Advertisement

Die Beeinflussung der körperlichen Leistungsfähigkeit durch Antihypertensiva

  • W. Kindermann

Zusammenfassung

Eine eventuelle Beeinflussung der Leistungsfähigkeit durch blutdrucksenkende Medikamente ist von wesentlicher praktischer Bedeutung, da einerseits viele Hypertoniker noch jung sind und andererseits zahlreiche Hypertoniker ein regelmäßiges körperliches Training durchführen. Je geringer ein Antihypertensivum die körperliche Leistungsfähigkeit beeinflußt, um so besser wird die Patientencompliance sein. Blutdrucksenkende Medikamente, die beim körperlich aktiven Hypertoniker eingesetzt werden, müssen auch den Belastungsblutdruck ausreichend senken. Diese Forderung erfüllen in erster Linie Beta-Rezeptorenblocker und Calcium-Antagonisten, so daß diese Pharmaka im folgenden etwas auführlicher abgehandelt werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Aigner A, Muß N, Krempler F, Fenninger H, Sandhofer F (1983) Einfluß einer akuten Beta1und Beta1/2-Rezeptoren-Blockade auf den Kohlenhydrat- und Fettstoffwechsel unter Belastungsbedingungen. Dtsch med Wschr 108: 293–298PubMedCrossRefGoogle Scholar
  2. 2.
    Andersson K-E (1978) Effects of calcium and calcium-antagonists on the excitation-contraction coupling in striated and smooth muscle. Acta Pharmacol Toxicol Suppl 1: 5–14Google Scholar
  3. 3.
    Boyar RM, Fixler DF, Kaplan NM (1980) Effects of clonidine on 24 hour hormonal secretory patterns, cardiovascular hemodynamics, and central nervous function in hypertensive adolescents. Hypertension 2: 83PubMedCrossRefGoogle Scholar
  4. 4.
    Brewer C (1972) Beneficial effects of beta-adrenergic blockade on “exam nerves”. Lancet II: 814–815Google Scholar
  5. 5.
    Carlsson E, Fellenius E, Lundberg P, Svensson L (1978) Beta-adrenoceptor blockers, plasmapotassium and exercise. Lancet II: 424–425CrossRefGoogle Scholar
  6. 6.
    Corea L, Miele N, Bentivoglio M, Boschetti E, Agabiti-Rosei E, Muisean G (1979) Acute and chronic effects of nifedipine on plasma renin activity and plasma adrenaline and noradrenaline in controls and hypertensive patients. Clin Sci 57: 115–117Google Scholar
  7. 7.
    Day IL (1975) The metabolic consequences of adrenergic blockade, a review. Metabolism 24: 987–996PubMedCrossRefGoogle Scholar
  8. 8.
    Duffey DJ, Horwitz LD, Brammel HL (1984) Nifedipine and the conditioning response. Am J Cardiol 53: 908–911PubMedCrossRefGoogle Scholar
  9. 9.
    Ekblom B, Goldberg AN, Kilbom A, Astrand PO (1972) Effect of atropine and propranolol on the oxygen transport system during exercise in man. Scand J Clin Lab Invest 30: 35–43PubMedCrossRefGoogle Scholar
  10. 10.
    Fagard R, Lijnen P, Amery A (1982) Hemodynamic response to captopril at rest and during exercise in hypertensive patients. Am J Cardiol 49: 1569–1571PubMedCrossRefGoogle Scholar
  11. 11.
    Fagard R, Lijnen P, Vanhees L, Amery A (1982) Hemodynamic response to converting enzyme inhibition at rest and exercise in humans. J Appl Physiol 53: 576–581PubMedCrossRefGoogle Scholar
  12. 12.
    Falkner B, Lowenthal DT, Onesti G (1980) Dynamic exercise response in hypertensive adolescent on clonidine therapy: Clonidine therapy in adolescent hypertension. Pediatr Pharmacol 1: 121–128Google Scholar
  13. 13.
    Fellenius E (1983) Muscle fatigue and beta-blockers-a review. Int J Sports Med 4: 1–8PubMedCrossRefGoogle Scholar
  14. 14.
    Ferguson RK, Vlasses PH, Koffer H, Clementi RA, Koplin JR, Willcox CM (1983) Effect of captopril and propranolol, alone and in combination, on the responses to isometric and dynamic exercise in normotensive and hypertensive men. Pharmacother 3: 125–130Google Scholar
  15. 15.
    Folgering A, van Bussel M (1980) Maximal exercise power after a single dose of metroprolol and of slow-release metoprolol. Eur J Clin Pharmacol 18: 225–229PubMedCrossRefGoogle Scholar
  16. 16.
    Franz IW, Lohmann W (1979) Der Einfluß einer chronischen sog. kardioselektiven und nichtkardioselektiven Beta-Rezeptoren-Blockade auf den Blutdruck, die Sauerstoffaufnahme und den Kohlenhydratstoffwechsel. Z Kardiol 68: 503–509PubMedGoogle Scholar
  17. 17.
    Franz IW, Lohmann W, Koch G, Quabbe HJ (1983) Aspects of hormonal regulation of lipolysis during exercise: effects of chronic betareceptor blockade. Int J Sports Med 4: 14–20PubMedCrossRefGoogle Scholar
  18. 18.
    Franz IW, Wiewel D (1985) Antihypertensive Wirkung von Nitrendipin, Nifedipin und Acebutolol und deren Kombination auf den Ruhe- und Belastungsblutdruck bei Hochdruckkranken. Z Kardiol 74: 111–116PubMedGoogle Scholar
  19. 19.
    Frisk-Holmberg M, Jorfeld L, Juhlin-Dannfelt A, Karlsson J (1979) Metabolic changes in muscle on long term alprenolol therapy. Clin Pharmacol Ther 26: 566–571PubMedGoogle Scholar
  20. 20.
    Frisk-Holmberg M, Jorfeld L, Juhlin-Dannfelt A (1981) Metabolic effects in muscle during antihypertensive therapy with beta1- and beta1/beta2-adrenoceptor blockers. Clin Pharmacol Ther 30: 611–618PubMedCrossRefGoogle Scholar
  21. 21.
    Furberg C (1967) Adrenergic beta-blockade and physical work capacity. Acta Med Scand 182: 119–127PubMedCrossRefGoogle Scholar
  22. 22.
    Galbo H, Holst JJ, Christensen NJ, Hilsted J (1976) Glucagon and plasma catecholamines during beta-receptor blockade in exercising man. J Appl Physiol 40: 855–863PubMedGoogle Scholar
  23. 23.
    Gorski J, Pietrzyk K (1982) The effect of beta-adrenergic blockade on intramuscular glycogen mobilization during exercise in the rat. Eur J Appl Physiol 48: 201–205CrossRefGoogle Scholar
  24. 24.
    Gross SR, Mayer SE (1974) Regulation of phosphorylase B to A conversion in muscle. Life Sci 14: 401–414PubMedCrossRefGoogle Scholar
  25. 25.
    Harms D, Pachale E, Nechvatal D (1981) Vigilanz und Beta-Blockade. Fortschr Med 99: 313–317PubMedGoogle Scholar
  26. 26.
    Harri MNE (1979) Physical training under the influence of beta-blockade in rats. II. Effects on vascular reactivity. Eur J Appl Physiol 42: 151–157CrossRefGoogle Scholar
  27. 27.
    Harri MNE, Narvola I (1979) Physical training under the influence of beta-blockade in rats : Effect on adrenergic responses. Eur J Appl Physiol 41: 199–210CrossRefGoogle Scholar
  28. 28.
    Henriksson J, Svedenhag J, Richter EA, Galbo H (1979) Significance of the sympatho-adrenal system for the exercise-induced enzymatic adaptation of skeletal muscle. Acta Physiol Scand 105: 38AGoogle Scholar
  29. 29.
    Juhlin-Dannfelt AC, Terblanche SE, Fell RD, Young JC, Holloszy JO (1982) Effects of β-adrenergic receptor blockade on glycogenolysis during exercise. J Appl Physiol 5: 549–554Google Scholar
  30. 30.
    Kaiser P (1984) Physical performance and muscle metabolism during β-adrenergic blockade in man. Acta Physiol Scand Suppl 536Google Scholar
  31. 31.
    Karlsson J, Kjessel T, Kaiser P (1983) Alpine skiing and acute beta-blockade. Int J Sports Med 4: 190–193PubMedCrossRefGoogle Scholar
  32. 32.
    Keul J, Huber G, Kindermann W, Burmeister P, Petersen KG (1976) Die Wirkung eines neuartigen Beta-Rezeptoren-Blockers (Bunitrolol) auf Kreislauf und Stoffwechsel unter extremen Streßbedingungen. Med Welt 27: 437–443PubMedGoogle Scholar
  33. 33.
    Kindermann W, Keul J (1978) Betablocker bei hyperadrenergen Belastungen. Cardiology 63 Suppl 1: 21–25PubMedCrossRefGoogle Scholar
  34. 34.
    Kindermann W, Scheerer W, Salas-Fraire O, Biro G, Wölfing A (1984) Verhalten der körperlichen Leistungsfähigkeit und des Metabolismus unter akuter Beta1- und Beta1/2-Blockade. Z Kardiol 73: 380–387PubMedGoogle Scholar
  35. 35.
    Kindermann W, Lehrmann S, Schmitt W (1986) Einfluß einer Kombination von Nifedipin und Mefrusid auf die körperliche Leistungsfähigkeit und den Metabolismus. Münchn Med Wschr 128: 53–56Google Scholar
  36. 36.
    Kindermann W, Schmitt W, Stengele E (1985) Einfluß von Calcium-Antagonisten auf die körperliche Leistungsfähigkeit und den Metabolismus. Dtsch med Wschr 43: 1657–1661CrossRefGoogle Scholar
  37. 37.
    Kinoshita M, Motomura M, Kusukawa R, Kawakita S (1979) Comparison of hemodynamic effects between beta-blocking agents and a new antianginal agent, diltiazem hydrochloride. Jpn Circ J 43: 587–598CrossRefGoogle Scholar
  38. 38.
    Kopp KH, Huber G, Keul J (1978) Veränderungen von Herzfrequenz und Stoffwechselparametern im Blut beim Fallschirmspringen. Dtsch Z Sportmed 29: 44–49Google Scholar
  39. 39.
    Kullmer T, Kindermann W (1985) Physical performance and serum potassium under chronic beta-blockade. Eur J Appl Physiol 54: 350–354CrossRefGoogle Scholar
  40. 40.
    Lawlor MR, Thomas DP, Michele JJ, Carey RA, Paolone AM, Bove AA (1985) Effects of chronic β-adrenergic blockade on hemodynamic and metabolic responses to endurance training. Med Sci Sports 17: 393–400Google Scholar
  41. 41.
    Lee WR, Fox LM, Slotkoff LM (1979) Effects of antihypertensive therapy on cardiovascular response to exercise. Am J Cardiol 44: 325–328PubMedCrossRefGoogle Scholar
  42. 42.
    Lederballe Pedersen O, Mikkelsen E, Christensen NJ, Kornerup HJ, Pedersen EB (1979) Effect of nifedipine on plasma renin, aldosterone and catecholamines in arterial hypertension. Eur J Clin Pharmacol 15: 235–240CrossRefGoogle Scholar
  43. 43.
    Lidén S, Gottfries CG (1974) Beta-blocking agents in the treatment of catecholamine-induced symptoms in musicians. Lancet II: 529CrossRefGoogle Scholar
  44. 44.
    Lohmann FW (1981) Die Beeinflussung des Stoffwechsels durch Beta-Rezeptoren-Blocker. Klin Wschr 59: 49–57PubMedCrossRefGoogle Scholar
  45. 45.
    Lundborg P, Aström H, Bengtsson C, Fellenius E, von Schenk H, Svensson L, Smith U (1981) Effect of beta-blockade on exercise performance and metabolism. Clin Sci 61: 229–305Google Scholar
  46. 46.
    Lund-Johansen P, Omvik P (1984) Long-term hemodynamic effects of enalapril at rest and during exercise in essential hypertension. Scand J Urol Nephrol (Suppl) 79: 87–91Google Scholar
  47. 47.
    Manhem P, Bramnert M, Hulthen UL, Hoekfelt B (1981) The effect of captopril on catecholamines, renin activity, angiotensin II and aldosterone in plasma during physical exercise in hypertensive patients. Eur J Clin Invest 11: 389–395PubMedCrossRefGoogle Scholar
  48. 48.
    Mc Leod AA, Kraus WE, Williams RS (1984) Effects of beta1-selective and nonselective betaadrenoceptor blockade during exercise conditioning in healthy adults. Am J Cardiol 53: 1656–1661CrossRefGoogle Scholar
  49. 49.
    Millar JA, Struthers AD (1984) Calcium antagonists and hormone release. Clin Sci 66: 249–255PubMedGoogle Scholar
  50. 50.
    Moser B, Hilmer W (1977) Zur Beta-Sympathikolyse bei Sportschützen. Dtsch Z Sportmed 28: 352–357Google Scholar
  51. 51.
    Muisean G, Agabiti-Rosei E, Castellano M, Alicandri C, Corea L, Fariello R, Beschi M, Romanelli G (1982) Antihypertensive and humoral effects of verapamil and nifedipine in essential hypertension. J Cardiovasc Pharmacol 4 (Suppl 3): 325–329CrossRefGoogle Scholar
  52. 52.
    Nylander E (1985) Training-induced bradycardia in rats on cardioselective and non-selective beta receptor blockade. Acta Physiol Scand 123: 147–149PubMedCrossRefGoogle Scholar
  53. 53.
    Obina R, Wilson R, Goebel M, Campbell D (1979) Effect of conditioning programm on patients taking propranolol for angina pectoris. Cardiology 64: 365CrossRefGoogle Scholar
  54. 54.
    Östmann-Smith I (1976) Prevention of exercise — induced cardiac hypertrophy in rats by chemical sympathectomy (guanethidine treatment). Neuroscience 1: 497–507CrossRefGoogle Scholar
  55. 55.
    Petersen ES, Whipp BJ, Dans JA, Huntsman DJ, Brown HV, Wasserman K (1983) Effects of beta-adrenergic blockade on ventilation and gas exchange during exercise in humans. J Appl Physiol 54: 1306–1313PubMedGoogle Scholar
  56. 56.
    Pickering TG, Case DB, Sullivan PA, Laragh JH (1982) Comparison of antihypertensive and hormonal effects of captopril and propranolol at rest and during exercise. Am J Cardiol 49: 1566–1568PubMedCrossRefGoogle Scholar
  57. 57.
    Raffestin B, Denjean A, Legrand A, Derrieux C, Boillot J, Comoy E, Martre H, Lockhart A (1985) Effects of nifedipine on responses to exercise in normal subjects. J Appl Physiol 58: 702–709PubMedCrossRefGoogle Scholar
  58. 58.
    Reybrouck T, Amery A, Billiet L (1977) Hemodynamic response to graded exercise after chronic beta-adrenergic blockade. J Appl Physiol 42: 133 – 138PubMedGoogle Scholar
  59. 59.
    Rost R (1983) Zur Frage der Bedeutung der Betablocker im Leistungssport. Dtsch Z Sportmed 34: 25–27,Google Scholar
  60. 59a.
    Rost R (1983) Zur Frage der Bedeutung der Betablocker im Leistungssport. Dtsch Z Sportmed 34: 64–67Google Scholar
  61. 60.
    Rusko H, Kantola H, Luhtanen P, Pulli M, Videman T, Vütasalo JT (1980) Effect of beta-blockade on performances requiring force, velocity, coordination and/or anaerobic metabolism. J Sports Med 20: 139–144Google Scholar
  62. 61.
    Sable DL, Brammel HL, Sheehan MW, Nies AS, Gerber J, Horwitz LD (1982) Attenuation of exercise conditioning by beta-adrenergic blockade. Circulat 65: 679–684CrossRefGoogle Scholar
  63. 62.
    Schenk GK, Lang E, Anlauf M (1981) Beta-receptor-blocking therapy in hypertensive patients — effects on vigilance and behaviour. Aviat Space Environm Med 52: 35–39Google Scholar
  64. 63.
    Schnabel A, Kindermann W, Salas-Fraire O, Cassens J, Steinkraus V (1983) Effect of beta-adrenergic blockade on supramaximal exercise capacity. Int J Sports Med 4: 278–281PubMedCrossRefGoogle Scholar
  65. 64.
    Schulte KL, Meyer-Sabellek WA, Thiede HM, Distler A, Gotzen R (1984) Blood pressure and sympathetic tone under calcium entry blockers in essential hypertension. Circulation 70: II-377Google Scholar
  66. 65.
    Sigvardsson K, Svanfeldt E, Kilbom Å (1978) Role of the adrenergic nervous system in development of training — induced bradycardia. Acta Physiol Scand 101: 481–488CrossRefGoogle Scholar
  67. 66.
    Siitonen L, Jänne J (1976) Effect of beta-blockade during bowling competition. Ann Clin Res 8: 393–398PubMedGoogle Scholar
  68. 67.
    Simon G, Dickhuth HH, Lindscheidt G, Kindermann W, Keul J (1979) Hämodynamische und metabolische Auswirkungen der Beta-Rezeptoren-Blockade durch Metipranolol. Herz/Kreisl 11: 134–140Google Scholar
  69. 68.
    Smolarz A, Glocke M, Bartsch W, Kohl H (1979) Zur Wirkung des Beta-Blockers Metipranolol bei Sportschützen unter Wettkampfbedingungen. Dtsch Z Sportmed 30: 73–76Google Scholar
  70. 69.
    Stegmann H, Kindermann W, Schnabel A (1981) Lactate kinetics and individual anaerobic threshold. Int J Sports Med 2: 160–165PubMedCrossRefGoogle Scholar
  71. 70.
    Stull JT, Mayer SE (1971) Regulation of phosphorylase activation in skeletal muscle in vivo. J Biol Chem 246: 5716–5723PubMedGoogle Scholar
  72. 71.
    Trimarco B, De Luca N, Ricciardelli B, Volpe S, Veniero A, Cuocolo A, Cicala M (1984) Diltiazem in the treatment of mild or moderate essential hypertension. Comparison with metoprolol in a cross-over double-blind trial. J Clin Pharmacol 24: 218–227PubMedGoogle Scholar
  73. 72.
    Videman T, Sonck T, Jänne J (1979) The effect of beta-blockade in ski jumpers. Med Sci Sports 11:266–269PubMedGoogle Scholar
  74. 73.
    William-Olsson T, Fellenius E, Björntorp P, Smith U (1979) Differences in metabolic responses to β-adrenergic stimulation after propranolol or metoprolol administration. Acta Med Scand 205: 201–206PubMedCrossRefGoogle Scholar
  75. 74.
    Yamakado T, Oonishi N, Kondo S, Noziri A, Nakano T, Takezawa H (1983) Effects of diltiazem on cardiovascular responses during exercise in systemic hypertension and comparison with propranolol. Am J Cardiol 52: 1023 – 1027PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • W. Kindermann
    • 1
  1. 1.Abteilung Sport- und LeistungsmedizinUniversität des SaarlandesSaarbrückenDeutschland

Personalised recommendations