.Y. Gardner, J. Mendelsohn, and M.R. Wohlers Proc. 7th Annual Automatic Pattern Recognition Symposium, College Park/MD, May 23–24, 1977 Electronic Industries Association, Washington/DC 1977, pp. 329–342

    Google Scholar 

  109. ==> 2.8.2; Automated Three-Dimensional Dendrite Tracking System C.F. Garvey, J.H. Young, Jr., P.D. Coleman, and W. Simon Electroencephalogr. Clin. Neurophysiol. 35 (Aug. 1973) 199–204

    Google Scholar 

  110. ==> 2.3.3; Techniques for Automatic Extraction of the Location of Surgically Implanted Markers from Radiographic Images of the Heart J.L. Gattis, N.M. Schmitt, and A.P. Frankowski IJCPR-78, pp. 857–859

    Google Scholar 

  111. ==> 2.3.5; Squelettisation et. Anamorphose dans l’Etude de la Dynamique des Deformations des Structures: Application a l’Analyse de la Motricite Gastrique C. Gaudeau, M. Boiron, and J. Thouvenot Proc. 2eme Congres AFCET-IRIA Reconnaissance des Formes et Intelligence Artificielle, September 12–14, 1979, Toulouse/France, vol. III, pp. 57–63

    Google Scholar 

  112. ==> 2.7; A Stereo Vision System for an Autonomous Vehicle D.B. Gennery IJCAI-77, pp. 576–582

    Google Scholar 

  113. ==> 2.7; A Stereo Vision System D.B. Gennery Proc. Image Understanding Workshop, L.S. Baumann (ed.) Palo Alto/CA, Oct. 20–21, 1977 Science Applications, Inc., Arlington/VA, pp. 31–46

    Google Scholar 

  114. ==> 2.7; Object Detection and Measurement Using Stereo Vision D.B. Gennery IJCAI-79, pp. 320–327

    Google Scholar 

  115. ==> 2.2.5; A Real-Time Imagery Screener M. Geokezas, R. Jennewine, and G.D. Swanlund Fifth Annual Symposium on Automatic Imagery Pattern Recognition, College Park/MD, April 17–18, 1975, pp. 55–86 Electronic Industries Association, Washington/DC 1975

    Google Scholar 

  116. ==> 2.3.3; Computer Analysis of Moving Radiopaque Markers from X-Ray Cinefilms J.J. Gerbrands, F. Booman, and J.H.C. Reiber Computer Graphics and Image Processing 11 (1979) 35–48

    Google Scholar 

  117. ==> 2.6.1; 2.6.2; 2.6.2; 3.2; Digitale Bildfolgenauswertung zum Wiederfinden von Objekten in natuerlieber Umgebung H. Gerlach in: Angewandte Szenenanalyse, J.P. Foith (ed.) Informatik Fachberichte 20, pp. 199–207 Springer Verlag, Berlin-Heidelberg-New York 1979

    Google Scholar 

  118. ==> 2.3; A Real-Time Hardware System for Digital Processing of Wide-Band Video Images B.K. Gilbert, M.T. Storma, C.E. James, L.W. Hobrock, E.S. Yang, K.C. Ballard, and E.H. Wood IEEE Trans. Computers C-25 (1976) 1089–1100

    Google Scholar 

  119. ==> 2.3; A Programmable Dynamic Memory Allocation System for Input/Output Digital Data into Standard Computer Memories at 40 Megasamples/s B.K. Gilbert, M.T. Storma, K.C. Ballard, L.W. Hobrock, C.E. James, and E.H. Wood IEEE Trans. Computers C-25 (1976) 1101–1108

    Google Scholar 

  120. ==> 2.6.2; 2.6.2; A Real-Time Video Tracking System Using Image Processing Techniques A.L. Gilbert, M.K. Giles, G.M. Flachs, R.B. Rogers, and Y. Hsun U IJCPR-78 Nov. 7–10, 1978 Kyoto/Japan, pp. 1111–1115

    Google Scholar 

  121. ==> 2.3; Implementation of Computation-Intensive Reconstruction Algorithms for X-Ray Computed Tomography B.K. Gilbert, L.D. Harris, R.D. Beistadt, R.A;. Robb, and D.E. Atkins IEEE Conference on Pattern Recognition and Image Processing, Chicago/IL, August 6–8, 1979, pp. 256–264

    Google Scholar 

  122. ==> 2.6.2; 2.6.2; A Real-Time Video Tracking System A.L. Gilbert, M.K. Giles, G.M. Flachs, R.B. Rogers, and Y. Hsun UIEEE Trans. Pattern Analysis and Machine Intelligence PAMI-2 (1980) 47–56

    Google Scholar 

  123. ==> 2.7; A “Hand-Eye” Robot Simulation System G. Gimelfarb, E. Kushner, V. Rybak IJCAI-75, pp. 766–770

    Google Scholar 

  124. ==> 2.7; A Multi-Level Planning and Navigation System for a Mobile Robot: A First Approach to HILARE G. Giralt, R. Sobek, and R. Chatila IJCAI-79, pp. 335–337

    Google Scholar 

  125. ==> 2.4; An Automated System for Growth and Analysis of Bacterial Colonies D.A. Glaser in: Image Processing in Biological Science University of California Press, San Francisco and Los Angeles/CA 1968, pp. 57–74

    Google Scholar 

  126. ==> 2.8; 2.8.1; Alternative Display Formats for Computed Tomography (CT) Data W.V. Glenn, Jr., K.R. Davis, G.N. Larsen, and S.J. Dwyer, III in: Current Concepts in Radiology, vol. 3, pp. 88–124 E.J. Potchen (ed.), C.V. Mosby, St. Louis/MO 1977

    Google Scholar 

  127. ==> 2.2.6; The Use of LANDSAT Imagery for Forestry Mapping: Description of a Proposed Operational System M. Goldberg and P. Kourtz Proc. IEEE Workshop on Picture Data Description and Management, Chicago/Ill., April 21–22, 1977, pp. 61–63

    Google Scholar 

  128. ==> 2.1; 2.1.3; Digital Image Processing R.C. Gonzalez and P. Wintz Addison-Wesley Publ. Co., Reading/MA 1977

    MATH  Google Scholar 

  129. ==> 2.3.4; Dual Isotope Imaging: Automated Liver-Pancreas Subtraction E.E. Gose, S. Shponka, W.E. Barnes, and E. Kaplan Proc. Joint Int. Conference on Computer Graphics, Pattern Recognition and Data Structure, Los Angeles/CA May 14–16, 1975, pp. 65–67

    Google Scholar 

  130. ==> 2.3.4; 2.3.4; 2.3.4; Object Detection in Multiple Images E.E. Gose, J.S. Arnold, W.E. Barnes, S. Shponka, I. Nejdl, and E. Kaplan IJCPR-76, pp. 531–537

    Google Scholar 

  131. ==> 2.1.3; Image Transmission by Two-Dimensional Contour Coding D.N. Graham Proc. IEEE 55 (1967) 336–346

    Google Scholar 

  132. ==> 2.2.3; 2.2.3; The SeaSat-A Satellite Scatterometer W.L. Grantham, E.M. Bracaiente, W.L. Jones, and J.W. Johnson IEEE J. Oceanic Eng. OE-2 (1977) 200–206

    Google Scholar 

  133. ==> 2.4; The Bugsystem: The Software Structure for the Reduction of Quantized Video Data of Moving Organisms J.O.B. Greaves Proc. IEEE 63 (1975) 1415–1425

    Google Scholar 

  134. ==> 2.2.4; Applications of Digital Image Processing Techniques to Problems of Data Registration and Correlation W.B. Green Proc. NCC, AFIPS 47 (1978) 141–149

    Google Scholar 

  135. ==> 2.2.2; The Automatic Extraction of Wind Estimates from VISSR Data R. Green, G. Hughes, C. Novak, and R. Schreitz paper no. 12 (pp. 94–110) in Bristor 75

    Google Scholar 

  136. Proceedings CALTEC/JPL Conference on Image Processing Technology, Data Sources and Software for Commercial and Scientific Applications W.B. Green, G.H. Redmann, F.C. Billingsley, R.B. Gilmore (eds.) Cal. Institute of Technology, Pasadena/CA November 3–5, 1976

    Google Scholar 

  137. ==> 2.4; System for Automatically Tracking White Blood Cells F.M. Greene, Jr., and F.S. Barnes Rev. Sci. Instruments 48 (1977) 602–604

    Google Scholar 

  138. ==> 2.1.3; A Computer Implementation of a Theory of Human Stereo Vision W.E.L. Grimson and D. Marr Proc. Image Understanding Workshop, pp. 41–47 L.S. Baumann (ed.), Palo Alto/CA, April 24–25, 1979 Science Applications, Inc., Arlington/VA 22209

    Google Scholar 

  139. ==> 2.6.2; Analysis and Simulation of a Video Tracking System R.J. Grommes and C.J. Yi Proc. IEEE Systems, Man, and Cybernetics Conference Dallas/TX 1974, pp. 93–98

    Google Scholar 

  140. ==> 2.1.3; A Boundary Finding Algorithm and its Application J.N. Gupta and P.A. Wintz IEEE Trans, on Circuits and Systems CAS-22 (1975) 351–362

    Google Scholar 

  141. ==> 2.2.2; 2.2.3; 3.3; Estimation of Lateral and Rotational Cloud Displacement from Satellite Pictures U. Haass and T.A. Brubaker WCATVI-79, pp. 103–104

    Google Scholar 

  142. ==> 2.2.6; Untersuchungen zur Klassifizierung multispektraler Bilddaten aus der Fernerkundung P. Haberaecker Dr.-Ing. Dissertation (July 1978) Fachbereich Verkehrswesen, Technische Universitaet Berlin/Germany

    Google Scholar 

  143. ==> 2.2.6; On the Classification of Multitemporal Image Data P. Haberaecker The Institute of Physics Conference Series, No. 44, pp. 231–237 (1979)

    Google Scholar 

  144. ==> 2.1.2; 2.1.3; Survey of Adaptive Image Coding Techniques A. Habibi IEEE Trans. Communications COM-25 (1977) 1275–1284

    Google Scholar 

  145. ==> 2.1.7; Potential Digitization/Compression Techniques for Shuttle Video A. Habibi and B.H. Batson IEEE Trans. Communications COM-26 (1978) 1671–1682

    Google Scholar 

  146. ==> 2.1.3; 2.2.7; Bandwidth Compression of Multispectral Data A. Habibi and A.S. Samulon Proc. SPIE 66 (August 1975) 23–35

    Google Scholar 

  147. ==> 2.3.3; 2.3.5; Left Ventricular Contour Extraction from Radioisotope Angiocardiograms and Classification of Left Ventricular Wall Motion K. Hachimura, M. Kuwahara, and M. Kinoshita IJCPR-78 Nov. 7–10, 1978 Kyoto/Japan, pp. 911–913

    Google Scholar 

  148. ==> 2.8.1; A Method to Increase the Depth of Focus by Two Step Image Processing G. Haeusler Optics Communication 6 (1972) 38–42

    Google Scholar 

  149. ==> 2.8.1; Optical Software Survey G. Haeusler Optica Acta 24 (1977) 965–977

    Google Scholar 

  150. ==> 2.2.1; An Adaptive Process for Tracking Clouds from Satellite Images D.J. Hall in: Image Science Mathematics CO. Wilde and E. Barrett (eds.) Western Periodicals Corp., North Hollywood/CA 1977, pp. 118–122

    Google Scholar 

  151. ==> 1; 2.1; Computer Image Processing and Recognition E.L. Hall Academic Press New York/NY 1979

    MATH  Google Scholar 

  152. ==> 2.8.3; Object Location in Computed Tomography Images Using Global Local Segmentation E.L. Hall and J.J. Hwang IEEE Conference on Pattern Recognition and Image Processing Chicago/IL, August 6–8, 1979, pp. 344–352)

    Google Scholar 

  153. ==> 2.2.3; 2.2.4; Objective Methods for Registering Landmarks and Determining Cloud Motions from Satellite Data D.J. Hall, R.M. Endlich, D.E. Wolf, and A.E. Brain IEEE Trans. Computers C-21 (1972) 768–776

    Google Scholar 

  154. ==> 2.6.1; An Evaluation of Diagrammatic Signing Using Time-Lapse Photography F.R. Hanscom Proc. SPIE 37 (1973) 7–14

    Google Scholar 

  155. Hanson and Riseman 78 ==> 1; Computer Vision Systems A.R. Hanson and E.M. Riseman eds. Academic Press New York 1978

    Google Scholar 

  156. ==> 2.1.2; Frame-to-Frame Coding of Television Pictures Using Two-Dimensional Fourier Transforms B.G. Haskell IEEE Trans. Information Theory IT-20 (1974) 119–120

    Google Scholar 

  157. ==> 2.1.6; Entropy Measurements for Nonadaptive and Adaptive, Frame-to-Frame, Linear Predictive Coding of Videotelephone Signals B.G. Haskell Bell System Techn. J. 54 (1975) 1155–1174

    Google Scholar 

  158. ==> 2.1.4; 2.1.6; Differential Addressing of Clusters of Changed Picture Elements for Interframe Coding of Videotelephone Signals B.G. Haskell IEEE Trans. Communications COM-24 (1976) 140–144

    Google Scholar 

  159. ==> 2.1.5; 2.1.6; Interframe Coding of Monochrome Television -a Review B.G. Haskell SPIE 87 (1976) 212–221

    Google Scholar 

  160. ==> 2.1.5; 2.1.6; 2.1.7; Frame Replenishment Coding of Television B.G. Haskell in: Image Transmission Techniques, W.K. Pratt (ed.) Academic Press, New York 1979, pp. 189–219

    Google Scholar 

  161. ==> 2.1.6; Predictive Video Encoding Using Measured Subject Velocity U.S. Patent 3.632.865 B.G. Haskell and J.O. Limb

    Google Scholar 

  162. ==> 2.1.5; A Low-Bit-Rate Interframe Coder for Videotelephone B.G. Haskell and R.L. Schmidt Bell System Techn. J. 54 (1975) 1475–1495

    Google Scholar 

  163. ==> 2.1.4; Interframe Coding of Videotelephone Pictures B.G. Haskell, F.W. Mounts, and J.C. Candy Proc. IEEE 60 (1972) 792–800

    Google Scholar 

  164. ==> 2.1.5; Interframe Coding of 525-Line, Monochrome Television at 1.5 Mbits/s B.G. Haskell, P.L. Gordon, R.L. Schmidt, and J.V. Scattaglia IEEE Trans. Communications COM-25 (1977) 1339–1348

    Google Scholar 

  165. ==> 2.2.3; Tropical Cloud Clusters Analyzed Using Techniques for Obtaining Wind, Divergence, and Vorticity Fields from Geostationary Satellite Pictures A.F. Hasler Ph.D. Thesis (1971) University of Wisconsin, Madison/Wisconsin

    Google Scholar 

  166. ==> 2.2.1; A Verification Experiment Comparing Cloud Motion Wind Estimates with Aircraft Winds A.F. Hasler Int. Conference on Meteorological Satellites Paris, May 21–24, 1973, pp. 59–63

    Google Scholar 

  167. ==> 2.2.1; 2.2.3; Wind Estimates from Cloud Motions: Phase 1 of an In Situ Aircraft Verification Experiment A.F. Hasler, W. Shenk, and W. Skillman J. Applied Meteorology 15 (1976) 10–15

    Google Scholar 

  168. ==> 2.3; Medical Ultrasonic Imaging: An Overview of Principles and Instrumentation J.F. Havlice and J.C. Taenzer Proc. IEEE 67 (1979) 620–641

    Google Scholar 

  169. ==> 2.8; Electron Image Processing: A Survey P.W. Hawkes Computer Graphics and Image Processing 8 (1978) 406–446

    Google Scholar 

  170. ==> 2.3; 2.3.2; 2.3.3; 2.3.3; 2.3.5; 2.3.5; 2.8.8; Roentgen-Video-Techniques for Dynamic Studies of Structure and Function of the Heart and Circulation P.H. Heintzen and J.H. Buersch (eds.) Georg Thieme Verlag, Stuttgart 1978

    Google Scholar 

  171. ==> 2.3.1; 2.3.3; 2.3.5; 2.3.5; Automated Video-Angiocardiographic Image Analysis P.H. Heintzen, R. Brennecke, J.H. Buersch, P. Lange, V. Malerczyk, K. Moldenhauer, and D. Onnasch IEEE Computer 8, no. 7 (July 1975) 55–64

    Google Scholar 

  172. ==> 2.1.2; 2.1.5; A Real Time Hadamard Transform Video Compression System Using Frame-to-Frame Differencing J.A. Heller Proc. Nat. Telecommunications Conference, San Diego, 1974, pp. 77–82

    Google Scholar 

  173. ==> 2.2.5; Techniques and Applications of Digital Change Detection P.J. Henrikson Proc. Symposium on Computer Image Processing and Recognition, A.J. Carlson (ed.) Columbia/Missouri, August 1972, p.r 6–1–1 through 6–1–10

    Google Scholar 

  174. ==> 2.8.4; 2.8.4; 2.8.8; Representation of 3-D Surfaces by a Large Number of Simple Surface Elements G.T. Herman Proc. NSF Workshop on the Representation of Three-Dimensional Objects R. Bajcsy (ed.), Philadelphia/PA, May 1–2, 1979

    Google Scholar 

  175. ==> 2.8.4; Dynamic Boundary Surface Detection G.T. Herman and H.K. Liu Computer Graphics and Image Processing 7 (1978) 130–138 see also: Proc. Symposium on Computer-Aided Diagnosis of Medical Images, J. Sklansky (ed.) Coronado/CA, November 11, 1976, pp. 27–32

    Google Scholar 

  176. ==> 2.8.4; Three-Dimensional Display of Human Organs from Computed Tomograms G.T. Herman and H.K. Liu Computer Graphics and Image Processing 9 (1979) 1–21

    Google Scholar 

  177. ==> 2.8.4; 2.8.5; Detection of Changing Boundaries in Two and Three Dimensions G.T. Herman, S.N. Srihari, and J.K. Udupa WCATVI-79, pp. 14–16

    Google Scholar 

  178. ==> 2.7; Automatic Analysis of Movies in Fluid Mechanics M.A. Hernan and J. Jimenez WCATVI-79, pp. 134–135

    Google Scholar 

  179. ==> 2.1.3; 2.2.7; Joint Classification and Data Compression of Multidimensional Information Sources — Application to ERTS E.E. Hilbert Conference Record vol. II, International Conference on Communications, June 1975, pp. 27–6 through 27–11

    Google Scholar 

  180. ==> 2.6.1; Landradaranlagen fuer die SchiffSicherung O. Hilke in: Funksysteme fuer Ortung und Navigation und ihre Anwendung in der Verkehrs Sicherung E. Kramar (Hrsgb.) Verlag Berliner Union GmbH Stuttgart und W. Kohlhammer GmbH Stuttgart 1973

    Google Scholar 

  181. ==> 2.2.6; Biological and Physical Considerations in Applying Computer-Aided Analysis Techniques to Remote Sensor Data R.M. Hoffer in: Remote Sensing: The Quantitative Approach, P.H. Swain and S.H. Davis (ed.) McGraw-Hill Inc. New York 1978, chapter V

    Google Scholar 

  182. ==> 2.3.2; Encoding and Analysis of X-Ray Image Series K.H. Hoehne, M. Boehm, and G.C. Nicolae IJCPR-78, pp. 743–746

    Google Scholar 

  183. ==> 2.3; 2.3.2; 2.3.5; The Processing of X-Ray Image Sequences K.H. Hoehne, M. Boehm, and G.C. Nicolae in: Advances in Digital Image Processing, P. Stucki (ed.) Plenum Press New York/NY 1979, pp. 147–163

    Google Scholar 

  184. ==> 2.3.2; 2.3.5; Functional Imaging: Applications in Three Radiological Modalities J.E. Holden IEEE Conference on Pattern Recognition and Image Processing Chicago/IL, August 6–8, 1979, pp. 368–375

    Google Scholar 

  185. ==> 2.2.5; Automatic Photointerpretation and Target Location W.S. Holmes Proc. IEEE 54 (1966) 1679–1686

    Google Scholar 

  186. ==> 2.2; Nimbus: the Vanguard of Remote Sensing J.J. Horan IEEE Spectrum 15, No. 11 (Nov. 1978) 36–43

    Google Scholar 

  187. ==> 2.2.4; Vision B.K.P. Horn AISB/GI-78 Conference on Artificial Intelligence Hamburg, July 18–20, 1978, pp. 147–163

    Google Scholar 

  188. ==> 2.2.4; 2.2.4; Using Synthetic Images to Register Real Images with Surface Models B.K.P. Horn and B.C. Bachman C. ACM 21 (1978) 914–924

    Google Scholar 

  189. ==> 2.8.1; Reconstruction of an Oblique Viewing Plane from Transaxial Scanning X-Ray Tomographic Data P.C. Hsi and Chin-Hwa Lee IEEE Conference on Pattern Recognition and Image Processing Chicago/IL, May 31 -June 2, 1978, pp. 210–213

    Google Scholar 

  190. ==> 2.8.1; Three-Dimensional Image Reconstruction from In Vivo Consecutive Transversal Axial Sections H.K. Huang and R.S. Ledley Computers in Biology and Medicine 5 (1975) 165–170

    Google Scholar 

  191. ==> 2.2.3; The Relation Between Cloud Pattern Motion and Wind Shear L.F. Hubert Monthly Weather Review 104 (1976) 1167–1171

    Google Scholar 

  192. ==> 2.2.1; 2.2.1; Wind Estimation from Geostationary-Satellite Pictures L.F. Hubert and L.F. Whitney Monthly Weather Review 99 (1971) 665–672

    Google Scholar 

  193. ==> 2.2.2; 2.2.4; Automated Techniques for the Detection and Displacement Measurement of Selected Cloud Imagery Observed in Geostationary Satellite Data G. Hughes, C. Novak, and R. Schreitz Proc. 8th Annual Automatic Imagery Pattern Recognition Symposium, R.A. Kirsch and R.N. Nagel (eds.) Gaithersburg/MD, April 3–4, 1978, pp. 81–90 Electronic Industries Association, Washington/DC 1978

    Google Scholar 

  194. ==> 2.1.1; 2.1.7; 2.1.8; Interframe Coding for 4-MHz Color Television Signals K. Iinuma, Y. Iijima, T. Ishiguro, H. Kaneko, and S. Shigaki IEEE Trans. on Communications COM-23 (1975) 1461–1466

    Google Scholar 

  195. ==> 2.1.7; Composite Interframe Coding of NTSC Color Television Signals T. Ishiguro, K. Iinuma, Y. Iijima, T. Koga, S. Azami, and T. Mune 1976 National Telecommunications Conference Record Dallas/TX, Nov. 1976, pp. 6.4–1 to 6.4–5

    Google Scholar 

  196. ==> 2.2.1; 2.2.3; Relationship between Observed Winds and Cloud Velocities Determined from Pictures Obtained by the ESSA III, ESSA V and ATS I Satellites T. Izawa and T. Fujita Space Research IX, pp. 571–579 North Holland Publ. Co., Amsterdam 1969

    Google Scholar 

  197. ==> 2.6.1; Visual Recognition of Artifacts by Computer Ch.J. Jacobus Ph.D. Thesis (July 1979) Department of Electrical Engineering University of Illinois, Urbana-Champaign/IL

    Google Scholar 

  198. ==> 2.1.5; Bandbreitenreduktion durch verringerte Bildwechselrate F. Jaeschke and J. Ost Radio Mentor 38 (1972) 110–113

    Google Scholar 

  199. ==> 2.6.1; Analysing a Real World Scene Sequence Using Fuzziness R. Jain and H.-.H. Nagel IEEE Conference on Decision and Control, New Orleans, Dec. 7–9, 1977

    Google Scholar 

  200. ==> 2.1.5; 2.6.1; On a Motion Analysis Process for Image Sequences from Real World Scenes R. Jain and H.-H. Nagel IEEE Workshop on Pattern Recognition and Artificial Intelligence, Princeton, N.J., April 12–14, 1978 (available as report IfI-HH-B-48/78)

    Google Scholar 

  201. ==> 2.1.5; 2.6.1; 3.2; On the Analysis of Accumulative Difference Pictures from Image Sequences of Real World Scenes R. Jain and H.-H. Nagel IEEE Trans. Pattern Analysis and Machine Intelligence PAMI-1 (1979) 206–214

    Google Scholar 

  202. ==> 2.6.1; 3.2; Separating Non-Stationary from Stationary Scene Components in a Sequence of Real World TV-Images R. Jain, D. Militzer, and H.-H. Nagel IJCAI-77, 612–618 and IfI-HH-B-32/77 (March 1977) Institut fuer Informatik, Universitaet Hamburg

    Google Scholar 

  203. ==> 3.1; 3.2; Segmentation through the Detection of Changes due to Motion R. Jain, W.N. Martin, and J.K. Aggarwal Computer Graphics and Image Processing 11 (1979) 13–34

    Google Scholar 

  204. ==> 2.3; Bioimage Synthesis and Analysis from x-Ray, Gamma, Optical, and Ultrasound Energy S.A. Johnson, R.A. Robb, E.L. Ritman, B.K. Gilbert, J.F. Greenleaf, L.D. Harris, M.J. Berggren, R. Sturm, P.A. Chevalier, R.M. Heethar, E.H. Wood, G.T. Herman, and Y.C. Pao in: Digital Processing of Biomedical Images K. Preston, jr., and M. Onoe (eds.) Plenum Press, New York 1976, pp. 203–226

    Google Scholar 

  205. ==> 2.6.1; 2.7; Tracking: An Approach to Dynamic Vision and Hand-Eye Coordination V.C. Jones Ph.D. Thesis, Electrical Engineering, Graduate College of the University of Illinois at Urbana-Champaign (1974), Coordinated Science Laboratory R-696 (1975)

    Google Scholar 

  206. ==> 2.1.2; 2.1.5; A Real-Time Adaptive Hadamard Transform Video Compressor H.W. Jones SPIE 87 (1976) 2–9

    Google Scholar 

  207. ==> 2.1.5; A Conditional Replenishment Hadamard Video Compressor H.W. Jones SPIE 119 (1977) 91–98

    Google Scholar 

  208. ==> 2.1.2; A Comparison of Theoretical and Experimental Video Compression Designs H.W. Jones IEEE Trans. Electromagnetic Compatibility EMC-21 (1979) 50–56

    Google Scholar 

  209. ==> 2.2.3; Derivation of a Thermal Inertia Image from Remotely Sensed Data A.B. Kahle in: Green et al. 76, pp. 11–1 through 11–8

    Google Scholar 

  210. ==> 2.8; Computerized Tomography with X-Ray, Emission, and Ultrasound Sources A.C. Kak Proc. IEEE 67 (1979) 1245–1272

    Google Scholar 

  211. ==> 2.6.1; Picture Processing Laboratory and its Applications T. Kanade and Y. Ohta Proc. IFIP-74 (J.L. Rosenfeld, ed.) North-Holland Publ. Co., Amsterdam 1974, pp. 738–742

    Google Scholar 

  212. ==> 2.2.3; Severe Storm Pattern Recognition from Meteorological Satellite Data: a Report on Current Status and Prospects L.N. Kanal and J.A. Parikh Research and Development Technical Report ECOM-77–3, Atmospheric Sciences Lab., US Army Electronics Command, White Sands Missile Range/NM (March 1, 1977)

    Google Scholar 

  213. ==> 2.2.6; Crop Classification Using Time Features Computed from Multi-Temporal Multi-Spectral Data T. Kaneko IJCPR-78, pp. 943–945

    Google Scholar 

  214. ==> 2.3.3; Straight-Line Approximation for the Boundary of the Left Ventricular Chamber from a Cardiac Cineangiogram T. Kaneko and P. Mancini IEEE Trans. Biomedical Eng. BME-20 (1973) 413–416

    Google Scholar 

  215. ==> 2.2.5; Automatic Recognition of Changes in Urban Development from Aerial Photographs J.G. Kawamura IEEE Trans. Systems, Man, and Cyb. SMC-1 (1971) 230–239

    Google Scholar 

  216. ==> 2.3.3; Edge Detection in Pictures by Computer Using Planning M.D. Kelly Machine Intelligence 6 (B. Meltzer, D. Michie, eds.), Edinburgh University Press, 1971, pp. 379–409

    Google Scholar 

  217. ==> 2.8.3; CT and Radiation Therapy Planning J.C. Kelly, P.N. Cook, H. Cox, S.J. Dwyer, R.W. Conners, and C.A. Harlow IEEE Conference on Pattern Recognition and Image Processing, Chicago/Ill., May 31 — June 2, 1978, pp. 205–209

    Google Scholar 

  218. ==> 2.8.3; Approximating Complex Surfaces by Triangulation of Contour Lines E. Keppel IBM J. Research and Development 19 (1975) 2–11

    MathSciNet  MATH  Google Scholar 

  219. ==> 2.1.3; Statistical Study of Edges in TV Pictures N. Keskes, F. Kretz, and H. Maitre IEEE Trans. Communications COM-27 (1979) 1239–1247

    Google Scholar 

  220. ==> 2.1.5; Digital Standards Converter by Adaptive Intra-Frame Line Interpolation K. Kinuhata, H. Sasaki, H. Yamamoto, and K. Amano IEEE Trans. Communications COM-26 (1978) 1413–1420

    Google Scholar 

  221. ==> 2.3; 2.3; Techniques for Real-Time Two-Dimensional Echocardiography J.A. Kisslo, O.T. von Ramm, and F.L. Thurstone in: Clinical Echocardiography M.N. Kotier and B.M. Segal (eds.) F.A. Davis Co., Philadelphia/PA 1978, pp. 21–38

    Google Scholar 

  222. ==> 2.1.5; Codierung von Fernsehsignalen fuer niedrige Uebertragungsbitraten J. Klie Dissertation, Juni 1978 Lehrstuhl fuer Theoretische Nachrichtentechnik und Informationsverarbeitung, Techn. Universitaet Hannover, D-3000 Hannover 1

    Google Scholar 

  223. ==> 2.1.2; 2.1.3; 2.1.5; Real-Time Video Compression Algorithm for Hadamard Transform Processing S.C. Knauer Proc. SPIE 66 (August 1975) 58–69

    Google Scholar 

  224. ==> 2.1.2; 2.1.3, 2.1.5; Real-Time Video Compression Algorithm for Hadamard Transform Processing S.C. Knauer IEEE Trans. Electromagnetic Compatibility EMC-18 (1976) 28–36

    Google Scholar 

  225. ==> 3.3; Motion Detection within a Natural Scene Picked up by a Moving Optical Sensor A. Korn and G. Wedlich WCATVI-79, pp. 36–37

    Google Scholar 

  226. ==> 3.3; Zur Detektion von Relativbewegungen in bewegten natuerlichen Szenen A. Korn and G. Wedlich in: Angewandte Szenenanalyse, J.P. Foith (ed.) Informatik Fachberichte 20, pp. 224–237 Springer Verlag, Berlin-Heidelberg-New York 1979

    Google Scholar 

  227. ==> 2.2.3; Microwave Sensing from Orbit H.N. Kritikos and J. Shiue IEEE Spectrum 16 (August 1979) 34–41

    Google Scholar 

  228. ==> 2.3.3; A Terminal/Time Share Based Method for Interactive Left Ventricular Volume Estimation R.P. Kruger and S. Hui IEEE Trans. Systems, Man, and Cybernetics SMC-6 (1976) 134–138

    Google Scholar 

  229. ==> 2.3; 2.3.1; 2.3.4; A Digital Video Image Processor for Real-Time X-Ray Subtraction Imaging R.A. Kruger, C.A. Mistretta, J. Lancaster, T.L. Houk, M. Goodsitt, C.G. Shaw, S.J. Riederer, J. Hicks, J. Sackett, A.B. Crummy, and D. Fleming Optical Engineering 17 (1978) 652–657

    Google Scholar 

  230. ==> 2.7; Commonsense Knowledge of Space: Learning from Experience B. Kuipers IJCAI-79, pp. 499–501

    Google Scholar 

  231. ==> 2.1.3; Two-Dimensional Image Coding by Micro-Adaptive Picture Sequencing (MAPS) A.E. LaBonte Proc. SPIE 119 (1977) 99–106

    Google Scholar 

  232. ==> 2.6.2; Konzept und Realisierung eines mit Kontrastauswertung arbeitenden TV-Trackers K. Landzettel and G. Hirzinger in: Angewandte Szenenanalyse, J.P. Foith (ed.) Informatik Fachberichte 20, p. 222 Springer Verlag, Berlin-Heidelberg-New York 1979

    Google Scholar 

  233. ==> 2.3.5; The Analysis of Size, Shape, and Contraction Pattern of the Right Ventricle from Angiocardiograms P. Lange, D. Onnasch, K. Moldenhauer, V. Malerczyk, F.L. Farr, G. Huettig, and P.H. Heintzen Eur. J. Cardiology 4/Suppl. (1976) 153–168

    Google Scholar 

  234. ==> 2.5; Instrumentation of Movement Analysis by Raster-Scanned Image Source P. Lappalainen and M. Tervonen IEEE Trans. Instrumentation and Measurement IM-24 (1975) 217–221

    Google Scholar 

  235. ==> 2.3.2; 2.3, 2; 2.3.3; Some Clinical Applications of Pattern Recognition R.S. Ledley IJCPR-73, pp. 89–112

    Google Scholar 

  236. ==> 2.3; Signal Processing in Ultrasound D.H. Le Croisette and P.M. Gammell Proc. SPIE 167 (1978) 135–141

    Google Scholar 

  237. ==> 2.8.1; Coronal or Sagittal Plane Reconstruction of Transaxial Scanning X-Ray Tomography C.-H. Lee and J.M. Mozley Proc. Symposium on Computer-Aided Diagnosis of Medical Images J. Sklansky (ed.), Coronado/CA, November 11, 1976, pp.61–65

    Google Scholar 

  238. ==> 2.2.3; Sea Surface Temperature from VISSR Data J.A. Leese and J.D. Tarpley paper no. 15 (pp. 128–132) in Bristor 75

    Google Scholar 

  239. ==> 2.2.1; The Determination of Cloud Pattern Motions from Geosynchronous Satellite Image Data J.A. Leese, C.S. Novak, and V.R. Taylor Pattern Recognition 2 (1970) 279–292

    Google Scholar 

  240. ==> 2.2.1; An Automated Technique for Obtaining Cloud Motion from Geosynchronous Satellite Data Using Cross-Correlation J.A. Leese, C.S. Novak, and B.B. Clark J. of Applied Meteorology 10 (1971) 118–132

    Google Scholar 

  241. ==> 2.4; A Real-Time Laboratory Device for Tracking and Quantifying Blood Cell Movement M.D. Levine and Y.M. Youssef Report No. 78–2R (January 1978) Dept. Electrical Engineering, McGill University, Montreal

    Google Scholar 

  242. ==> 2.4; An Automatic Picture Processing Method for Tracking and Quantifying the Dynamics of Blood Cell Motion M.D. Levine and Y.M. Youssef Report No. 78–4R (February 1978) Dept. Electrical Engineering, McGill University, Montreal presented at 4th Int. Congress of Cybernetics and Systems, Amsterdam, August 21–25, 1978

    Google Scholar 

  243. ==> 2.8.7 Automated Measurement of the Internal Surface Area of the Human Lung M.D. Levine, M.L. Reisch, and W.M. Thurlbeck IEEE Trans. Bio-Medical Engineering BME-17 (1970) 254–262

    Google Scholar 

  244. ==> 2.7; Computer Determination of Depth Maps M.D. Levine, D.A. O’Handley, G.M. Yagi Computer Graphics and Image Processing 2 (1973) 131–150

    Google Scholar 

  245. ==> 2.4; 2.4; Cell Movements: Its Characterization and Analysis M.D. Levine, Y.M. Youssef, and F. Ferrie WCATVI-79, pp. 9 3–95

    Google Scholar 

  246. ==> 2.8; 2.8.2; 2.8.2; Three Dimensional Reconstruction from Serial Sections C. Levinthal and R. Ware Nature 236 (1972) 207–210

    Google Scholar 

  247. ==> 2.7; A Scanning Laser Rangefinder for a Robot Vehicle R.A. Lewis and A.R. Johnston IJCAI-77, pp. 762–768

    Google Scholar 

  248. ==> 2.2.5; Techniques for Change Detection R.L. Lillestrand IEEE Trans. Computers C-21 (1972) 654–659

    Google Scholar 

  249. ==> 2.1.3; Adaptive Encoding of Picture Signals J.O. Limb Symposium on Picture Bandwidth Compression MIT, April 1969 T.S. Huang and O.J. Tretiak (eds.) Gordon and Breach, New York/NY 1972, pp. 341–382

    Google Scholar 

  250. ==> 2.1.3; Distortion Criteria of the Human Viewer J.O. Limb IEEE Trans. Systems, Man, and Cybernetics SCM-9 (1979) 778–793

    Google Scholar 

  251. ==> 2.1.6; 3.1; Measuring the Speed of Moving Objects from Television Signals J.O. Limb and J.A. Murphy IEEE Trans. Communications COM-23 (1975) 474–478

    Google Scholar 

  252. ==> 2.1.6; 3.1; Estimating the Velocity of Moving Images in Television Signals J.O. Limb and J.A. Murphy Computer Graphics and Image Processing 4 (1975) 311–327

    Google Scholar 

  253. ==> 2.1.4; 3; A Simple Interframe Coder for Video Telephony J.O. Limb and R.F.W. Pease Bell System Techn. J. 50 (1971) 1877–1888

    Google Scholar 

  254. ==> 2.1.3; On the Design of Quantizers for DPCM Coders: A Functional Relationship Between Visibility, Probability and Masking J.O. Limb and C.B. Rubinstein IEEE Trans. Communications COM-26 (1978) 573–578

    Google Scholar 

  255. ==> 2.1.5; Combining Intra-Frame and Frame-to-Frame Coding for Television J.O. Limb, R.F.W. Pease, and K.A. Walsh Bell System Techn. J. 53 (1974) 1137–1173

    Google Scholar 

  256. ==> 2.8.7; Volumetric Determinations of Cells and Cell Organelles from Two-Dimensional Transsections L.G. Lindberg Proc. 4th Int. Congress for Stereology, pp. 359–362 Gaithersburg/MD, Sept. 4–9, 1975, NBS, Washington/DC 1976

    Google Scholar 

  257. ==> 2.4; Digital Analysis of Living Cell Image Sequences in Support of Cytotoxicity-Carcinogenesis Research L.E. Lipkin, P. Lemkin, and M. Wade WCATVI-79, p. 25

    Google Scholar 

  258. ==> 2.1.5; Bit-Plane Analysis of Digitized Moving Pictures B. Lippel WCATVI-79, pp. 79–81

    Google Scholar 

  259. ==> 2.1.6; Techniques of DPCM Picture Coding for RPV TV R. Lippmann IEEE Int. Conference on Communications Boston/MA, June 10–13, 1979

    Google Scholar 

  260. ==> 2.3.3; 2.8.4; Two- and Three-Dimensional Boundary Detection H.K. Liu Computer Graphics and Image Processing 6 (1977) 123–134

    Google Scholar 

  261. ==> 2.2.1; 2.2.1; 2.2.3; The Application of a Thresholding Technique in Cloud Motion Estimation from Satellite Observations R.C. Lo TR-357 (February 1975) Computer Science Department, University of Maryland, College Park/MD

    Google Scholar 

  262. == > 2.2.2; Verfahren zur stereoskopischen Wolkenanalyse aus dem Weltraum D. Lorenz und E. Schmidt Bildmessung und Luftbildwesen 47 (1979) 1–14

    Google Scholar 

  263. ==> 2.6.2; The HARPY Speech Recognition System B.T. Lowerre Ph.D.Thesis, Dept. Comp.Sc. (April 1976) Carnegie-Mellon University, Pittsburgh/PA

    Google Scholar 

  264. ==> 2.7; An Algorithm for Planning Collision-Free Paths Among Polyhedral Obstacles T. Lozano-Perez and M.A. Wesley CACM 22 (1979) 560–570

    Google Scholar 

  265. ==> 2.5; Microprocessor-Based Interface Converts Video Signals for Object Tracking K.S. Lubinski, K.L. Dickson, and J. Cairns, Jr. Computer Design (Dec. 1977) 81–87

    Google Scholar 

  266. ==> 2.2.3; Recent Applications of Digital Processing to Planetary Science D.J. Lynn in: Green et al. 76, pp. 13–1 through 13–16

    Google Scholar 

  267. ==> 2.3; Ultrasonic Imaging Using Arrays A. Macovski Proc. IEEE 67 (1979) 484–495

    Google Scholar 

  268. = = > 3. 1; Considerations sur Involution Spatio-Temporelle de Segments d’Images H. Maitre Proc. 2eme Congres AFCET-IRIA Reconnaissance des Formes et Intelligence Artificielle, September 12–14, 1979 Toulouse/France, vol. II, pp. 151–157

    Google Scholar 

  269. ==> 2.1.6; Directional Correlation — A Technique to Reduce Bandwidth in PCM Television Transmissions F.K. Manasse IEEE Trans. Communications COM-15 (1967) 204–208

    Google Scholar 

  270. ==> 3.3; Analysis of Occluding Contour D. Marr Proc. Royal Soc. B 197 (1977) 441–475

    Google Scholar 

  271. ==> 2.1.3; A Computational Theory of Human Stereo Vision D. Marr and T. Poggio Proc. Royal Society London B 204 (1979) 301–308

    Google Scholar 

  272. ==> 2.1.3; 3.1; 3.1; 3.3; Directional Selectivity and its Use in Early Visual Processing D. Marr and S. Ullman A.I. Memo 524 (June 1979) Artificial Intelligence Laboratory, MIT, Cambridge/MA

    Google Scholar 

  273. ==> 2.1.3; Bandpass Channels, Zero-Crossings, and Early Visual Information Processing D. Marr, S. Ullman, and T. Poggio J. Opt. Soc. Am. 69 (1979) 914–916

    Google Scholar 

  274. ==> 1; Survey: Dynamic Scene Analysis W.N. Martin and J.K. Aggarwal Computer Graphics and Image Processing 7 (1978) 356–374

    Google Scholar 

  275. ==> 2.6.2; Occlusion in Dynamic Scene Analysis W.N. Martin and J.K. Aggarwal WCATVI-79, pp. 49–50

    Google Scholar 

  276. ==> 2.6.2; 3.3; Computer Analysis of Dynamic Scenes Containing Curvilinear Figures W.N. Martin and J.K. Aggarwal Pattern Recognition 11 (1979) 169–178

    Google Scholar 

  277. ==> 2.1.7; Separation of NTSC Signals by Minimum Square Error Filters and Adaptive Filters N.F. Maxemchuk and D.K. Sharma IEEE Trans. Communications COM-26 (1978) 583–593

    Google Scholar 

  278. ==> 2.8.3; THREAD (Three-Dimensional Reconstruction and Display) with Biomedical Application in Neuron Ultrastructure and Computerized Tomography J.C. Maziotta and H.K. Huang Proc. NCC AFIPS 45 (1976) pp. 241–250

    Google Scholar 

  279. ==> 2.3.2; Image Processing in Televinion Ophthalmoscopy B.H. McCormick, J.S. Read, R.T. Borovec, and R.C. Amendola in: Digital Processing of Biomedical Images K. Preston, Jr., and M. Onoe (eds.) Plenum Publishing Co., New York 1976, pp. 399–424

    Google Scholar 

  280. ==> 2.6.2; Moving Target Detection by Imaging Missile Seekers D.M. Mcintosh WCATVI-79, p. 105

    Google Scholar 

  281. ==> 2.6.2; A Perturbation Method for Obtaining Control Signals in an Image Tracking System E.S. McVey and W.B. Woolard, Jr. Proc. 1979 Joint Automatic Control Conference

    Google Scholar 

  282. ==> 2.2.4; Computer Methods for Creating Photomosaics D.L. Milgram IEEE Trans. Computers C-24 (1975) 1113–1119

    Google Scholar 

  283. ==> 2.6.2; Region Tracking Using Dynamic Programming D.L. Milgram TR-539 (May 1977), Computer Science Center, University of Maryland, College Park/MD see, too, WCATVI-79, p. 13

    Google Scholar 

  284. ==> 2.2.4; Adaptive Techniques for Photomosaicking D.L. Milgram IEEE Trans. Computers C-26 (1977) 1175–1180

    Google Scholar 

  285. ==> 2.7; Autonomous Guidance and Control of a Roving Robot J.A. Miller IJCAI-77, pp. 759–760

    Google Scholar 

  286. ==> 2.2.3; 2.2.4; 2.2.6; Further Outlook for GOES D.B. Miller, J.A. Leese, and C.L. Bristor paper no. 18 (pp. 146–150) in Bristor 75

    Google Scholar 

  287. ==> 2.6.2; Algorithms to Track a Moving Object L.B. Milstein and T. Lazicky IEEE Conference on Pattern Recognition and Image Processing, Troy/NY, June 6–8, 1977, pp. 148–152

    Google Scholar 

  288. ==> 2.6.2; Statistical Tests for Image Tracking L.B. Milstein and T. Lazicky Computer Graphics and Image Processing 7 (1978) 413–424

    Google Scholar 

  289. ==> 2.2.6; Classification of Landsat Data to Recognize Wheat P.N. Misra and S.G. Wheeler IEEE Conference on Pattern Recognition and Image Processing, Troy/NY, June 6–8, 1977, pp. 280–288

    Google Scholar 

  290. ==> 2.2.6; Crop Classification with LANDSAT Multispectral Scanner Data P.N. Misra and S.G. Wheeler Pattern Recognition 10 (1978) 1–13

    Google Scholar 

  291. ==> 2.3.4; Absorption Edge Fluoroscopy Using Quasi-monoenergetic X-ray Beams C.A. Mistretta, M.G. Ort, F. Kelcz, J.R. Cameron, M.P. Siedband, and A.B. Crummy Invest. Radiol. 8 (1973) 402–412

    Google Scholar 

  292. ==> 2.1.5; Analysis of Perception of Motion in Television Signals and its Application to Bandwidth Compression M. Miyahara IEEE Trans, on Communications COM-23 (1975) 761–768

    Google Scholar 

  293. ==> 2.2.3; 2.2.3; Radar Determination of Winds at Sea R.K. Moore and A.K. Fung Proc. IEEE 67 (1979) 1504–1521

    Google Scholar 

  294. ==> 2.7; Towards Automatic Visual Obstacle Avoidance H.P. Moravec IJCAI-77, p. 584

    Google Scholar 

  295. ==> 2.7; Visual Mapping by a Robot Rover H.P. Moravec IJCAI-79, pp. 598–600

    Google Scholar 

  296. ==> 2.6.2; 3.3; Terminal Guidance by Pattern Recognition -A New Approach S. Moskowitz IEEE Trans. Aerospace and Navigational Electronics (1964) 254–265

    Google Scholar 

  297. ==> 2.1.4; A Video Encoding System with Conditional Picture-Element Replenishment F.W. Mounts Bell System Techn. J. 48 (1969) 2545–2554

    Google Scholar 

  298. ==> 2.1.3; Design of Quantizers for Real-Time Hadamard Transform Coding of Pictures F.W. Mounts, A.N. Netravali, and B. Prasada Bell System Technical Journal 56 (1977) 21–48

    Google Scholar 

  299. ==> 2.1.3; 2.1.7; Predictive Image Coding H.G. Musmann in: Image Transmission Techniques W.K. Pratt (ed.) Academic Press, New York 1979, pp. 73–112

    Google Scholar 

  300. ==> 2.1.5; Private Communication, February 1980

    Google Scholar 

  301. ==> 2.2.3; Studying the Oceans from Space W. Myers IEEE Computer 11, No. 8 (August 1978) 68–75

    Google Scholar 

  302. ==> 2.2.5; 2.6.1; 3.1; 3.2; Formation of an Object Concept by Analysis of Systematic Time Variations in the Optically Perceptible Environment H.-H. Nagel Computer Graphics and Image Processing 7 (1978) 149–194

    Google Scholar 

  303. ==> 1; 2.8.2; Analysis Techniques for Image Sequences H.-H. Nagel IJCPR-78, pp. 186–211

    Google Scholar 

  304. ==> 1; 2.2.5; Ueber die Repraesentation von Wissen zur Auswertung von Bildern H.-H. Nagel in: Angewandte Szenenanalyse, J.P. Foith (ed.) Informatik Fachberichte 20, pp. 3–21 Springer Verlag, Berlin-Heidelberg-New York 1979

    Google Scholar 

  305. ==> 1; From Digital Picture Processing to Image Analysis H.-H. Nagel Proc. International Conference on Image Analysis and Processing, V. Cantoni (ed.), Pavia/Italy, October 22–24, 1980, pp. 27–40

    Google Scholar 

  306. ==> 2.2.6; Digital Image Processing Activities in Remote Sensing for Earth Resources G. Nagy Proc. IEEE 60 (1972) 1177–1200

    Google Scholar 

  307. ==> 2.1.2; On Interframe Transform Coding T.R. Natarajan and N. Ahmed IEEE Trans. Communications COM-25 (1977) 1323–1329

    Google Scholar 

  308. ==> 2.3.5; Computer Aided Diagnosis from Lung Ventilation and Perfusion Scintigrams I.F. Nejdl, E.E. Gose, and E. Kaplan IJPCR-78, pp. 914–918

    Google Scholar 

  309. ==> 2.1.7; Noise Removal from Chrominance Components of a Color Television Signal A.N. Netravali IEEE Trans. Communications COM-26 (1978) 1318–1321

    Google Scholar 

  310. ==> 2.1.4; 2.1.4; 2.1.6; 3.2; 3.3; Motion Compensated Television Coding: Part 1 A.N. Netravali and J.D. Robbins Bell System Technical J. 58 (1979) 631–670

    MATH  Google Scholar 

  311. ==> 2.1.7; Quantization of Color Signals A.N. Netravali and C.B. Rubinstein Proc. IEEE 65 (1977) 1177–1187

    Google Scholar 

  312. ==> 2.1.4; 2.1.6; 3.3; Motion-Compensated Transform Coding A.N. Netravali and J.A. Stuller Bell System Technical Journal 58 (1979) 1703–1718 see, too: Proc. IEEE Conference on Pattern Recognition and Image Processing, Chicago/IL, August 6–8, 1979 pp. 561–567

    MathSciNet  Google Scholar 

  313. ==> 2.1.3; Some Experiments in Adaptive and Predictive Hadamard Transform Coding of Pictures A.N. Netravali, B. Prasada, and F.W. Mounts Bell System Technical J. 56 (1977) 1531–1547

    MATH  Google Scholar 

  314. ==> 2.7; Interpretation of Imperfect Object Contours J for Identification and Tracking B. Neumann IJCPR-78 Nov. 7–10, 1978 Kyoto/Japan, pp. 691–693

    Google Scholar 

  315. ==> 2.7; Depth Measurement by Motion Stereo R. Nevatia Computer Graphics and Image Processing 5 (1976) 203–214

    Google Scholar 

  316. ==> 2.3; Multiprocessor System for the Real-Time Digital Processing of Video-Image Series G.C. Nicolae and K.H. Hoehne Elektronische Rechenanlagen 21 (1979) 171–183

    Google Scholar 

  317. ==> 2.7; Programmable Industrial Automation D. Nitzan and Ch.A. Rosen IEEE Trans. Computers C-25 (1976) 1259–1270

    Google Scholar 

  318. ==> 2.2.2; The Operational Processing of Wind Estimates from Cloud Motions C. Novak and M. Young Proc. Symposium Meteorological Observations from Space: Their Contribution to the First GARP Global Experiment, 1976, pp. 214–221

    Google Scholar 

  319. ==> 2.7; Scene Analysis in Support of a Mars Rover D.A. O’Handley Computer Graphics and Image Processing 2 (1973) 281–297

    Google Scholar 

  320. ==> 2.1.7; Orthogonal Transform Coding System for NTSC Color Television Signals T. Ohira, M. Hayakawa, and K. Matsumoto IEEE Trans. Communications COM-26 (1978) 1454–1463

    Google Scholar 

  321. ==> 1; Digital Image Processing for Motion Analysis M. Onoe Proc. 13th Int. Congress High Speed Photography and Photonics (Aug. 1978)

    Google Scholar 

  322. ==> 2.6.1; Digital Image Analysis of Traffic Flow M. Onoe and K. Ohba IJCPR-76, 803–808

    Google Scholar 

  323. ==> 2.6.1; Computer Analysis of Traffic Flow Observed by Subtractive Television M. Onoe, N. Hamano, K. Ohba Computer Graphics and Image Processing 2 (1973) 377–392

    Google Scholar 

  324. ==> 2.2.1; private communication 1980

    Google Scholar 

  325. ==> 2.8.8; An Image Analysis System for Human Motion J. O’Rourke and N. Badler WCATVI-79, pp. 61–63

    Google Scholar 

  326. ==> 2.2.5; Difference Measurements in Automatic Photointerpretation of Surveillance Maps A. Paolantonio Information Display 6 (March/April 1969) 41–44

    Google Scholar 

  327. ==> 2.2.1; 2.2.3; Cloud Pattern Classification from Visible and Infrared Data JoAnn Parikh TR-442 (February 1976) Computer Science Center University of Maryland, College Park/MD

    Google Scholar 

  328. ==> 2.2.1; 2.2.3; 2.2.3; An Approach to Selection of Wind Tracers from Tropical Maritime Geosynchronous Satellite Cloud Imagery JoAnn Parikh TR-450 (March 1976) Computer Science Department, University of Maryland, College Park/MD

    Google Scholar 

  329. ==> 2.2.1; 2.2.3; A Comparative Study of Cloud Classification Techniques JoAnn Parikh Remote Sensing of Environment 6 (1977) 67–81

    Google Scholar 

  330. ==> 2.2.3; Automatic Segmentation and Classification of Infrared Meteorological Satellite Data J.A. Parikh and A. Rosenfeld IEEE Trans. Systems, Man, and Cybernetics SMC-8 (1978) 736–743

    Google Scholar 

  331. ==> 2.2.6; Remote Sensing of Time Dependent Phenomena A.B. Park Proc. 6th Int. Symp. Remote Sens. Environ. (Ann Arbor/Michigan, 1969) 1227–1236

    Google Scholar 

  332. ==> 2.1.3; 2.2.4; Structural Pattern Recognition T. Pavlidis Springer Verlag Berlin-Heidelberg-New York 1977

    MATH  Google Scholar 

  333. ==> 2.8.3; Three-Dimensional Reconstruction from Serial High Voltage Electron Micrographs L.D. Peachey, C.H. Damsky, and A. Veen Proc. 4th Int. Congress for Stereology, pp. 207–210 Gaithersburg/MD, Sept. 4–9, 1975, NBS, Washington/DC 1976

    Google Scholar 

  334. ==> 2.1.2; 3.3; Video-Rate Image Correlation Processor J.J. Pearson, D.C. Hines, Jr., S. Golosman, and CD. Kuglin Proc. SPIE 119 (IOCC 1977) pp. 197–205

    Google Scholar 

  335. ==> 2.1.4; 3.1; Exchange of Spatial and Temporal Resolution in Television Coding R.F.W. Pease and J.O. Limb Bell System Techn. J. 50 (1971) 191–200

    Google Scholar 

  336. ==> 2.8.1; Enhanced Display of Three-Dimensional Data from Computerized X-Ray Tomograms T.M. Peters Computers in Biology and Medicine 5 (1975) 49–52

    Google Scholar 

  337. ==> 2.2.2; Artificial Stereo: A Generalized Computer Algorithm for Combining Multi-Channel Image Data W.G. Pichei, R.L. Brower, D.R. Brandman, and R.J. Moy Proc. 4th Int. Congress for Stereology, pp. 219–220 2.3.6; Gaithersburg/MD, Sept. 4–9, 1975, NBS, Washington/DC, 1976

    Google Scholar 

  338. ==> 2.3.6; A Method for Analyzing Dynamic Processes Represented by Chains of Maps G.G. Pieroni IJCPR-76, pp. 325–333

    Google Scholar 

  339. ==> 2.3.6; A Method for Analyzing Dynamic Processes Represented by Sequences of Maps G.G. Pieroni Computer Graphics and Image Processing 10 (1979) 375–387

    Google Scholar 

  340. ==> 2.3; Experiments in Dynamic Segmentation G.G. Pieroni and M.F. Costabile IEEE Conference on Pattern Recognition and Image Processing, Chicago/IL, August 6–8, 1979, pp. 300–307

    Google Scholar 

  341. ==> 2.3.6; On the Analysis of Dynamic Map Data G.G. Pieroni and H. Freeman IJCPR-78, pp. 731–734

    Google Scholar 

  342. ==> 2.3.6; Cardiac Potential Map Analysis and Description G.G. Pieroni and R. Narasimhan IJCPR-74, pp. 276–280

    Google Scholar 

  343. ==> 2.3; Clinical Applications of New Echocardiographic Techniques R.L. Popp Proc. SPIE 167 (1978) 143–150

    Google Scholar 

  344. ==> 2.4; Interactive Graphics Input Tools for Motion Analysis M.J. Potei and St.A. MacKay WCATVI-79, pp. 125–127

    Google Scholar 

  345. ==> 2.4; 4; Interacting with the GALATEA Film Analysis System M.J. Potei and R.E. Sayre Proc. SIGGRAPH ‘76 ACM SIGGRAPH Computer Graphics 10 (July 1976) 52–59

    Google Scholar 

  346. ==> 2.4; Motion Analysis with Vector Graphics M.J. Potei and R.E. Sayre Proc. IEEE Workshop on Picture Data Description and Management, Chicago/Ill., April 21–22, 1977 pp. 184–186

    Google Scholar 

  347. ==> 2.4; 2.4; 4; Graphics Input Tools for Interactive Motion Analysis M.J. Potei, R.E. Sayre, and S.A. MacKay preprint 1979 (to be published)

    Google Scholar 

  348. ==> 3.1; 3.3; Velocity as a Cue to Segmentation J. Potter IEEE Trans. Systems, Man and Cybernetics, SCM-5 (1975) 390–394

    Google Scholar 

  349. ==> 3.1; 3.3; Scene Segmentation by Velocity Measurements Obtained with a Cross-Shaped Template J. Potter IJCAI-75, 803–810 Tbilisi, Georgia/USSR, September 3–8, 1975

    Google Scholar 

  350. ==> 3.1; 3.3; Scene Segmentation Using Motion Information J.L. Potter Computer Graphics and Image Processing 6 (1977) 558–581

    Google Scholar 

  351. ==> 2.1; 2.1.3; Digital Image Processing W.K. Pratt Wiley, New York 1978

    Google Scholar 

  352. ==> 2.1; 2.1.2; Image Transmission Techniques W.K. Pratt (ed.) Academic Press New York/NY 1979

    Google Scholar 

  353. ==> 2.3; Biomedical Image Processing K. Preston, Jr. in: Advances in Digital Image Processing, P. Stucki (ed.) Plenum Press Publ. Co., New York/NY 1979, pp.125–146

    Google Scholar 

  354. ==> 2.2.5; 2.2.5; Change Detection and Analysis in Multi-Spectral Images K.E. Price Ph.D. Thesis, December 18, 1976 Department of Computer Science, Carnegie-Mellon University, Pittsburgh/PA

    Google Scholar 

  355. ==> 2.2.5; Symbolic Matching and Analysis with Substantial Changes in Orientation K.E. Price Proc. Image Understanding Workshop, pp. 93–99 Cambridge/MA, May 3–4, 1978, L.S. Baumann (ed.) Science Applications, Inc., Arlington/VA

    Google Scholar 

  356. ==> 2.2.5; Change Detection in Multi-Sensor Images K. Price and D.R. Reddy Tenth International Symposium on Remote Sensing of Environment Ann Arbor, Michigan, October 1975

    Google Scholar 

  357. ==> 2.2.5; Symbolic Image Registration and Change Detection K. Price and D.R. Reddy Proc. Image Understanding Workshop, pp. 28–31 Minneapolis/MN, April 20, 1977 Science Applications, Inc., Arlington/VA

    Google Scholar 

  358. ==> 2.2.5; Change Detection and Analysis in Multispectral Images K.E. Price and R. Reddy IJCAI-77, pp. 619–625

    Google Scholar 

  359. ==> 2.2.5; Matching Segments of Images K. Price and R. Reddy IEEE Trans. Pattern Analysis and Machine Intelligence PAMI-1 (1979) 110–116

    Google Scholar 

  360. ==> 2.2.5; Automatic Digital Change Detection on SAT Imagery T.P. Putra and J.W. Toole WCATVI-79, p. 7

    Google Scholar 

  361. ==> 2.6.1; Road Tracking and Anomaly Detection in Aerial Imagery L.H. Quam Proc. Image Understanding Workshop, pp. 51–55 L.S. Baumann (ed.), Cambridge/MA, May 3–4, 1978 Science Applications, Inc., Arlington/VA

    Google Scholar 

  362. ==> 2.3.5; Quantitative Evaluation of Left Ventricular Function by Radiographic Techniques C.E. Rackley Circulation 54 (1976) 862–879

    Google Scholar 

  363. ==> 2.6.2; Auswertung von digitisierten Fernsehbildern zur Beschreibung bewegter Objekte B. Radig Dissertation, Fachbereich Informatik (Maerz 1978), Universitaet Hamburg

    Google Scholar 

  364. ==> 2.6.2; Parameterized Region Extracting for the Description of Moving, Objects B. Radig AISB/GI Conference on Artificial Intelligence July 18–20, 1978, Hamburg, pp. 263–272

    Google Scholar 

  365. ==> 2.6.2; Description of Moving Objects Based on Parameterized Region Extracting B. Radig IJCPR-78 Nov. 7–10, 1978 Kyoto/Japan, pp. 723–725

    Google Scholar 

  366. ==> 2.5; An Experimental Study of Planar Models for Human Gait Utilizing On-line Computer Analysis of Television and Force Plate Data S. Rahmani Ph.D. Thesis (June 1979) Department of Electrical Engineering The Ohio State University, Columbus/OH

    Google Scholar 

  367. ==> 2.6.1; Automatic Extraction of Highway Traffic Data from Aerial Photographs J.G. Raudseps DOT-TSC-FHWA-75–1 US Dept. of Transportation, Transportation Systems Center, Kendall Square, Cambridge/MA 1975

    Google Scholar 

  368. ==> 2.3.2; The Television Ophthalmoscope Image Processor J.S. Read, R.T. Borovec, R.C. Amendola, A.C. Petersen, M.H. Goldbaum, M. Kottow, B.H. McCormick, and M.F. Goldberg Proc. IEEE Workshop on Picture Data Description and Management, Chicao/Ill., April 21–22, 1977, pp. 64–67

    Google Scholar 

  369. ==> 2.1.2; 2.1.5; Intraframe and Interframe Adaptive Transform Coding C. Reader Proc. SPIE 66 (1975) 108–117

    Google Scholar 

  370. ==> 2.8.2; 2.8.2; Representation of Three-Dimensional Objects D.R. Reddy and S. Rubin Computer Science Department, April 1978 Carnegie-Mellon University, Pittsburgh/PA

    Google Scholar 

  371. ==> 2.8; 2.8.2; 2.8.2; 2.8.3; Computer Analysis of Neuronal Structure D.R. Reddy, W.J. Davis, R.B. Ohiander, and D.J. Bihary in: Intracellular Staining in Neurobiology (S.B. Kater and C. Nicholson, eds.) Springer Verlag, New York-Heidelberg-Berlin 1973, pp. 227–253

    Google Scholar 

  372. ==> 2.3.3; 2.4; Interactive Computer-Aided Analysis of Cardiac Motion Sequences W. Reeves, R. Baecker, H.D. Covvey, D. Miller, and D. Galloway WCATVI-79, pp. 64–65

    Google Scholar 

  373. ==> 2.8.3; A Computer-Assisted Three-Dimensional Treatment Planning System L.E. Reinstein, D. McShan, B.M. Webber, and A.S. Glicksman Radiology 127 (1978) 259–264

    Google Scholar 

  374. ==> 2.1.6; Adaptive Haar Transform Video Bandwidth Reduction System for the RPVs J.J. Reis, R.T. Lynch, and J. Butman 20th Annual Meeting SPIE San Diego/CA, August 23–27, 1976 Proc. SPIE 87 (1976) 24–35

    Google Scholar 

  375. ==> 2.8.5; Three Dimensional Structure Isolation Using Parallel Image Planes M.L. Rhodes, W.V. Glenn, and A. Klinger IJCPR-78, pp. 584–591

    Google Scholar 

  376. ==> 2.1.8; The Digital Encoding of Radiographic Motion Pictures: a Structural Approach G.J. Ridsdale and J.H. Kulick WCATVI-79, pp. 84–86

    Google Scholar 

  377. ==> 2.3; 2.8.4; 2.8.8; Needs, Requirements and Design of a High Temporal Resolution Synchronous Cylindrical Whole-Body Transaxial Scanner for Simultaneous Study of the Structure and Function of the Heart and Circulation E.L. Ritman, R.E. Sturm, R.A. Robb, and E.H. Wood in: Roentgen-Video-Techniques, pp. 271–284 P.H. Heintzen and J.H. Buersch (eds.), Georg Thieme Publishers, Stuttgart/Germany 1978

    Google Scholar 

  378. ==> 2.6.2; Computer Tracking of Objects Moving in Space J. Roach and J.K. Aggarwal IEEE Trans. Pattern Analysis and Machine Intelligence PAMI-1 (1979) 127–135

    Google Scholar 

  379. ==> 2.J.4; 2.1.6; 3.3; Interframe Television Coding Using Movement Compensation J.D. Robbins and A.N. Netravali International Conference on Communications June 1979, IEEE publication CH 1435–7/79 pp. 23.4.1 – 23.4.5

    Google Scholar 

  380. ==> 2.4; Control of Developing Fields A. Robertson and M.H. Cohen Ann. Rev. Biophys. Bioeng. 1 (1972) 409–464

    Google Scholar 

  381. ==> 2.8; 2.8.1; Display of Three-Dimensional Ultrasonic Data for Medical Diagnosis D.E. Robinson J. Acoust. Soc. Am. 52 (1972) 673–687

    Google Scholar 

  382. ==> 2.1.3; Detection and Coding of Edges Using Directional Masks G.S. Robinson Proc. SPIE 87 (1976) 117–125

    Google Scholar 

  383. ==> 2.1.3; Edge Detection by Compass Gradient Masks G.S. Robinson Computer Graphics and Image Processing 6 (1977) 492–501

    Google Scholar 

  384. ==> 2.1.3; A Real-Time Edge Processing Unit G.S. Robinson and J.J. Reis Proc. IEEE Workshop on Picture Data Description and Management, Chicago/IL, April 21–22, 1977, pp. 155–164

    Google Scholar 

  385. ==> 2.1.5; 2.1.6; 3.3; Television Bandwidth Compression Utilizing Frame-to-Frame Correlation and Movement Compensation F. Rocca Symposium on Picture Bandwidth Compression MIT, Cambridge/MA, April 1969 (T.S. Huang and O.J. Tretiak, eds.) Gordon and Breach, New York 1972, pp. 675–693

    Google Scholar 

  386. ==> 2.1.6; Television Bandwidth Compression via Movement Compensation on a Model of the Random Video Process F. Rocca and S. Zanoletti IEEE Trans. Communications COM-20 (1972) 960–965

    Google Scholar 

  387. ==> 2.1.2; Theoretical Performance Models for Interframe Transform and Hybrid Transform/DPCM Coders J.A. Roese and W.K. Pratt Proc. SPIE 87 (August 1976) 172–179

    Google Scholar 

  388. ==> 2.1.2; Combined Spatial and Temporal Coding of Digital Image Sequences J.A. Roese and G.S. Robinson Proc. SPIE 66 (1975) 172–180

    Google Scholar 

  389. ==> 2.1.2; Interframe Transform Coding and Predictive Coding Methods J.A. Roese, W.K. Pratt, G.S. Robinson, and A. Habibi Proc. 1975 Intern. Conf. on Communications ICC-75, vol. II, paper 23, pp. 17–21 (June 16–18, 1975)

    Google Scholar 

  390. ==> 2.1.2; 2.1.2; Interframe Cosine Transform Image Coding J.A. Roese, W.V. Pratt, and G.S. Robinson IEEE Trans. Communications COM-25 (1977) 1329–1339

    Google Scholar 

  391. ==> 2.3.4; The Use of Image Sequences to Discriminate between Overlapping Radioactive Objects which Differ in Their Dynamic Behavior W.H. Rose, E.E. Gose, W.E. Barnes, E. Kaplan, and J.S. Arnold WCATVI-79, p. 96

    Google Scholar 

  392. ==> 2.7; Use of Sensors in Programmable Automation C.A. Rosen and D. Nitzan Computer 10 (December 77) 12–23

    Google Scholar 

  393. ==> 2.2.5; Automatic Detection of Changes in Reconnaissance Data A. Rosenfeld Proc. 5th Conv. Mil. Electron. 1961, pp. 492–499

    Google Scholar 

  394. = = > 2.2.1; Relaxation Methods in Image Processing and Analysis A. Rosenfeld IJCPR-78, pp. 181–185

    Google Scholar 

  395. Rosenfeld and Kak 76 ==> 1; 2.1; 2.8.1; Digital Picture Processing A. Rosenfeld and A.C. Kak Academic Press, New York, 1976

    Google Scholar 

  396. ==> 2.6.2; The ARGOS Image Understanding System St. Rubin Report (Nov. 1978) Department of Computer Science Carnegie-Mellon University, Pittsburgh/PA

    Google Scholar 

  397. ==> 2.6.2; The Locus Model of Search and it’s Use in Image Interpretation S.M. Rubin and R. Reddy IJCAI-77, pp. 590–595

    Google Scholar 

  398. ==> 2.8.2; 2.8.2; A Computer-Aided Technique for Overlaying Cerebral Angiograms onto Computed Tomograms J.M. Rubin and R.E. Sayre Investigative Radiology 13 (1978) 362–367

    Google Scholar 

  399. ==> 2.1.3; On the Design of Quantizers for DPCM Coders: Influence of the Subjective Testing Methodology C.B. Rubinstein and J.O. Limb IEEE Trans. Communications COM-26 (1978) 565–572

    Google Scholar 

  400. ==> 2.6.1 Untersuchungen zur Ermittlung von Moeglichkeiten und Grenzen der Einbeziehung des elektronischen Fernsehens in die Analyse des Strassenverkehrsablaufs P. Rueenaufer Dissertation, Fakultaet fuer Elektrotechnik, Rhein.-Westf. Techn. Hochschule Aachen (Dec. 1976)

    Google Scholar 

  401. ==> 2.1.3; Image Coding Applications of Vision Models D.J. Sakrison in: Image Transmission Techniques W.K. Pratt (ed.) Academic Press, New York 1979, pp. 21–71

    Google Scholar 

  402. ==> 2.1.7; A 32 Mbit/s Component Separation DPCM Coding System for NTSC Color TV K. Sawada and H. Kotera IEEE Trans. Communications COM-26 (1978) 458–465

    Google Scholar 

  403. ==> 2.1.7; 32 Mbit/s Transmission of NTSC Color TV Signals by Composite DPCM Coding K. Sawada and H. Kotera IEEE Trans. Communications COM-26 (1978) 1432–1439

    Google Scholar 

  404. ==> 2.4; 2.5; Three-Dimensional Motion Analysis, with one Foot on the Ground R.E. Sayre WCATVI-79, pp. 136–137

    Google Scholar 

  405. ==> 2.8.2; 2.8.2; Quantitative Three-Dimensional Angiograms: Applications, Including Augmentation of Computed Tomograms R.E. Sayre, J.M. Rubin, E.E. Duda, and N.J. Patronas Proc. Sixth Conference on Computer Applications in Radiology and Computer-Aided Analysis of Radiological Images, Newport Beach/CA, June 19–21, 1979

    Google Scholar 

  406. ==> 1; Visual Motion Perception by Intelligent Systems W. Scacchi IEEE Conference on Pattern Recognition and Image Processing, Chicago/IL, August 6–8, 1979, pp. 646–652

    Google Scholar 

  407. ==> 2.6.2; 3.2; 3.2; Algorithms for a Real-Time Automatic Video Tracking System R.J. Schalkoff Ph.D. Thesis (May 1979) Dept. Electrical Engineering, Univ. of Virginia Charlottesville/VA

    Google Scholar 

  408. ==> 2.6.2; 3.2; 3.3; 3.3; Algorithm Development for Real-Time Automatic Video Tracking Systems R.J. Schalkoff and E.S. McVey Proc. 3rd International Computer Software and Applications Conference, Chicago/IL, November 1979, pp. 504–511

    Google Scholar 

  409. ==> 2.1.7; Frame to Frame Coding to N.T.S.C. Color TV R. Schaphorst Symposium on Picture Bandwidth Compression MIT, Cambridge/MA, April 1969 (T.S. Huang and O.J. Tretiak, eds.) Gordon and Breach, New York 1972

    Google Scholar 

  410. ==> 2.3.5; Evaluation of Dynamic Studies by Means of Factor Analysis P. Schmidlin, J. Clorius, R. Kubesch, and K. Dreikorn Proc. International Symposium on Medical Radionuclide Imaging Los Angeles/CA, October 25–29, 1976 IAEA 1977

    Google Scholar 

  411. ==> 2.1.3; Synthetic Highs: An Experimental TV Bandwidth Reduction System W.F. Schreiber, C.F. Knapp, and N.D. Kay J. Soc. Motion Pict. and Telev. Eng. 68 (1959) 525–537

    Google Scholar 

  412. ==> 2.1.3; Contour Coding of Images W.F. Schreiber, T.S. Huang, and J.O. Tretiak WESCON Tech. Papers, session 8 (August 1968)

    Google Scholar 

  413. ==> 2.3; 2.3.3; 2.8.4; 2.8.8; Towards an Anatomical Model of Heart Motion as Seen in Cardiac Ultrasound Data R.B. Schudy WCATVI-79, p. 87–89

    Google Scholar 

  414. ==> 2.3.7; Verarbeitung von Bildsequenzen bei der ortsaufloesenden Pupillographie N. Schultes, D. Doepfer, H. Baldauf, M. Mertz in: Angewandte Szenenanalyse, J.P. Foith (ed.) Informatik Fachberichte 20, pp. 289–292 Springer Verlag, Berlin-Heidelberg-New York 1979

    Google Scholar 

  415. ==> 2.3.2; Computer Analysis of Cardiovascular Imagery R.H. Selzer, D.H. Blankenhorn, D.W. Crawford, S.H. Brooks, and R. Barndt, jr. in: Green et al. 76, pp. 6–1 through 6–20

    Google Scholar 

  416. ==> 2.1.1; Real-time Recording of Television Frame Difference Areas A.J. Seyler Proc. IEEE (Corresp) 51 (1963) 478–480

    Google Scholar 

  417. ==> 2.1.1; Statistics of Television Frame Differences A.J. Seyler Proc. IEEE 53 (1965) 2127–2128

    Google Scholar 

  418. ==> 2.1.1; Probability Distributions of Television Frame Differences A.J. Seyler Proc. Inst. Radio Electron. Eng. (Australia) (Nov. 1965) pp. 355–366

    Google Scholar 

  419. ==> 2.1.1; Measurements of Temporal Adaptation to Spatial Detail Vision A.J. Seyler and Z.L. Budrikis Nature 184 (1959) 1215–1217

    Google Scholar 

  420. ==> 2.1.1; Detail Perception after Scene Changes in Television Image Presentations A.J. Seyler and Z.L. Budrikis IEEE Trans. Inform. Theory IT-11 (1965) 31–43

    Google Scholar 

  421. ==> 2.8.3; Computational Morphology: Three-Dimensional Computer Graphics for Electron Microscopy M.J. Shantz and G.D. McCann IEEE Trans. Biomedical Eng. BME-25 (1978) 99–103

    Google Scholar 

  422. ==> 2.2.1; 2.2.2; A Comparison Between Observed Winds and Cloud Motions Derived from Satellite Infrared Measurements W.E. Shenk and E.R. Kreins J. of Applied Meteorology 9 (1970) 702–710

    Google Scholar 

  423. ==> 2.2.5; A Concept of Change Detection J.R. Shepard Photogrammetric Engineering 30 (1964) 648–651

    Google Scholar 

  424. ==> 2.8; Connections between the Representation of Shapes and of their Spatial Transformations R.N. Shepard Proc. Workshop on the Representation of Three-Dimensional Objects, R. Bajcsy (ed.), University of Pennsylvania, Philadelphia/PA, May 1–2, 1979, pp. N-1 through N-20

    Google Scholar 

  425. ==> 2.7; Guiding a Robot by Visual Feedback in j Assembling Tasks Y. Shirai and H. Inoue Pattern Recognition 5 (1973) 99–108

    Google Scholar 

  426. ==> 2.2.3; On the Remote Sensing of Mesoscale Tropical Convection Intensity from a Geostationary Satellite D.N. Sikdar and V.E. Suomi J. Applied Meteorology 11 (1972) 37–43

    Google Scholar 

  427. ==> 2.2.6; Reflectance and Internal Structure of Leaves from Several Crops during a Growing Season T.R. Sinclair, R.M. Hoffer, and M.M. Schreiber Agronomy Journal 63 (1971) 864–868

    Google Scholar 

  428. ==> 2.3.3; 2.3.5; Digital Boundary Detection, Volumetric and Wall Motion Analysis of Left Ventricular Cine Angiograms R.W. Smalling, M.H. Skolnick, D. Myers, R. Shabetai, J.C. Cole, and D. Johnston Comput. Biol. Med. 6 (1976) 78–85

    Google Scholar 

  429. ==> 2.2.1; 2.2.3; A Comparison of Low-Cloud Satellite Wind Estimates with Analyses Based on Aircraft Observations in a Disturbed Tropical Regime C.L. Smith and A.F. Hasler Monthly Weather Review 104 (1976) 702–708

    Google Scholar 

  430. ==> 2.2.4; 2.2.4; Automated Cloud Tracking Using Precisely Aligned Digital ATS Pictures E.A. Smith and D.R. Phillips IEEE Trans. Computers C-21 (1972) 715–729

    Google Scholar 

  431. ==> 2.2.2; Comparison of Cloud Top Height Determinations from Three Independent Sources: Satellite IR Measurements, Satellite Viewed Cloud Shadows, Radar E.A. Smith and D. W. Reynolds Proc. Symposium on Meteorological Observations from Space: Their Contribution to the First GARP Global Experiment, Philadelphia/PA June 8–10, 1976, pp. 237–244

    Google Scholar 

  432. ==> 2.8; 2.8.6; Understanding Objects from Slices: Extracting Generalized Cylinder Descriptions from Serial Slices B.I. Soroka TR-79–1 (March 1979) Department of Computer Science University of Kansas, Lawrence/KS 66045

    Google Scholar 

  433. ==> 2.8.6; Generalized Cylinders and Serial Sections B.I. Soroka Proc.NSF Workshop on the Representation of Three-Dimensional Objects, R. Bajcsy (ed.) University of Pennsylvania, Philadelphia/PA, May 1–2, 1979

    Google Scholar 

  434. ==> 2.8.6; Generalized Cylinders from Parallel Slices B.I. Soroka IEEE Conference on Pattern Recognition and Image Processing, Chicago/IL, August 6–8, 1979, pp. 421–426

    Google Scholar 

  435. ==> 2.8.6; Generalized Cylinders from Serial Sections B.I. Soroka and R.K. Bajcsy IJCPR-76, pp. 734–735

    Google Scholar 

  436. ==> 2.8.6; A Program for Describing Complex Three-Dimensional Objects Using Generalized Cylinders as Primitives B.I. Soroka and R.K. Bajcsy IEEE Conference on Pattern Recognition and Image Processing, Chicago/IL, May 31-June 2, 1978, pp. 331–339

    Google Scholar 

  437. ==> 2.5; A Computerized Look at Cat Locomotion or One Way to Scan a Cat G. Speckert AI Memo 374 (July 1976) Artificial Intelligence Laboratory, MIT, Cambridge/MA

    Google Scholar 

  438. ==> 2.2.3; Special Issue on Applications to the Sciences and Medicine N.S. Sridharan (ed.) Artificial Intelligence 11 (1978) 1–195

    Google Scholar 

  439. ==> 2.2.6; Time Dimension for Crop Surveys from Space D. Steiner Photogrammetric Eng. 36 (1970) 187–194

    Google Scholar 

  440. ==> 2.1.3; 2.1.6; 3.3; Transform Domain Motion Estimation J.A. Stuller and A.N. Netravali Bell System Technical Journal 58 (1979) 1673–1702 see, too: WCATVI-79, p. 82

    MathSciNet  Google Scholar 

  441. ==> 2.2.3; Wind Sets from SMS Images: An Assessment of Quality for GATE D. Suchman and D.W. Martin J. Applied Meteorology 15 (1976) 1265–1278

    Google Scholar 

  442. ==> 2.8.3; Computer Generated Images for Medical Applications A. Sunguroff and D. Greenberg Proc. SIGGRAPH 78, R.L. Phillips (ed.) Atlanta/GA, Aug. 23–25, 1978 Computer Graphics 12 (1978) 196–202

    Google Scholar 

  443. ==> 2.2.6; Bayesian Classification in a Time-Varying Environment P.H. Swain IEEE Trans. Systems, Man, and Cybernetics SMC-8 (1978) 879–883

    MathSciNet  Google Scholar 

  444. ==> 2.2.5; A System for Demonstrating the Effects of Changing Background on Automatic Target Recognition W. Swoboda and J.W. Gerdes in: Pictorial Pattern Recognition G.C. Cheng et al. (eds.), pp. 33–43 Thompson Book Co., Washington/DC 1968

    Google Scholar 

  445. ==> 2.4; The Analysis of Moving Granules in a Pancreatic Cell by Digital Moving Image Processing M. Takagi and K. Sakaue IJCPR-78 Nov. 7–10,1978 Kyoto/Japan, pp. 735–739

    Google Scholar 

  446. ==> 2.8.1; Specialized Processing System for Three-Dimensional Display Based on Serial Tomograms S. Tamura, K. Tanaka, K. Yoshida, J. Hiramoto, K. Hirano, and M. Matsumoto IJCPR-78, pp. 851–853

    Google Scholar 

  447. ==> 2.2.4; On Assembling Subpictures into a Mosaic Picture M. Tanaka, S. Tamura, and K. Tanaka IEEE Trans. Systems, Man, and Cybernetics SMC-7 (1977) 42–48

    Google Scholar 

  448. ==> 2.2.4; Picture Assembly Using a Hierarchical Partial-Matching Technique M. Tanaka, S. Tamura, and K. Tanaka IEEE Trans. Systems, Man, and Cybernetics SMC-8 (1978) 812–819

    Google Scholar 

  449. ==> 2.3.3; Guided Boundary Detection for Left Ventricular Volume Measurements M. Tasto IJCPR-73, pp. 119–124

    Google Scholar 

  450. ==> 2.3.3; Motion Extraction for Left Ventricular Volume Measurement M. Tasto IEEE Trans. Biomedical Engineering BME-21 (1974) 207–213

    Google Scholar 

  451. ==> 2.3.3; Comparison of Manual versus Computer Determination of Left Ventricular Boundaries from X-Ray Cineangiocardiograms M. Tasto, M. Felgendreher, W. Spiesberger, and P. Spiller in: Heintzen and Buersch 78, pp. 168–183

    Google Scholar 

  452. ==> 2.1.5; Video Transmission Network with Intraframe DPCM and Optional Interframe Coding W. Thoma Proc. Int. Conf. Communications, Philadelphia/PA June 1972, pp. 39–1 through 39–6

    Google Scholar 

  453. ==> 2.3.6; Body Surface Potential Maps: Processing the Sequence of Images C.W. Thomas, R. Plonsey, and J. Liebman WCATVI-79, p. 97

    Google Scholar 

  454. ==> 2.2.2; Objective Editing of Automated, Low Level Cloud Motion Vectors from Geostationary Satellites A. Thomasell, Jr. Proc. Symposium Meteorological Observations from Space: Their Contribution to the First GARP Global Experiment, 1976, pp. 222–225

    Google Scholar 

  455. ==> 2.7; The Navigation System of the JPL Robot A.M. Thompson IJCAI-77, pp. 749–757

    Google Scholar 

  456. ==> 3.1; 3.2; Combining Motion and Contrast for Segmentation W.B. Thompson Technical Report 79–7 (March 1979) Computer Science Department, University of Minnesota Minneapolis/Minnesota 55455 see, too, WCATVI-79, pp. 27–28

    Google Scholar 

  457. ==> 2.2.5; A Digital Image Processor for Automatic Target Cueing, Navigation, and Change Detection G.E. Tisdale Proc. SPIE 101 (1977) 112–119

    Google Scholar 

  458. ==> 2.2.3; Tutorial Review of Synthetic-Aperture Radar (SAR) with Applications to Imaging of the Ocean Surface K. Tomiyasu Proc. IEEE 66 (1978) 563–583

    Google Scholar 

  459. ==> 2.8.7; Computer Analysis of Network Pictures J.T. Tou and W.M. Ferng IJCPR-78, pp. 630–634

    Google Scholar 

  460. ==> 2.2.1; Pattern Recognition Principles J.T. Tou and R.C. Gonzalez Addison-Wesley Publ. Co., Reading/MA, 1974

    MATH  Google Scholar 

  461. ==> 2.8.7; An Approach to Computer Processing of Lung Tissue Micrographs J.T. Tou and H.H. Liu Proc. IEEE Conference on Pattern Recognition and Image Processing, Chicago/IL, August 6–8, 1979, pp. 453–459

    Google Scholar 

  462. ==> 2.8.7; Computer Analysis of Stereological Parameters from Lung Tissue J.T. Tou, C.S. Cheng, M. Fisher, and M. Ferng Proc. IEEE Conference on Pattern Recognition and Image Processing, Chicago/IL, May 31 — June 2, 1978, pp. 379–384

    Google Scholar 

  463. ==> 2.2.5; 2.2.5; A Change Detection and Classification System for Side-Look Radar Images T.P. Truitt, D.T. Bisell, and G.E. Tisdale Proc.Nat. Aerospace and Electronics Conference, Dayton/Ohio (May 1976), pp. 533–538 see also: IEEE Trans. Aerospace and Electronics Systems AES-12 (1976) 423

    Google Scholar 

  464. ==> 2.6.1; Some Notes on Motion Understanding J.K. Tsotsos IJCAI-77, p. 611

    Google Scholar 

  465. ==> 2.4; 2.6.1; 4; A Framework for Visual Motion Understanding J.K. Tsotsos Technical Report CSRG-114 (June 1980), University of Toronto Department of Computer Science, Toronto/Canada

    Google Scholar 

  466. ==> 2.3.3; An Interactive Knowledge-Based Systems Approach to Cardiac Image Description and Analysis J.K. Tsotsos, R. Baecker, H.D. Covvey, W. Reeves, J. Mylopoulos, and E.D. Wigle Proc. IEEE Computers in Cardiology October 1977, Rotterdam, pp. 377–384

    Google Scholar 

  467. ==> 2.3.3; Gross and Segmental Motion Analysis in Dynamic Cardiac Imagery J.K. Tsotsos, H.D. Covvey, J. Mylopoulos, and E.D. Wigle Proc. 2nd Annual Symposium on Computer Application in Medical Care, pp. 45–48 F.H. Orthner (ed.) November 5–7, 1978, Washington/D.C.

    Google Scholar 

  468. ==> 2.3.3; 2.3.3; 2.3.5; 2.6.1; 2.8. A Framework for Visual Motion Understanding J.K. Tsotsos, J. Mylopoulos, H.D. Covvey, and S.W. Zucker WCATVI-79, pp. 56–58

    Google Scholar 

  469. ==> 2.3.3; 2.3.5; 2.6.1; ALVEN: A Study on Motion Understanding by Computer J.K. Tsotsos, J. Mylopoulos, H.D. Covvey, and S.W. Zucker IJCAI-79, pp. 890–892

    Google Scholar 

  470. ==> 2.7; An Automobile with Artificial Intelligence S. Tsugawa, T. Yatabe, T. Hirose, and S. Matsumoto IJCAI-79, pp. 893–895

    Google Scholar 

  471. ==> 1; The Interpretation of Visual Motion S. Ullman The MIT Press, Cambridge/MA, 1979

    Google Scholar 

  472. ==> 2.2.5; An Algorithm for Estimating Small Scale Differences between Two Digital Images M.S. Ulstad Pattern Recognition 5 (1973) 323–333

    Google Scholar 

  473. ==> 2.8.7; Quantitative Stereology E.E. Underwood Addison-Wesley Publ. Co., Reading/MA 1970

    Google Scholar 

  474. ==> 2.8.7; Three-Dimensional Shape Parameters from Planar Sections E.E. Underwood Proc. 4th Int. Congress for Stereology, pp. 91–92 Gaithersburg/MD, Sept. 4–9, 1975, NBS, Washington/DC 1976

    Google Scholar 

  475. ==> 2.7; A Method of Real-Time Recognition of Moving Objects and its Application T. Uno, M. Ejiri, and T. Tokunaga Pattern Recognition 8 (1976) 201–208

    Google Scholar 

  476. ==> 2.5; A Real-Time Video System for Tracking One-Dimensional Movements of Two Objects T.G. Uter IEEE Trans. Biomedical Eng. BME-24 (1977) 75–78

    Google Scholar 

  477. ==> 2.8.3; TROTS: a Computer Graphics System for Three-Dimensional Reconstruction from Serial Sections A. Veen and L.D. Peachey Computers and Graphics 2 (1977) 135–150

    Google Scholar 

  478. ==> 2.2.3; A Sample Computation of Kinematic Properties from Cloud Motion Vectors W. Viezee, S.M. Serebreny, R.L. Mancuso, and W.E. Shenk J. Applied Meteorology 11 (1972) 731–741

    Google Scholar 

  479. ==> 2.3; High Resolution Dynamic Ultrasonic Imaging J.T. Walker, A.L. Susal, and J.D. Meindl Proc. SPIE 152 (1978) 54–58

    Google Scholar 

  480. ==> 2.8.1; Texture Directed Image Compositing for FOCUS R.J. Wall and M.H. Karspeck in: Green et al. 76, pp. 7–1 through 7–4

    Google Scholar 

  481. ==> 2.6.2; Real-Time Analysis of Three-Dimensional Movement Using Fourier Descriptors T.P. Wallace and O.R. Mitchell WCATVI-79, pp. 32–33

    Google Scholar 

  482. ==> 2.6.2; Three-Dimensional Shape Analysis Using Local Shape Descriptors T.P. Wallace, O.R. Mitchell, and K. Fukunaga IEEE Conference on Pattern Recognition and Image Processing, Chicago/IL, August 6–8, 1979, pp. 292–299

    Google Scholar 

  483. ==> 2.2.3; Classifikation and Machine Recognition of Severe Weather Patterns P.P. Wang and R.C. Burns IJCPR-76, pp. 198–204

    Google Scholar 

  484. ==> 2.2.3; Pattern-Directed Inference Systems D.A. Waterman and F. Hayes-Roth Academic Press, New York/NY 1978

    MATH  Google Scholar 

  485. ==> 2.2.3; Time Compositing of Meteorological Satellite Data for Ocean Current Identification M.P. Waters, III Proc. 8th Annual Automatic Imagery Pattern Recognition Symposium, R.A. Kirsch and R.N. Nagel (eds.) Gaithersburg/MD, April 3–4, 1978, Electronics Industries Association, Washington/DC 1978, pp. 59–65

    Google Scholar 

  486. ==> 2.2.3; Geologic Applications of Thermal Infrared Images K. Watson Proc. IEEE 63 (1975) 128–137

    Google Scholar 

  487. ==> 2.8.7; 2.8.7; 2.8.8; Progress, Success and Problems in Applying Stereology in Biological Research E.R. Weibel Proc. 4th Int. Congress for Stereology, pp. 341–350 Gaithersburg/MD, Sept. 4–9, 1975, NBS, Washington/DC 1976

    Google Scholar 

  488. ==> 2.8.1; 2.8.2; Reconstruction 3-D Specimens from 2-D Section Images M. Weinstein and K.R. Castleman Proc. SPIE 26 (1972) 131–137

    Google Scholar 

  489. ==> 2.8; Physical Principles of Ultrasonic Diagnosis P.N.J. Wells Academic Press, New York/NY 1969

    Google Scholar 

  490. ==> 2.1.5; Interframe-Codierung fuer Videosignale H. Wendt Internat. Electron. Rundschau 27 (1973) 2–7

    Google Scholar 

  491. ==> 2.8.3; Computer Graphics in Three Dimensions for Perspective Reconstruction of Brain Ultrastructure T.J. Willey, R.L. Schultz, and A.H. Gott IEEE Trans. Biomed. Eng. BME-20 (1973) 288–291

    Google Scholar 

  492. ==> 2.7; The Robot’s Eyes: Vision System for the JPL Robotic Project D.S. Williams pp. 14–1 through 14–6 in Green et al. 76

    Google Scholar 

  493. ==> 2.2.7; Adaptive Remote Sensing Technology for Feature Recognition and Tracking R.G. Wilson, W.E. Sivertson, Jr., and G.F. Bullock IEEE Conference on Pattern Recognition and Image Processing, Chicago/IL, August 6–8, 1979, pp. 623–629

    Google Scholar 

  494. ==> 2.6.2; Ein kombinatorisches Auffaelligkeitsmass G. Winkler Mitteilungen des Instituts fuer Informationsverarbeitung in Technik und Biologie 1975, Karlsruhe/Germany, pp. 8–13

    Google Scholar 

  495. ==> 2.6.2 Measures for Conspicuousness of Images G. Winkler and K. Vattrodt Computer Graphics and Image Processing 8 (1978) 355–368

    Google Scholar 

  496. ==> 2.6.2; Masze fuer die Auffaelligkeit in Bildern G. Winkler and K. Vattrodt DAGM Symposium Bildverarbeitung und Mustererkennung, E. Triendl (ed.) Informatik Fachberichte vol. 17, pp. 237–242 Springer Verlag Berlin-Heidelberg-New York 1978

    Google Scholar 

  497. ==> 2.6.2; TVAC — A Television Area Correlator Tracking System C.A. Winsor and F.J. Thomas 25th Annual Southwestern Conference and Exhibition Record, April 1973, pp. 501–504

    Google Scholar 

  498. ==> 2.2.2; Experiments in Automatic Cloud Tracking Using SMS-GOES Data D.E. Wolf, D.J. Hall, and R.M. Endlich J. Applied Meteorology 16 (1977) 1219–1230

    Google Scholar 

  499. ==> 2.2.2; An Automatic Method for Determining Cloud Motions from Pictures Taken by Geosynchronous Weather Satellites D.E. Wolf, D.J. Hall, and R.M. Endlich WCATVI-79, pp. 101–102

    Google Scholar 

  500. ==> 2.6.1; Ein interaktives Verfahren zur teilautomatischen Auswertung von Luftbildern fuer Verkehrsanalysen K. Wolferts Proc. NTG/GI Fachtagung Cognitive Verfahren und Systeme, Th. Einsele, W. Giloi, H.-H. Nagel (eds.) Hamburg, April 11–13, 1973 Lecture Notes Economics and Mathem. Systems vol. 83 Springer Verlag Berlin-Heidelberg-New York 1973, pp.307–331

    Google Scholar 

  501. ==> 2.6.1; Teilautomatisches Verfahren zur Bildauswertung verkehrstechnischer Beobachtungen K. Wolferts Dissertation, Fakultaet fuer Bauingenieur- und Vermessungswesen, Universitaet Karlsruhe (July 1973)

    Google Scholar 

  502. ==> 2.6.1; Special Problems in Interactive Image Processing for Traffic Analysis K. Wolferts IJCPR-74, pp. 1–2 Copenhagen, August 13–15, 1974

    Google Scholar 

  503. ==> 2.2.4; Sequential Hierarchical Scene Matching R.Y. Wong and E.L. Hall IEEE Trans. Computers C-27 (1978) 359–366

    MathSciNet  Google Scholar 

  504. ==> 2.2.4; Performance Comparison of Scene Matching Techniques R.Y. Wong and E.L. Hall IEEE Trans. Pattern Analysis and Machine Intelligence PAMI-1 (1979) 325–330

    Google Scholar 

  505. ==> 2.3 Mew Horizons for Study of the Cardiopulmonary and Circulatory Systems E.H. Wood Chest 69 (1976) 394–408

    Google Scholar 

  506. ==> 2.5; Automatic Motion Analysis System of Moving Objects from the Records of Natural Processes M. Yachida, M. Asada, and S. Tsuji IJCPR-78 Nov. 7–10, 1978 Kyoto/Japan, pp. 726–730

    Google Scholar 

  507. ==> 2.3.3; 2.3.3; Efficient Analysis of Noisy Dynamic Pictures Using Plan M. Yaehida, M. Ikeda, and S. Tsuji WCATVI-79, PP. 90–92

    Google Scholar 

  508. ==> 2.3.3; 2.3.3; Plan-Guided Analysis of Noisy Dynamic Images M. Yaehida, M. Ikeda, and S. Tsuji IJCAI-79, pp. 978–983

    Google Scholar 

  509. ==> 2.8.5; On the Problem of Embedding Picture Elements in Regions Y. Yakimovsky and R. Cunningham Techn. Memo 33–774, Jet Propulsion Lab., Cal. Inst, of Technology, Pasadena/Cal. 1976

    Google Scholar 

  510. ==> 2.7; A System for Extracting Three-Dimensional Measurements from a Stereo-Pair of TV-Cameras Y. Yakimovsky and R.T. Cunningham Computer Graphics and Image Processing 7 (1978) 195–210

    Google Scholar 

  511. ==> 2.2.3; A Semantics-Based Decision Theory Region Analyser Y. Yakimovsky and J.A. Feldman IJCAI-73, pp. 580–588

    Google Scholar 

  512. ==> 2.1.5; 2.1.7; 2.1.8; Transmitting 4-MHz TV Signals by Combinational Difference Coding H. Yasuda, H. Kuroda, H. Kawanishi, F. Kanaya, and H. Hashimoto IEEE Trans. Communications COM-25 (1977) 508–516

    Google Scholar 

  513. ==> 2.2.3; 2.2.3; 2.2.3; Meteorological Applications of Remote Sensing from Satellites H.W. Yates and W.R. Bandeen Proc. IEEE 63 (1975) 148–163

    Google Scholar 

  514. ==> 2.2.2; The GOES Wind Operation M.T. Young paper no. 13 (pp. 111–121) in Bristor 75

    Google Scholar 

  515. ==> 2.1.3; 2.1.3; 2.3.3; DPCM Picture Coding with Adaptive Prediction W. Zschunke IEEE Trans. Communications COM-25 (1977) 1295–1302

    Google Scholar 

  516. ==> 2.8.4; An Optimal Three-Dimensional Edge Operator S.W. Zucker and R.A. Hummel IEEE Conference on Pattern Recognition and Image Processing Chicago/IL, August 6–8, 1979, pp. 162–168

    Google Scholar 

  517. J.K. Aggarwal, N.I. Badler (eds.): IEEE Trans. PAMI-2, No.6 (1980) [Special Issue on Motion and Time-Varying Imagery]

    Google Scholar 

  518. A. Arking, R.C. Lo, A. Rosenfeld: A Fourier approach to cloud motion estimation. J. Appl. Meteorol. 17, 735–744 (1978)

    Google Scholar 

  519. E. Bribiesca, A. Guzman: How to describe pure form and how to measure differences in shapes using shape numbers. Pattern Recognition 12, 101–112 (1980)

    Google Scholar 

  520. C. Cafforio, F. Rocca: “Detection and Tracking of Moving Objects in Television Images”, Int. Workshop on Real-Time Edge Detection and Motion Estimation, Rennes, France, September 1979 (Doc. Tec. CCETT/CTN/T/1/80)

    Google Scholar 

  521. R. DiPaola, A.E. Todd-Pokropek: “New Developments in Techniques for Information Processing in Radionuclide Imaging”, Proc. Int. Symposium on Medical Radionuclide Imaging, Heidelberg, Germany, September 1–5, 1980 (IAEA, Vienna 1981)

    Google Scholar 

  522. L. Dreschler, H.-H. Nagel: “On the Frame-to-Frame Correspondence between Greyvalue Characteristics in the Images of Moving Objects”, 5. Gl-Fachtagung GWAI-81, Bad Honnef, Jan. 26–30, 1981, ed. by J. Siekmann, Informatik Fachberichte (Springer, Berlin, Heidelberg, New York forthcoming)

    Google Scholar 

  523. L. Dreschler, H.-H. Nagel: “Volumetric Model and 3D Trajectory of a Moving Car Derived from Monocular TV-Frame Sequences of a Street Scene”, Int. Joint Conference on Artificial Intelligence, Vancouver, Kanada, August 24–28, 1981 (in press)

    Google Scholar 

  524. W. Frei, T. Shibata, G.C. Huth: “Environmental Change Detection in Digitally Registered Aerial Photographs”, Applications of Digital Image Processing SPIE Proc, Vol.207 (1979) pp.26–31

    Google Scholar 

  525. W. Frei, M. Singh, T. Shibata: Digital image change detection. Opt. Eng. 19, 331–338 (1980)

    Google Scholar 

  526. W. Frei, T. Shibata, C.C. Chen: “Fast Matching of Non-Stationary Images with False Fix Protection”, Proc. Int. Conference on Pattern Recognition, Miami Beach, FL, December 1–4, 1980, pp.208–212

    Google Scholar 

  527. H. Fuchs, S.M. Pizer, J.S. Cohen, F.P. Brooks, Jr.: “A Three-Dimensional Display for Medical Images from Slices”, in Information Processing in Medical Imaging, ed. by R. DiPaola, E. Kahn (Editions INSERM, Paris 1980) pp.581–602

    Google Scholar 

  528. U.L. Haass: “Cloud Tracking from Satellite Pictures”; Ph.D. Dissertation, Colorado State University, Fort Collins, CO (1981)

    Google Scholar 

  529. G. Hirzinger, K. Landzettel, W. Snyder: “Automated TV-Tracking of Moving Objects — the DFVLR-Tracker and Related Approaches”, Proc. Int. Conference on Pattern Recognition, Miami Beach, FL, December 1–4, 1980, pp.1255–1261

    Google Scholar 

  530. B.K.P. Horn, B.G. Schunck: “Determining Optical Flow”; AI Memo 572, Artificial Intelligence Laboratory, MIT, Cambridge MA (1980), Artif. Intell. (in press 1981)

    Google Scholar 

  531. R.M. Inigo, E.S. McVey: CCD implementation of a three-dimensional video-tracking algorithm. IEEE Trans. PAMI-3, 230–240 (1981)

    Google Scholar 

  532. C. Jacobus, R.T. Chien: Intermediate-level vision — building vertex-string-surface (V-S-S) graphs. Comput. Graph. Image Proc. 15, 339–363 (1981)

    Google Scholar 

  533. C.J. Jacobus, R.T. Chien, J.M. Selander: Motion detection and analysis of matching graphs of intermediate-levels primitives. IEEE Trans. PAMI-2, 495–510 (1980)

    Google Scholar 

  534. M.A. Lavin: “Analysis of Scenes from a Moving Viewpoint”, in Artificial Intelligence: An MIT Perspective, ed. by P.H. Winston, R.H. Brown (MIT Press, Cambridge, MA 1979) Vol.2, pp.183–208

    Google Scholar 

  535. M.D. Levine, M.L. Reisch, W.M. Thurlbeck: Automated measurement of the internal surface area of the human lung. IEEE Trans. BME-17, 254–262 (1970)

    Google Scholar 

  536. A.N. Netravali, J.D. Robbins: “Interframe Coding with Recursive Motion Estimation”, in Signal Processing: Theories and Applications, ed. by M. Kunt, F. de Coulon (North-Holland, Amsterdam 1980) pp. 143–148

    Google Scholar 

  537. M. Onoe, K. Preston, Jr., A. Rosenfeld (eds.): Real-Time Medical Image Processing (Plenum, New York 1980)

    Google Scholar 

  538. M. Onoe, K. Preston, Jr., A. Rosenfeld (eds.): Real-Time/Parallel Computing (Plenum, New York 1981)

    Google Scholar 

  539. M.J. Potei, R.E. Sayre, S.A. MacKay: Graphics input tools for interactive motion analysis. Comput. Graph. Image Proc. 14, 1–23 (1980)

    Google Scholar 

  540. U. Sham”: “A 3-D Model-Driven System for the Recognition of Abdominal Anatomy from CT Scans”, Proc. Int. Conference on Pattern Recognition, Miami Beach, FL, December 1–4, 1980, pp.585–591

    Google Scholar 

  541. M. Singh, W. Frei, T. Shibata: A digital technique for accurate change detection in nuclear medical images. IEEE Trans. NS-26, 565–575 (1979)

    Google Scholar 

  542. B.I. Soroka: Generalized cones from serial sections. Comput. Graph. Image Proc. 15, 154–166 (1981)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nagel, H.H. (1981). Image Sequence Analysis: What Can We Learn from Applications?. In: Huang, T.S. (eds) Image Sequence Analysis. Springer Series in Information Sciences, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-87037-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-87037-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-87039-2

  • Online ISBN: 978-3-642-87037-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics