Advertisement

Die funktionelle Orthologie der Lebersekretion

  • E. Grogg
  • H. Staub
Part of the Handbuch der allgemeinen Pathologie book series (PATHOLOGIE, volume 5 / 2)

Zusammenfassung

Ausgangspunkt für die Erforschung der Leberfunktionen ist die Hepatektomie am Tier. Minkowski (1886) führte dieses Experiment an der Gans, Mann (1921) am Hunde durch. Die Methodik spielt eine wichtige Rolle; der Grund ist folgender: Wird die Leber einfach nach Ligatur der Arterien und Venen entfernt, so kommt es bei Unterbindung der Pfortader zu Ausschluß und Abflußbehinderung des Blutes im Splanchnicusgebiet von der allgemeinen Zirkulation und damit zur Verminderung der Blutmenge, der das Tier erliegt. Mit dreizeitiger Operation gelingt es, diese Schwierigkeiten zu umgehen. Hunde, die nach der von Mann angegebenen Technik operiert werden, überleben 20–36 Std. Markowitz und Soskin (1927) vereinfachten die Methode, so daß die Leberentfernung zweizeitig möglich wurde. Verbesserte zweizeitige Methoden sind neuerdings von Chang (1951) für die Ratte und für den Hund von Grindlay und Mann (1952) angegeben worden. Eine einzeitige Methode nach Marko Witz, Yater und Burrows (1933) verbindet, vor Entfernung der Leber, die infra- und suprahepatischen Teile der Vena cava caudalis mit einer Pyrexglaskanüle und anastomosiert Pfortader mit unterer Hohlvene.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adams, A. B.: The intralobular bile canalicular system of the liver. Anat. Ree. 106, 262 (1950)Google Scholar
  2. Adler, A.: Die interne Behandlung von Erkrankungen der Leber und der Gallenwege. Eine kritische Übersicht über die gallentreibenden Mittel. Ther. d. Gegenw. 67, 172, 216, 263 (1926)Google Scholar
  3. Ägren, G.: Über die pharmakodynamischen Wirkungen und chemischen Eigenschaften des Secretins. Skand. Arch. Physiol. 70, 10 (1934)Google Scholar
  4. Alfin-Slater, R. B., M. C. Schotz, F. Shimoda and H. J. Deuel jr.: Effects of low and high fat diets on the synthesis of cholesterol in rats. J. biol. Chem. 195, 311 (1952)PubMedGoogle Scholar
  5. Allan, F. N., D. J. Bowie, J. J. R. Macloed and W. Robinson: Behaviour of depancreatized dogs kept alive with insuline. Brit. J. exp. Path, 5, 75 (1924)Google Scholar
  6. Altmann, H. W., u. H. A. Kühn: Zur Pathogenese der Albuminocholie. Klin. Wschr. 1949, 44Google Scholar
  7. Andrews, E., R. Schoenheimer and L. Hrdina: Etiology of gallstones. I. Chemical factors and the role of the gallbladder. Analysis of duct bile from diseased livers. Arch. Surg. (Chicago) 25, 796 (1932)Google Scholar
  8. Andrews, W. H. H., B. G. Maegraith and C. E. M. Wenyon: Studies on the liver circulation. Ann. Trop. Med. Parasit. 43, 229 (1949)PubMedGoogle Scholar
  9. Annegers, J. H., and F. Friend: Dietary protein and cholic acid synthesis in dog. Fed. Proc. 8, 4 (1949).Google Scholar
  10. Baez, S., A. Mazur and E. Shorr: Hepatorenal factors in circulatory homeostasis. XX. Antidiuretic action of hepatic vasodepressor, VDM (Ferritin). Amer. J. Physiol. 162, 198 (1950)PubMedGoogle Scholar
  11. Barron, E. S. G.: Zit. nach Gray 1953. Medicine (Baltimore) 10, 77 (1931)Google Scholar
  12. Bauer, W., H. H. Dale, L. T. Poulsson and D. W. Richards: The control of circulation through the liver. J. Physiol. (Lond.) 74, 343 (1932)Google Scholar
  13. Baumann, E.: Über gepaarte Schwefelsäuren im Organismus. Pflügers Arch. ges. Physiol. 13, 285 (1876)Google Scholar
  14. Baumgärtel, Tr.: Über die enterale Umwandlung des Cholesterins in Koprosterin. Klin. Wschr. 1943, 297Google Scholar
  15. Baumgärtel, Tr.: Physiologie und Pathologie des Bilirubinstoffwechsels als Grundlagen der Ikterus- forschung. Stuttgart: Georg Thieme 1950Google Scholar
  16. Bayliss, W. M., and E.H. Starling: The mechanism of pancreatic secretion. J. Physiol. (Lond.) 28, 325 (1902)Google Scholar
  17. Bearn, A. G., B. H. Billing and S. Sherlock: The response of the liver to insulin in normal subjects and in diabetes mellitus: hepatic vein catheterisation studies. Clin. Sei. 11, 151 (1952)Google Scholar
  18. Beckmann, K.: Leber und Mineralhaushalt. Verhd. dtsch. Ges. inn. Med. 39, 250 (1927)Google Scholar
  19. Beckmann, K.: Leber und Mineralhaushalt. I. Mitt. Die Wasser- und Ionenabgabe der normalen Leber an das Hepaticablut. Z. ges. exp. Med. 59, 76 (1928)Google Scholar
  20. Beckmann, K.: II. Mitt. Die Wasser- und Ionenabgabe der normalen Leber an das Blut, die Lymphe und die Galle. Dtsch. Arch. klin. Med. 160, 63 (1928)Google Scholar
  21. Beckmann, K.: III. Mitt. Die Wasser- und Ionenabgabe der Leber an das Blut und die Lymphe nach Verschluß der Gallenwege. Dtsch. Arch. klin. Med. 164, 309 (1929)Google Scholar
  22. Beckmann, K.: IV. Mitt. Die Wasser- und Ionenabgabe der Leber an Blut, Lymphe und Galle nach Schädigung des Leberparenchyms. Z. ges. exp. Med. 66, 702 (1929)Google Scholar
  23. Bennhold, H., H. Ott u. M. Wiech: Über den Bindungsunterschied lebergängiger und nierengängiger Substanzen an die Serumeiweißkörper. Dtsch. med. Wsschr. 1950, 11Google Scholar
  24. Bergh, A. A. H. van den: Die Gallenfarbstoffe im Blute. Von Duesburg. Leiden 1918Google Scholar
  25. Bergh, A. A. H. van den, u. P. Müller: Über eine direkte und eine indirekte Diazoreaktion auf Bilirubin. Biochem. Z. 77, 90 (1916)Google Scholar
  26. Berman, A. L., E. Snapp, A. Ivy and A. J. Atkinson: On the regulation or homeostasis of the cholic acid output in biliarv-duodenal fistula dogs. Amer. J. Physiol. 131, 776 (1941)Google Scholar
  27. Bernard, Cl.: Nouvelle fonction du foie. Paris: J. B. Bailliere 1853Google Scholar
  28. Bernhard, K.: Stoffwechselforschung mit Deuterium als Indikator. Mitt. Lebensmitt. Hyg. 37, 58 (1946)Google Scholar
  29. Bernhard, K.: Leberverfettungsverhindernde Faktoren der Nahrung. Experientia (Basel) Suppl. 1, 116 (1953)Google Scholar
  30. Bernhard, K., u. G. Ritzel: Weitere Beiträge zur Kenntnis der Gallenfunktion. Helv. physiol. pharmacol. Acta 11, C 12 (1953)Google Scholar
  31. Bernhard, K., E. Scheitlin u. G. Ritzel: Die Umwandlung von a- und -Carotin in Vitamin A im Rattendarm. Helv. chim. Acta 35, 1914 (1952)Google Scholar
  32. Bernhard, K., and R. Schoenheimer: The rate of formation of stearic and palmitic acids in normal mice. J. biol. Chem. 133, 713 (1940)Google Scholar
  33. Bernhard, K., H. Wagner u. G. Ritzel: Versuche zur quantitativen Erfassung der bei der Resorption von Neutralfett eintretenden Spaltung. Helv. chim. Acta 35, 1404 (1952)Google Scholar
  34. Bernstein, S. H., R. E. Weston, G. Ross, J. Grossman, I. B. Hanenson and L. Leiter: Studies on intravenous water diuresis and nicotine and pitressin antidiuresis in normal subjects and patients with liver disease. J. clin. Invest. 32, 422 (1953)Google Scholar
  35. Best, C. II.: Heparin and thrombosis. Brit. med. J. 1938, 977Google Scholar
  36. Best, C.: Heparin and thrombosis. Proc. Mayo Clin. 14, 81 (1939)Google Scholar
  37. Best, C. H., and J. M. Hershey: Further observations on the effects of some component of crude lecithine on depancreatized animals. J. Physiol. (Lond.) 75, 49 (1932)Google Scholar
  38. Best, C. H., and M. E. Huntsman: The effects of the components of lecithine upon deposition of fat in the liver. J. Physiol. (Lond.) 75, 405 (1942)Google Scholar
  39. Best, C. H., M. E. Huntsman and J. H. Ridout: The „lipotropic“ effect of protein. Nature (Lond.) 135, 821 (1935)Google Scholar
  40. Beumer, H., u. F. Hepner: Über die Ausscheidungswege des Cholesterins. Z. ges. exp. Med. 64, 787 (1929)Google Scholar
  41. Biolato, D., e E. Gastaldi: Zit. nach Hinsberg u. Bruns, Sled. sper. 9, 665 (1941)Google Scholar
  42. Bloch, K.: Interrelationships of lipid and carbohydrate meta- bolism. Ann. Rev. Bioehem. 21, 273 (1952)Google Scholar
  43. Bloch, K., B. N. Berg and D. Bittenberg: The biological conversion of cholesterol to cholic acid. J. biol. Chem. 149, 511 (1943)Google Scholar
  44. Bloch, K., and D. Bittenberg: On the utilization of acetic acid for cholesterol formation. J. biol. Chem. 145, 625 (1942)Google Scholar
  45. Bloch, K., and D. Bittenberg: Sources of acetic acid in the animal body. J. biol. Chem. 155, 243 (1944)Google Scholar
  46. Bodansky, A., and H. L. Jaffe: Phosphatase studies; serum phosphatase in diseases of bone; interpretation and significance. Arch, intern. Med. 54, 88 (1934)Google Scholar
  47. Bollman, J. L.: Studies in hepatic lymphatics. Liver Injury, Trans, of the Ninth Confer., April 27—28, 1950. Josiah Macy, jr., Foundation, 1951Google Scholar
  48. Bollman, J. L., and E. V. Flock: Cholesterol in intestinal and hepatic lymph in rat. Amer. J. Physiol. 164, 480 (1951)PubMedGoogle Scholar
  49. Bollman, J. L., E. V. Flock, J. C. Cain and J. H. Grindlay: Lipids of lymph following feeding of fat: an experimental study. Amer. J. Physiol. 163, 41 (1950)PubMedGoogle Scholar
  50. Bollman, J. L., and F. C. Mann: An experimental study of obstructive jaundice with particular reference to the initial bilirubinemia. Amer. J. Physiol. 80, 461 (1927)Google Scholar
  51. Borek, E., and D. Rittenberg: The metabolism of acetone by surviving rat liver. J. biol. Chem. 179, 843 (1949)PubMedGoogle Scholar
  52. Borsook, H., C. L. Deasy, A. J. Haagen-Smit, G. Keighley and P. H. Lowy: The uptake in vitro of C14-labeled glycine, L-leucine, and L-lysine by different components of guinea pig liver homogenate. J. biol. Chem. 184, 529 (1950)Google Scholar
  53. Bradley, S. E., J. Ingelfinger and G. P. Bradley: Determinants of hepatic haemo-dynamics in „visceral circulation“. Ciba Foundation Symposium, p. 219. London: Churchill 1952.Google Scholar
  54. Bradley, S. E., J. Ingelfinger and G. P. Bradley: Hepatic circulation in cirrhosis of the liver. Circulation 5, 419 (1952)PubMedGoogle Scholar
  55. Bradley, S. E., F. J. Ingelfinger, G. P. Bradley and J. J. Curry: The estimation of hepatic blood flow in man. J. clin. Invest. 24, 890 (1945)Google Scholar
  56. Brady, B. O., and S. Gurin: The biosynthesis of radioactive fatty acids and cholesterol. J. biol. Chem. 186, 461 (1950)PubMedGoogle Scholar
  57. Brauer, B. W., and B. L. Pessotti: Hepatic uptake and biliary excretion of bromsulphthalein in the dog. Amer. J. Physiol. 162, 565 (1950)PubMedGoogle Scholar
  58. Breusch, F. L.: The biochemistry of fatty acid cata- bolism. Advances in enzymology 8, 343 (1948)Google Scholar
  59. Breusch, F. L., and E. Ulusoy: Metabolism of ß, (5-diketohexanoic acid in minced tissues. Arch. Biochem. 14, 183 (1947)Google Scholar
  60. Broh-Kahn, B. H., and I. A. Mirsky: The effect of fasting on the insulinase content of rat liver. Arch. Biochem. 20, 10 (1949)Google Scholar
  61. Brown, H. V., and A. F. Bush: Parathion inhibition of Cholinesterase. Arch, industr. Hyg. 1, 633 (1950)Google Scholar
  62. Brückel, K. W., H. J. Hübener, D. Meyerheim u. G. Liersch: Über die Bolle der Leber bei der Ausscheidung und dem Abbau von Nevennierenrindenhormon. Klin. Wschr. 1954, 21Google Scholar
  63. Buchholz, J., u. H. Ley: Uber den Einfluß peroraler Cystin- und Dehydrocholsäuregaben auf die Bildung der Taurocholsäure des Menschen. Z. klin. Med. 152, 244 (1953)PubMedGoogle Scholar
  64. Burn, J. H., and H. P. Marks: The production of sugar in the perfused liver from non-protein sources. J. Physiol. (Lond.) 61, 497 (1926)Google Scholar
  65. Burnett, W. E., G. P. Bosemond, J.K.Weston and B. B. Tyson: Proc. 37th. Clin. Congr. Amer. Coll. Surgeons, San Francisco, Nov. 1951, p. 147. 1952. Zit. Nach F. C. Mann u. F. D. Mann, Amer. Rev. Physiol. 15, 473 (1953)Google Scholar
  66. Byers, S. O., and M. Friedman: Production and excretion of cholesterol in mammals. VII. Biliary cholesterol: increment and indicator of hepatic synthesis of cholesterol. Amer. J. Physiol. 168, 297 (1952)PubMedGoogle Scholar
  67. Byers, S. O., M. Friedman and F. Michaelis: Observations concerning the production and excretion of cholesterol in mammals. J. biol. Chem. 188, 637 (1951).PubMedGoogle Scholar
  68. Cabello, J. R., y J. F. Silva: Aetividad fosfatasica de la bilis humana. Rev. med. Chile 78, 27 (1950)Google Scholar
  69. Cain, J. C., J. H. Grindlay, J. L. Bollman, E. V. Flock and F. C. Mann: Lymph from liver and thoracic duct. An experimental study. Surg. Gynec. Obstet. 85, 559 (1947)Google Scholar
  70. Campbell, H.A., and K. P. Link: Studies on the hemorrhagic sweet clover disease. J. biol. Chem. 138, 21 (1941)Google Scholar
  71. Cantarow, A., and L. L. Miller: Nonex- cretion of jaundiceserum alkaline phosphatase in bile of normal dogs. Amer. J. Physiol. 153, 444 (1948)PubMedGoogle Scholar
  72. Cantarow, A., and C. W. Wirts: Excretion of bromsulfalein in the bile. Proc. Soc. exp. Biol. (N. Y.) 47, 252 (1941)Google Scholar
  73. Carter, C.W., and B. H. S. Thompson: Biochemistry in relation to medicine. London-New York-Toronto: Longmans, Green & Co. 1949Google Scholar
  74. Catchpole, H. B.: Solubility properties of some components of the ground substance in relation to intravital staining of connective tissues. Ann. N. Y. Acad. Sci. 52, 989 (1950)PubMedGoogle Scholar
  75. Cazal, P.: Histopathologic du foie, Masson et Cie, ed., Paris, 1955Google Scholar
  76. Chai- koff, I. L., and C. Entenman: Antifattv-liver factor of the pancreas. Advanc. Enzymol. 8, 171 (1948)Google Scholar
  77. Chaikoff, I. L., D. Goldman, G. W. Brown jr., W. G. Dauben and M. Gee: Acetoacetate formation in liver. J. biol. Chem. 190, 229 (1951)PubMedGoogle Scholar
  78. Chain, E., and S. Duthie: Identity of hyaluronidase and spreading factor. Brit. J. exp. Path. 21, 324 (1940)Google Scholar
  79. Chang, K. K.: A technique for total hepatectomy in the rat and its effect on toxicity of octamethyl pyrophosphoramid. Brit. J. exp. Path. 32, 444 (1951)Google Scholar
  80. Chernick, S. S., and I. L. Chaikoff: Two blocks in carbohydrate utilization in the liver of the diabetic rat. J. biol. Chem. 188, 389 (1951)PubMedGoogle Scholar
  81. Child, C. G.: The hepatic circulation and portal hypertension. Philadelphia and London: W. B. Saunders Company 1954Google Scholar
  82. Chow, B. F., C. Alper and S. de Biase: The effect of retention of nitrogen in casein or lactalbumin hydrolysates on the regeneration of plasma proteins of protein-depleted dogs. J. Nutr. 38, 319 (1949)PubMedGoogle Scholar
  83. Clara, M.: Untersuchungen an der menschlichen Leber. 1. Teil. Über den Übergang der Gallenkapillaren in die Gallengänge. Z. mikr.-anat. Forsch. 20, 584 (1930)Google Scholar
  84. Clerc, P.: Beitrag zur Ketonurie. Z. klin. Med. 118, 532 (1931)Google Scholar
  85. Coburn, F. F., u. J. Annegers: Effect of dietary substances on cholate synthesis in the dog. Amer. J. Physiol. 163, 48 (1950)PubMedGoogle Scholar
  86. Cole, P. G., G. H. Lathe and B. H. Billing: Separation of the bile pigments of serum, bile and urine. Biochem. J. 57, 514 (1954)PubMedGoogle Scholar
  87. Collinson, G. A., u. F. S. Fow- weather: An explanation of the two forms of bilirubin demonstrated by the van den Bergh reaction. Brit. med. J. 1, 1081 (1926)PubMedGoogle Scholar
  88. Colp, R., u. H. Doubilet: Differential analysis of bile acids in human gall-bladder bile. Arch. Surg. (Chicago) 33, 913 (1936)Google Scholar
  89. Conn, J. W., St. S. Fajans, L. H. Louis and H. S. Seltzer: Importance of the liver in transformations of administered adreno-steroidal compounds. J. Lab. clin. Med. 43, 79 (1954)PubMedGoogle Scholar
  90. Coppedge, R. L., A. Segaloff, II. P. Sarett and A. M. Altschul: Cozymase as a part of the hepatic estrogeninactivating system. J. biol. Chem. 173, 431 (1948)PubMedGoogle Scholar
  91. Cori, C. F.: The rate of glycogen formation in the livers of normal and insulinized rats during the absorption of glucose, fructose and galactose. J. biol. Chem. 70, 577 (1926)Google Scholar
  92. Cori, C. F., and G. T. Cori: The fate of sugar in the animal body. VIII. The influence of insulin on the utilization of glucose, fructose and dihydroxyacetone. J. biol. Chem. 76, 755 (1928)Google Scholar
  93. Cori, C. F., and G. T. Cori: The kinetics of the enzymatic synthesis of glycogen from glucose-1-phosphate. J. biol. Chem. 135, 733 (1940)Google Scholar
  94. Cori, G. T., and J. Larner: Action of amylo-l, 6-glucosidase and Phosphorylase on glycogen and amylopectin. J. biol. Chem. 188, 17 (1951)PubMedGoogle Scholar
  95. Cournand, A., R. L. Riley, E. S. Breed, E. F. de Baldwin and D. W. Richards jr.: Measurement of cardiac output in man using the technique of catheterization of the right auricle or ventricle. J. clin. Invest. 24, 106 (1945).PubMedGoogle Scholar
  96. Dakin, H. D.: Studies on the intermediary metabolism of aminoacids. J. biol. Chem. 14, 321 (1913)Google Scholar
  97. Dalgaard, J. B.: Phosphatase in dogs following bile obstruction and removal of the small intestine. Acta physiol. scand. 16, 287 (1949)PubMedGoogle Scholar
  98. Dalgaard, J. B.: Serumphosphatase after hepatectomy in dogs. Acta physiol. scand. 16, 308 (1949)PubMedGoogle Scholar
  99. Dam, H.: Antihemorrhagic vitamin of chick. Biochem. J. 29, 1273 (1935)PubMedGoogle Scholar
  100. Daniel, P. M., and M. M. L. Prichard: Effects of stimulation of the hepatic nerves and of adrenaline upon the circulation of the portal venous blood within the liver. J. Physiol. (Lond.) 114, 538 (1951)Google Scholar
  101. Day, T. D.: The mode of reaction of interstitial connective tissue with water. J. Physiol. (Lond.) 109, 380 (1949)Google Scholar
  102. Delprat, G. D., N. N. Epstein and W. J. Kerr: A new liver function test, the elimination of rose bengal when injected into the circulation of human subjects. Arch, intern. Med. 34, 533 (1924)Google Scholar
  103. De Meio, R. H., A. E. Rakoff, A. Cantarow and K. E. Paschkis: Mechanism of inactivation of a-estradiol by rat liver „in vitro“. Endocrinology 43, 97 (1948)Google Scholar
  104. Demuth, F.: Über Hexophosphatase in menschlichen Organen und Körperflüssigkeiten. Biochem. Z. 159, 415 (1925)Google Scholar
  105. Disse, J.: Über die Lymphbahnen der Säugetierleber. Arch. mikr. Anat. 36, 203 (1890)Google Scholar
  106. Dohan, F. C., E. M. Richardson, L. W. Bluemle and D. György: Hormone excretion in liver disease. J. clin. Invest. 31, 481 (1952)PubMedGoogle Scholar
  107. Doljanski, L., u. O. Koch: Der Blutfarbstoff und die lebende Zelle. I. Mitt. Über den Hämoglobinabbau in Gewebskulturen. Virchows Arch. path. Anat. 291, 379 (1933)Google Scholar
  108. Doljanski, L., u. O. Koch: II. Mitt. Zur Frage der Bilirubinbildung in vitro. Virchows Arch. path. Anat. 291, 390 (1933)Google Scholar
  109. Domini, G.: Ricerche chimico-fisiche sulla bile. Arch. Fisiol. 41, 54 (1941)Google Scholar
  110. Doneddu, C.: Zit. nach Hinsberg u. Bruns, Clin. med. ital. 73, 305 (1942)Google Scholar
  111. Doubilet, H.: Hepatic excretion in dog following oral administration of various bile acids. Proc. Soc. exp. Biol. (N.Y.) 36, 687 (1937)Google Scholar
  112. Dragstedt, C. A., and M. A. Mills: Bilirubinemia and bromsulphalein retention. Proc. Soc. exp. Biol. (N. Y.) 34, 467 (1936)Google Scholar
  113. Dragstedt, L. R., J. van Prohaska and H. P. Harms: Observations on a substance in pancreas (a fat metabolizing hormone) which permits survival and prevents liver changes in depancreatized dogs. Amer. J. Physiol. 117, 175 (1936)Google Scholar
  114. Ducci, H., and C. J. Watson: The quantitative determination of the serum bilirubin with special reference to the prompt-reacting and the chloroform-soluble types. J. Lab. clin. Med. 30, 293 (1945)Google Scholar
  115. Düttmann, G.: Die Veränderung des Säure-Basengleichgewichtes nach Gallenfistel und ihre Bedeutung bei der Entstehung der sog. porotischen Malacie. Bruns’ Beitr. klin. Chir. 139, 720 (1927)Google Scholar
  116. Duran-Reynals, F.: Tissue permeability and the spreading factors in infection; a contribution to the host: parasite problem. Bact. Rev. 6, 197 (1942).PubMedGoogle Scholar
  117. Eck, N. V.: K. voprosu o perevyazkie vorotnois veni. Predvaritelnoye soobshtshjenye. Vo. med. J. (St. Petersburg) 130, 1 (1877)Google Scholar
  118. Eck, N. V.: Übersetzt ins Englische: C. G. Child III.: Eck’s fistula. Surg. Gynec. Obstet. 96, 375 (1953) Editor: Bilirubin. Lancet 1956 II, 667Google Scholar
  119. Elias, H.: A re-examination of the structure of the mammalian liver. I. Parenchymal architecture. Amer. J. Anat. 84, 311 (1949)Google Scholar
  120. Elias, H.: II. The hepatic lobule and its relation to the vascular and biliary systems. Amer. J. Anat. 85, 379 (1949)PubMedGoogle Scholar
  121. Elias, H., u. A. Feller: Über einen muskulären Drosselmechanismus an den Lebervenenmündungen. Z. eres. exr. Med. 77, 538 (1931)Google Scholar
  122. Elster, S. K., M. E. Freeman and E. L. Lowry: The action of tripelennamine on hyaluronidase in the albino rat. J. Pharmacol, exp. Ther. 96, 332 (1949)Google Scholar
  123. Elton, N. W.: The mechanism of jaundice: a working hypothesis. Amer. J. clin. Path. 5, 40 (1935)Google Scholar
  124. Embden, G.: Über die Bildung gepaarter Glykuronsäure in der Leber. Beitr. ehem. Physiol. Path. 2, 591 (1902)Google Scholar
  125. Embden, G.: Über Zuckerbildung bei künstlicher Durchblutung der glykogenfreien Leber. Beitr. ehem. Physiol. Path. 6, 44 (1905)Google Scholar
  126. Embden, G.: Über Aceton — bildung in der Leber. Beitr. ehem. Physiol. Path. 8, 121 (1906)Google Scholar
  127. Embden, G.: Über Acetonbildung in der Leber. Beitr. ehem. Physiol. Path. 11, 318 (1908)Google Scholar
  128. Embden, G.: Über das Verhalten der optisch- isomeren Leucine in der Leber. Beitr. ehem. Physiol. Path. 11, 348 (1908)Google Scholar
  129. Embden, G., u. H. Engel: Über Acetessigsäurebildung in der Leber. Beitr. ehem. Physiol. Path. 11, 323 (1908)Google Scholar
  130. Embden, G., u. G. Glaessner: Über den Ort der Ätherschwefelsäurebildung im Tierkörper. Beitr. ehem. Physiol. Path. 1, 310 (1902)Google Scholar
  131. Embden, G., u. S. Isaak: Über die Bildung von Milchsäure und Acetessigsäure in der diabetischen Leber. Z. physiol. Chem. 99, 297 (1917)Google Scholar
  132. Embden, G., u. L. Lattes: Über die Acetessigsäurebildung in der Leber des diabetischen Hundes. Beitr. chem. Physiol. Path. 11, 327 (1908)Google Scholar
  133. Embden, G., u. L. Michaud: Über den Abbau der Acetessigsäure im Tierkörper. Beitr. chem. Physiol. Path. 11, 332 (1908)Google Scholar
  134. Embden, G., H. Salomon u. Fr. Schmidt: Über Acetonbildung in der Leber. Beitr. chem. Physiol. Path. 8, 129 (1906)Google Scholar
  135. Embden, G., E. Schmitt u. M. Wittenberg: Über synthetische Zuckerbildung in der künstlich durchströmten Leber. Z. physiol. Chem. 88, 201 (1913)Google Scholar
  136. Entenman, C., I. L. Chaikoff and D. B. Zilyersmit: Removal of plasma phospholipids as a function of the liver: the effect of exclusion of the liver on the turnover rate of plasma phospholipids as measured with radioactive phosphorus. J. biol. Chem. 166, 15 (1946)PubMedGoogle Scholar
  137. Eppinger, H.: Die Leberkrankheiten. Wien: Springer 1937Google Scholar
  138. Eppinger, H., H. Kaunitz u. H. Popper: Die seröse Entzündung. Wien: Springer 1935Google Scholar
  139. Epstein, E.: Beitrag zur Theorie und Morphologie der Immunität. Virchows Arch, path. Anat. 273, 89 (1929).Google Scholar
  140. Fagraeus, A.: Antibody production in relation to the development of plasma cells. Acta med. scand. Suppl. 204 (1948)Google Scholar
  141. Fenstermann, R.: Die Funktionsprüfung der Leber mit Azorubin S. Münch, med. Wschr. 1926, 859Google Scholar
  142. Ferguson, J. H., and A. J. Glazko: Heparin. J. Lab. clin. Med. 26, 1559 (1941)Google Scholar
  143. Fine, J., and A. M. Seligman: Traumatic shock. IV. A study of the problem of the „lost plasma“ in hemorrhagic shock by the use of radioactive plasma protein. J. clin. Invest. 22, 285 (1943)PubMedGoogle Scholar
  144. Fink, R. M., T. Enns, C. P. Kimball, H. E. Silberstein, W. F. Bale, S. C. Madden and G. H. Whipple: Plasma protein metabolism — normal and associated with shock. J. exp. Med. 80, 455 (1944)PubMedGoogle Scholar
  145. Fischer, H.: Synthese des Hämins. Naturwissenschaften 17, 611 (1929)Google Scholar
  146. Fischer, H., u. H. Halbach: Über die Konstitution des Stercobilins. Hoppe-Seylers Z. plsiol. Chem. 238, 59 (1936)Google Scholar
  147. Fischer, H., u. H. Orth: Die Chemie des Pyrrols. Bd. 2/1; Porphyrine. Haemin. Bilirubin und Abkömmlinge, S. 364. Leipzig: Akademische Verlagsgesellschaft 1937Google Scholar
  148. Fischer, H., u. H. Staub: Das Schicksal des Nirvanols im Hundeorganismus nach stomachaler und nach intravenöser Verabreichung. Helv. physiol. Acta 3, 135 (1945)Google Scholar
  149. Fischler, Fr.: Das Urobilin und seine klinische Bedeutung. Habil.-Schr. Heidelberg 1906.Google Scholar
  150. Fischler, Fr.: Physiologie und Pathologie der Leber, 2. Aufl. Berlin 1925Google Scholar
  151. Fischler, Fr., u. F. Otten- sooser: Zur Theorie der Urobilinentstehung. Ein Beitrag zur extraintestinalen Genese der Urobilinurie. Dtsch. Arch. klin. Med. 146, 305 (1925)Google Scholar
  152. Fisher, N. F.: Attempts to maintain the life of totally pancreatectomized dogs indefinitely by insulin. Amer. J. Physiol. 67, 634 (1924)Google Scholar
  153. Fishler, M. C., C. Entenman, M. L. Montgomery and I. L. Chaikoff: The formation of phospholipid by the hepatectomized dog as measured with radioactive phosphorus. I. The site of formation of plasma phospholipids. J. biol. Chem. 150, 47 (1943)Google Scholar
  154. Forsgren, E.: Über Glykogen- und Gallenbildung in der Leber. Skand. Arch. Physiol. 55, 144 (1929)Google Scholar
  155. Frazer, A. C., J. H. Schulman and C. H. Stewart: Emulsification of fat in the intestine of the rat and its relationship to absorption. J. Physiol. (Lond.) 103, 306 (1944/45)Google Scholar
  156. Friedman, A., H. F. Weisberg and B. Levine: Inactivation or removal of insulin by the liver. Fed. Proc. 8, 53 (1949)Google Scholar
  157. Friis-Hansen, B., O. Mortensen and N. A. Nielsen: Glucose tolerance of partially hepatectomized rabbits. Acta physiol. scand. 13, 291 (1947)PubMedGoogle Scholar
  158. Fürth, O., u. H. Minibeck: Über das Mengenverhältnis von Gallensäuren und Fetten im Darminhalte und dessen Beziehung zur Fettresorption. Biochem. Z. 237, 139 (1931)Google Scholar
  159. Fürth, O., u. R. Scholl: Über den Einfluß von gallensauren Salzen auf Diffusions- und Resorptions Vorgänge. Ein Beitrag zur Physiologie der Fett verdauung. Biochem. Z. 222, 430 (1930).Google Scholar
  160. Gamble, J. L., and M. A. Mc Iver: Acid- base composition of pancreatic juice and bile. J. exp. Med. 48, 849 (1928)PubMedGoogle Scholar
  161. Gardikas, G., J. E. Kench and J. F. Wilkinson: Serum bilirubin and the van den Bergh reaction. Nature (Lond.) 159, 842 (1947)Google Scholar
  162. Gardner, J. C., u. H. Gainsborough: Blood cholesterol studies in biliary and hepatic disease. Quart. J. Med. 23, 465 (1930)Google Scholar
  163. Gebhardt, F.: Untersuchungen über den Einfluß der Portalblutumleitung (Eckfistel und umgekehrte Eckfistel) auf die Leberfunktion und auf den Gallenfarbstoff Wechsel. II. Z. ges. exp. Med. 106, 468 (1939)Google Scholar
  164. Gomori, G.: Microtechnical demonstration of phosphatase in tissus sections. Proc. Soc. exp. Biol. (N. Y.) 42, 23 (1939)Google Scholar
  165. Gomori, G.: Alkaline phosphatase of cell nuclei. J. Lab. clin. Med. 37, 520 (1951)Google Scholar
  166. Gottlieb, R.: Bilirubin-formation and reticulo-endothelial system; functional block of reticuloendothelial system. Canad, med. Ass. J. 30, 512 (1934)Google Scholar
  167. Graham, E. A., and W. H. Cole: Roentgenologic examination of gallbladder. J. Amer. med. Ass. 82, 613 (1924)Google Scholar
  168. Gray, C. H.: The bile pigments. London: Methuen & Co. 1953Google Scholar
  169. Gray, C. H., u. R. A. Kekwick: Bilirubin-serum protein complexes and the van den Bergh reaction. Nature (Lond.) 161, 274 (1948)Google Scholar
  170. Gray, C. H., A. Neuberger and P. H. A. Sneath: Studies in congenital porphyria. 2. Incorporation of 15N in the stercobilin in the normal and in the porphyric. Biochem. J. 47, 87 (1950)PubMedGoogle Scholar
  171. Gray, C. H., and J. Whidborne: Studies of the van den Bergh reaction. Biochem. J. 40, 81 (1946)Google Scholar
  172. Grayhock, J. T., and W. W. Scott: Observations on in vivo inactivation of testosterone propionate by liver of white rats. Fed. Proc. 9, 50 (1950)Google Scholar
  173. Green, D. E.: Oxidation and synthesis of fatty acids in soluble enzyme systems of animal tissues. Clin. Chem. 1, 53 (1955)PubMedGoogle Scholar
  174. Grindlay, J. H., J. F. Herrick and F. C. Mann: Measurement of the blood flow of the liver. Amer. J. Physiol. 132, 489 (1941)Google Scholar
  175. Grindlay, J. H., and F. C. Mann: Removal of the liver of the dog: an experimental surgical technique. Surgery 31, 900 (1952)PubMedGoogle Scholar
  176. Grodins, F. S., S. L. Osborne, A. C. Ivy and L. Goldman: The effect of bile acids on hepatic blood flow. Amer. J. Physiol. 132, 375 (1941)Google Scholar
  177. Grogg, E., and A. G. E. Pearse: Coupling azo dye methods for histochemical demonstration of alkaline phosphatase. Nature (Lond.) 170, 578 (1952)Google Scholar
  178. Grossman, M. I., H. D. Jano- witz, B. S. Ralston and K. S. Kim: The effect of secretion on bile formation in man. Gastroenterology 12, 133 (1949)PubMedGoogle Scholar
  179. Grunenberg, K.: Über die Differenzierung des Serum- bilirubins durch seine Chloroformlöslichkeit. Z. ges. exp. Med. 31, 119 (1923)Google Scholar
  180. Grunenberg, K.: Über die Topik der Umwandlungsstätten der Chloroformlöslichkeit des Bilirubins. Z. ges. exp. Med. 35, 128 (1923)Google Scholar
  181. György, P., C. S. Rose and R. A. Shipley: The effect of steroid hormones on the fatty liver induced in rats by dietary means. Arch. Biochem. 22, 108 (1949).Google Scholar
  182. Hall, B. V.: Inactivation of gonadotropins by liver homogenates. Fed. Proc. 9, 54 (1950)Google Scholar
  183. Hanzon, V.: Liver cell secretion under normal and pathologic conditions studied by fluorescence microscopy on living rats. Acta physiol. scand. 28, Suppl., 101 (1952)Google Scholar
  184. Hard, W. L., and R. K. Hawkins: The role of bile capillaries in the secretion of phosphatase by the rabbitliver. Anat. Ree. 106, 395 (1950)Google Scholar
  185. Hartmann, Fr.: Untersuchungen über die Beurteilung der Funktion der Leber auf Grund von Störungen ihrer Stoffwechselleistungen. III. Mitt. Störungen der Entgiftungs- und Ausscheidungsfunktion der Leber. Z. klin. Med. 147, 551 (1951)Google Scholar
  186. Hartmann, Fr., u. E. Kohl: Über den Eiweiß- und Schleimgehalt der Galle bei Gesunden und bei Erkrankungen des Leberparenchyms und der Gallenwege. Klin. Wschr. 1950, 500Google Scholar
  187. Hata, M.: Der Gehalt der Verdauungssäfte des Hundes an Zucker und Milchsäure, und der Einfluß des Pikrotoxins sowie Adrenalins auf denselben. Mitt. med. Akad. Kioto 30, 279 (1940)Google Scholar
  188. Hawkins, W. B., P. C. Hansen, R. W. Coon and R. Terry: Bile salt metabolism as influenced by pure amino acids and casein digests. J. exp. Med. 90, 461 (1949)PubMedGoogle Scholar
  189. Hédon, E.: La survie indéfinie du chien dépancréaté traité par l’insuline et les effets de l’interruption du traitement. J. Physiol. Path. gén. 25, 1 (1927)Google Scholar
  190. Henriques, V., u. H. Roland: Zur Frage des Eisenstoffwechsels. Biochem. Z. 201, 479 (1928)Google Scholar
  191. Hering, E.: Von der Leber. In S. Strickers Handbuch der Lehre von den Geweben, S. 429—452. Leipzig 1871Google Scholar
  192. Herrick, J. F., H. E. Essex, F. C. Mann and E. J. Baldes: The effect of digestion on the blood flow in certain blood vessels of the dog. Amer. J. Physiol. 108, 621 (1934)Google Scholar
  193. Hershey, J. M.: Substitution of lecithin for raw pancreas in the diet of the depancreatized dog. Amer. J. Physiol. 93, 657 (1930)Google Scholar
  194. Hershey, J. M., and L. S. Soskin: Substitution of „lecithin“ for raw pancreas in the diet of the depancreatized dog. Amer. J. Physiol. 98, 74 (1931)Google Scholar
  195. Hildreth, E. A., S. M. Mellinkoff, G. W. Blair and D. M. Hildreth: Effect of vegetable fat ingestion on human serum cholesterol concentration. Circulation 3, 641 (1951)PubMedGoogle Scholar
  196. Himsworth, H. P.: Liver damage of metabolic origin. Proc. roy. Soc. Med. 42, 201 (1949)PubMedGoogle Scholar
  197. Hinsberg, K.: Hoppe-Seyler/Thierfelders Handbuch der physiologischen und pathologisch-chemischen Analyse, 10. Aufl., Bd. V. Berlin-Göttingen-Heidelberg: Springer 1953Google Scholar
  198. Hinsberg, K., u. F. Bruns: Hoppe-Seyler/Thierfelders Handbuch der physiologischen und pathologisch-chemischen Analyse, 10. Aufl., Bd. V. Berlin-Göttingen-Heidelberg: Springer 1953Google Scholar
  199. Hinsberg, K., u. F. Bruns: Hoppe-Seyler/Thierfelder: Handbuch der physiologischen und pathologisch-chemischen Analyse, 10. Auf., Bd. V. Berlin- Göttingen-Heidelberg: Springer 1953Google Scholar
  200. Horrall, O. H.: Bilde, its toxicity and relation to disease. Chicago 111.: LTniversity Chicago Press 1938Google Scholar
  201. Howell, W. H., and E. Holt: Two new factors in blood coagulation — heparin and pro-antithrombin. Amer. J. Physiol. 47, 328 (1918/19)Google Scholar
  202. Hurtley, W.H.: The four carbon atom acids of diabetic urine. Quart. J. Med. 9, 301 (1916)Google Scholar
  203. Isaksson, B.: Acta Soc. Med. upsalien. 56, 177 (1952). Zit. nach Hinsberg u. Bruns.Google Scholar
  204. Jacobi, M., I. C. Zuckerman, B. Kogut and B. Klein: Studies in human biliary physiology; influence of metabolizable and non-metabolizable sugars on liver bile secretion. Amer. J. dig. Dis. 7, 382 (1940)Google Scholar
  205. Johnson, L. E., and F. C. Mann: Intrahepatic lymphatics. Amer. J. Physiol. 163, 723 (1950)Google Scholar
  206. Jorpes, E., u. S. Bergstrom: Der Aminozueker des Heparins. Z. physiol. Chem. 244, 253 (1936)Google Scholar
  207. Jorpes, E., H. Holmgren u. W. Wilander: Über das Vorkommen von Heparin in den Gefäßwänden und in den Augen. Ein Beitrag zur Physiologie der Ehrliehsehen Mastzellen. Z. mikr.-anat. Forsch. 42, 279 (1937).Google Scholar
  208. Kaplan, N. O., and F. Lipmann: The assay and distribution of coenzyme A. J. biol. Chem. 174, 37 (1948)Google Scholar
  209. Katz, L. N., and S. Rodbard: The integration of the vasomotor responses in the liver with those in other systemic vessels. J. Pharmacol, exp. Ther. 67, 407 (1939)Google Scholar
  210. Keller, E. B., J. B. Bachele and V. du Vigneaud: A study of transmethylation with methionine containing deuterium and C14 in the methyl group. J. biol. Chem. 177, 733 (1949)PubMedGoogle Scholar
  211. Kennedy, E. P., and A. L. Lehninger: Oxidation of fatty acids and tricarboxylic acid cycle intermediates by isolated rat liver mitochondria. J. biol. Chem. 179, 957 (1949)PubMedGoogle Scholar
  212. Kennedy, E. P., and A. L. Lehninger: The products of oxidation of fatty acids by isolated rat liver mitochondria. J. biol. Chem. 185, 275 (1950)PubMedGoogle Scholar
  213. King, E. J., and A. R. Armstrong: Convenient method for determining serum and bile phosphatase activity. Canad. med. Ass. J. 31, 376 (1934)PubMedGoogle Scholar
  214. King, L. S.: Vital staining of connective tissue. J. exp. Med. 68, 63 (1938)PubMedGoogle Scholar
  215. Klatskin, G., and L. Bungards: Bilirubin-protein linkages in serum and their relationship to the van den Bergh reaction. J. clin. Invest. 35, 537 (1956)PubMedGoogle Scholar
  216. Knisely, M. H.: A method of illuminating living structures for microscopic study. Anat. Ree. 64, 499 (1936)Google Scholar
  217. Knisely, M. H., E. H. Bloch u. L. Warner: Selective phagocytosis. Kgl. danske Vid. Selsk. biol. Skr. 4, 37 (1948). Zit. nach Child 1954Google Scholar
  218. Knoop, F.: Der Abbau aromatischer Fettsäuren im Tierkörper. Beitr. chem. Physiol. Path. 6, 150 (1904)Google Scholar
  219. Kocour, E. J., and A. C. Ivy: The effect of certain foods on bile volume output recorded in the dog by a quantitative method. Amer. J. Physiol. 122, 325 (1938)Google Scholar
  220. Koller, F., A. Loeliger and F. Duckert: Experiments on a new clotting factor. (Factor VII.) Acta haemat. (Basel) 6, 1 (1951)Google Scholar
  221. Koster, H., A. Shapiro and H. Lerner: On the rate of secretion of bile. Amer. J. Physiol. 115, 23 (1936)Google Scholar
  222. Kramer, H., and K. Little: Nature of reticulin. Nature (Lond.) 170, 499 (1952)Google Scholar
  223. Krebs, H. A.: The citric acid cycle and the Szent-Györgyi cycle in pigeon breast muscle. Biochem. J. 34, 775 (1940)PubMedGoogle Scholar
  224. Krebs, H. A.: The intermediary stages in the biological oxidation of carbohydrate. Advanc. Enzymol. 3, 191 (1943)Google Scholar
  225. Krebs, H. A., and L. V. Eggleston: The oxidation of pyruvate in pigeon breast muscle. Biochem. J. 34, 442 (1940)PubMedGoogle Scholar
  226. Kritzler, R. A., and J. Beaubien: Microchemical variation of alkaline phosphatase activity of liver in obstructive and hepatocellular jaundice. Amer. J. Path. 25, 1079 (1949)PubMedGoogle Scholar
  227. Kunkel, H. G., and S. M. Ward: Plasma esterase activity in patients with liver disease and the nephrotic syndrome. J. exp. Med. 86, 325 (1947).PubMedGoogle Scholar
  228. Lang, K.: Über die tierische Fettsäuredehydrase und ihre Codehydrase. Z. physiol. Chem. 261, 240 (1939)Google Scholar
  229. Lautenbach, B. F.: On a new function of the liver. Philad. Med. Times 7, 387 (1877)Google Scholar
  230. Lee, C. C., L. W. Trevoy, J. W. T. Spinks and L. B. Jaques: Dicumarol labelled with C14. Proc. Soc. exp. Biol. (N. Y.) 74, 151 (1950)Google Scholar
  231. Legge, J. W., and R. Lemberg: Coupled oxidation of ascorbic acid and haemoglobin. 4. The „labile iron“ in blood and its increase during choleglobin formation. Biochem. J. 35, 353 (1941)PubMedGoogle Scholar
  232. Leloir, L. F., R. E. Trucco, C. E. Cardini, A. Paladini and R. Caputto: The coenzyme of phosphoglucomutase. Arch. Biochem. 19, 339 (1948)Google Scholar
  233. Lemberg, R.: Transformation of haemins into bile pigments. Biochem. J. 29, 1322 (1935)PubMedGoogle Scholar
  234. Lemberg, R., B. Cortis- Jones and M. Norrie: a) Coupled oxidation of ascorbic acid and haemochromogen. b) Chemical mechanism of the oxidation of protohaematin to verdohaematin. Biochem. J. 32, 149, 171 (1938)PubMedGoogle Scholar
  235. Lemberg, R., and J. W. Legge: Hematin compounds and bile pigments; their constitution, metabolism and function. New York: Interscience Publ. 1949. London: Interscience Publ. 1949Google Scholar
  236. Lemberg, R., J. W. Legge and W. H. Lockwood: Coupled oxidation of ascorbic acid and haemoglobin. I. Biochem. J. 33, 754 (1939)Google Scholar
  237. Lemberg, R., J. W. Legge and W. H. Lockwood: II. Formation and properties of choleglobin. Biochem. J. 35, 328 (1941)PubMedGoogle Scholar
  238. Lemberg, R., J. W. Legge and W. H. Lockwood: III. Quantitative studies on choleglobin formation. Estimation of haemoglobin and ascorbic acid oxidations. Biochem. J. 35, 339 (1941)PubMedGoogle Scholar
  239. Lepehne, G.: Funktionsprüfungen der inneren Organe. Praxis der Leberfunktionsprüfung. Klin. Wschr. 1924, 73Google Scholar
  240. Leveen, H. H., L. J. Talbot, M. Restuccia and J. R. Barberio: Metabolism and excretion of alkaline phosphatase: relation to liver function and determination of maximal secretory rates of liver. J. Lab. clin. Med. 36, 192 (1950)PubMedGoogle Scholar
  241. Libby, R. L., and C. R. Madison: Immunochemical studies with tagged proteins; distribution of tobacco-mosaic virus in mouse. J. Immunol. 55, 15 (1947)PubMedGoogle Scholar
  242. Lichtman, S. S.: Diseases of the liver, gallbladder and bile ducts. Philadelphia Lea and Febiger 1942Google Scholar
  243. Lipmann, F.: Biosynthetic mechanisms. Harvey Lect. 44, 99 (1948/49)Google Scholar
  244. Lipmann, F.: Consideration of the role of coenzyme A in some phases of fat metabolism. Fat Metabolism, a Symposium. V. A. Najjar, ed. Baltimore: Johns Hopkins Press 1954Google Scholar
  245. Little, H. N., and K. Bloch: Studies on the utilization of acetic acid for the biological synthesis of cholesterol. J. biol. Chem. 183,33 (1950)Google Scholar
  246. Lombroso, U.: Über die Beziehungen zwischen der Nährstoff resorption und den enzymatischen Verhältnissen im Verdauungskanal. Pflügers Arch. ges. Physiol. 112, 531 (1906)Google Scholar
  247. London, E. S.: Die Angiostomiemethode und die mit Hilfe derselben erhaltenen Resultate. Ergebn. Physiol. 26, 320 (1928)Google Scholar
  248. London, I. M.: The conversion of hematin to bile pigment. J. biol. Chem. 184, 373 (1950)PubMedGoogle Scholar
  249. London, I. M., R. West, D. Shemin and D. Rittenberg: Porphyrin formation and hemoglobin metabolism in congenital porphyria. J. biol. Chem. 184, 365 (1950)PubMedGoogle Scholar
  250. Lorber, S. H., and H. Shay: Entero-hepatic circulation of bromsulphalein. J. clin. Invest. 29, 831 (1950)PubMedGoogle Scholar
  251. Lowry, P., N. R. Ziegler and C. J. Watson: The conversion of N15-labeled mesobilirubinogen to stercobilinogen by fecal bacteria. J. Lab. clin. Med. 40, 921 (1952)Google Scholar
  252. Lueth, H. C., B. H. Orndorff and A. C. Ivy: Effect of histamine on gall-bladder evacuation. Proc. Soc. exp. Biol. (N. Y.) 26, 311 (1929)Google Scholar
  253. Lynen, F.: Acetyl coenzyme A and the „fatty acid cycle“. Harvey Lect. 48, 210 (1952/53)Google Scholar
  254. Lynen, F., and S. Ochoa: Enzymes of fatty acid metabolism. Biochim. biophys. Acta 12, 299 (1953).PubMedGoogle Scholar
  255. Mac Gillavry, T. H.: Die Anatomie der Leber. S.-B. Akad. Wiss. Wien, math.-nat. Kl. 50, 207 (1865)Google Scholar
  256. Maddock, S., and A. Svedberg: The effect of the total removal of the liver of the monkey. Amer. J. Physiol. 121, 203 (1938)Google Scholar
  257. Magee, D. F., K. S. Km, V. C. Pessoa and A. C. Ivy: Dietary factors influencing output of bile acids. II. Role of amino acids. Amer. J. Physiol. 169, 317 (1952)PubMedGoogle Scholar
  258. Makino, J.: Beiträge zur Frage der anhepatozellulären Gallenfarbstoffbildung. Beitr. path. Anat. 72, 808 (1924)Google Scholar
  259. Mann, F. C.: Physiology of liver: technic and general effects of removal. Amer. J. med. Sei. 161, 37 (1921)Google Scholar
  260. Mann, F. C., and L. J. Bollman: The relation of the liver to the utilization of levulose. Amer. J. Physiol. 93, 671 (1930)Google Scholar
  261. Mann, F. C., J. L. Bollman and B. Magath: Studies on the physiology of then liver. IX. The formation of bile pigment after total removal of the liver. Amer. J. Physiol. 69, 393 (1924)Google Scholar
  262. Mann, F. C., and G. M. Higgins: Lymphocytes in thoracic duct, intestinal and hepatic lymph. Blood 5, 177 (1950)PubMedGoogle Scholar
  263. Mann, F. C., and T. B. Magath: Die Wirkungen der totalen Leberexstirpation. Ergebn. Physiol. 23, 212 (1924)Google Scholar
  264. Mann, F. C., C. Sheard and J. L. Bollman: An evaluation of the relative amounts of bilirubin formed in the liver, spleen and bone marrow. Amer. J. Physiol. 78, 384 (1926)Google Scholar
  265. Mann, F. D., E. S. Shonyo and F. C. Mann: Effect of removal of the liver on blood coagulation. Amer. J. Physiol. 164, 111 (1951)PubMedGoogle Scholar
  266. Marbet, R., u. A. Winterstein: Neuere Auffassungen über den Mechanismus der Blutgerinnung. Experientia (Basel) 10, 273 (1954)Google Scholar
  267. Markowitz, J., A. Rappaport and A. Scott: Function of hepatic artery in dog. Amer. J. dig. Dis. 16, 344 (1949)PubMedGoogle Scholar
  268. Markowitz, J., and S. Soskin: A simplified technique for hepatectomy. Proc. Soc. exp. Biol. (N. Y.) 25, 7 (1927)Google Scholar
  269. Markowitz, J., W. M. Yater and W. J. Burrows: A simple one-stage technic for hepatectomy in the dog with some remarks on the clinical symptomatology of terminal hepatic insufficiency. J. Lab. clin. Med. 18, 1271 (1933)Google Scholar
  270. Martin, N. H.: Bilirubin-serum protein complexes. Biochem. J. 42, Proc. XV (1948)Google Scholar
  271. Mayo, C., and C. H. Green: Studies in the metabolism of the bile. IV. The role of the lymphatics in the early stages of development of obstructive jaundice. Amer. J. Physiol. 89, 280 (1929)Google Scholar
  272. Mazur, A., and 0. Bodansky: Mechanism of in vitro and in vivo inhibition of Cholinesterase activity by DFP. J. biol. Chem. 163, 261 (1946)PubMedGoogle Scholar
  273. Mazur, A., and E. Shorr: Hepatorenal factors in circulatory homeostatis. IX. The identification of the hepatic vasodepressor substance, VDM with ferritin. J. biol. Chem. 176, 771 (1948)PubMedGoogle Scholar
  274. McLean, J.: The thrombo- plastic action of cephalin. Amer. J. Physiol. 41, 250 (1916)Google Scholar
  275. McMaster, P. D., and D. R. Drury: The relation of the liver to fat metabolism. Proc. Soc. exp. Biol. (N. Y.) 25, 151 (1927)Google Scholar
  276. McMaster, P. D., and R. Elman: Studies on urobilin physiology and pathology. II. Derivation of urobilin. J. exp. Med. 41, 513 (1925)PubMedGoogle Scholar
  277. McMaster, P. D., and R. Elman: Studies on urobilin physiology and pathology. IV. Urobilin and the damaged liver. J. exp. Med. 42, 99 (1925)PubMedGoogle Scholar
  278. McMaster, P. D., and R. Elman: The relation between urobilin and conditions involving increased red cell destruction. J. exp.. Med. 42, 619 (1925)Google Scholar
  279. McMichael, J.: The oxygen supply of the liver. Quart. J. exp. Physiol. 27, 73 (1937)Google Scholar
  280. MoNee, J. W.: Experiments on haemolytic icterus. J. Path. Bact. 18, 325 (1913)Google Scholar
  281. Mellanby, J.: Bile salts and secretion cholagogues. J. Physiol. (Lond.) 64, 331 (1927/28)Google Scholar
  282. Mellanby, J.: Heparin and blood coagulation. Proc. roy. Soc. Med. 116, 1 (1934)Google Scholar
  283. Menees, T. O., and H. C. Robinson: Oral administration of sodium tetrabrom- phenolphthalein. Amer. J. Roentgenol. 13, 368 (1925)Google Scholar
  284. Meyer, K., and M. M. Rapport: Hyaluronidases. Advanc. Enzymol. 13, 199 (1952)Google Scholar
  285. Michel, H. O.: An electrometric method for the determination of red blood cell and plasma Cholinesterase activity. J. Lab. clin. Med. 34, 1564 (1949)Google Scholar
  286. Miller, L. L., C. G. Bly, M. L. Watson and W. F. Bale: The dominant role of the liver in plasma protein synthesis. J. exp. Med. 94, 431 (1951)PubMedGoogle Scholar
  287. Miller, M., W. R. Drucker, J. E. Owens, J. W. Craig and H. Woodward jr.: Metabolism of intravenous fructose and glucose by normal and diabetic subjects. J. clin. Invest. 31, 115 (1952)PubMedGoogle Scholar
  288. Minkowski, O.: Über den Einfluß der Leberexstirpation auf den Stoffwechsel. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 21, 41 (1886)Google Scholar
  289. Minkowski, O., u. B. Jsiaunyn: Über den Ikterus durch Polycholie und die Vorgänge in der Leber bei demselben. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 21, 1 (1886)Google Scholar
  290. Müller, Fr. v.: Über Ikterus. Jber. schles. Ges. vaterl. Kultur 1892Google Scholar
  291. Müller, P.: Die Chemie derInsektizide, ihre Entwicklung und ihr heutiger Stand. Experientia (Basel) 10, 91 (1954)Google Scholar
  292. Myers, J. D.: Observations on the excretion of bromsulphalein. J. clin. Invest. 28, 801 (1949).Google Scholar
  293. Najjab, V. A., and B. Childs: The crystallization of „direct“ and „indirect“ bilirubin from human serum and their respective properties. J. elin. Invest. 30, 663 (1951)Google Scholar
  294. Newman, C. E.: Bilirubin and the van den Bergh reaction. Brit. J. exp. Path. 9, 112 (1928)Google Scholar
  295. Nielsen, H., et F. Leuthardt: Synthèse biologique de l’acide hippurique. Helv. physiol. Acta 7, C 53 (1949)Google Scholar
  296. Nix, J. T., F. C. Mann, J. L. Bollman, J. H. Grindlay and E. V. Flock: Alterations of protein constituents of lymph by specific injury to the liver. Amer. J. Physiol. 164, 119 (1951)PubMedGoogle Scholar
  297. Novikoff, A. B.: The validity of histochemic phosphatase methods on the intracellular level. Science 113, 320 (1951).PubMedGoogle Scholar
  298. Olds, J. M., and E. S. Stafford: On the manner of anastomosis of the hepatic and portal circulations. Bull. Johns Hopk. Hosp. 47, 176 (1930)Google Scholar
  299. Opie, E. L., and M. B. Rothbard: Water exchange of collagenous tissues and gelatin. J. exp. Med. 97, 409 (1953)Google Scholar
  300. Owren, P. A.: The prothrombin activating complex and its clinical significance. Proc. Congr. Internat. Soc. of Hematology, p. 379, Cambridge, August 1950. New York: Grune & Stratton 1951Google Scholar
  301. Owren, P. A.: Prothrombin and accessory factors. Amer. J. Med. 14, 201 (1953).PubMedGoogle Scholar
  302. Pearlman, W. H., and R. H. De Meio: Metabolism of alphaestradiol in vitro. Fed. Proc. 8, 235 (1949)Google Scholar
  303. Pearlman, W. H., A. E. Rakoff, K. E. Paschkis, A. Cantarow and A. A. Walkling: The metabolic fate of estrone in bile fistula dogs. J. biol. Chem. 173, 175 (1948)PubMedGoogle Scholar
  304. Pelkan, K. F., and G. H. Whipple: Studies of liver function. III. Phenol conjugation as influenced by liver injury and insufficiency. J. biol. Chem. 50, 513 (1922)Google Scholar
  305. Peters jr., T., and C. B. Anfinsen: Production of radioactive serum albumin by liver slices. J. biol. Chem. 182, 171 (1950)Google Scholar
  306. Peters jr. T., and C. B. Anfinsen: Net production of serum albumin by liver slices. J. biol. Chem. 186, 805 (1950)PubMedGoogle Scholar
  307. Pfuhl, W.: Handbuch der mikroskopischen Anatomie des Menschen (Möllendorff), Bd. V/2. 1932Google Scholar
  308. Pihl, A., and K. Bloch: Relative rates of metabolism of neutral fat and phospholipides in various tissues of rat. J. biol. Chem. 183. 431 (1950)Google Scholar
  309. Pletsciier, A.: Die Fructose. Biologie und Wirkung auf den Äthylalkoholstoffwechsel. Helv. med. Acta 20, 100 (1953)Google Scholar
  310. Pletscher, A., H. Staub, W. Hunzinger W. Hess: Zum Kohlenhydratstoffwechsel. I. Die Rolle von Insulin und Leber bei der Glukosedoppelbelastung. Helv. physiol. pharmac. Acta 8, 306 (1950)Google Scholar
  311. Pollack, H., and S. L. Halpern: The relation of protein metabolism to disease. Advanc. Protein Chem. 383 (1951)Google Scholar
  312. Pollock, M. R.: Pre-icteric stage of infective hepatitis. Value of biochemical findings in diagnosis. Lancet 1945 II, 626Google Scholar
  313. Popper, H.: Über Drosselvorrichtungen an Lebervenen. Klin. Wschr. 1931, 2129Google Scholar
  314. Popper, H.: Correlation of hepatic function and structure based on liver biopsy studies. Liver Injury, Trans. 9th Conf., April 27/28, 1950. New York: Josiah Macy, jr., Foundation 1951Google Scholar
  315. Popper, H., u. O. Wozasek: Zur Kenntnis des Glyko- gengehaltes der Leichenleber. Virchows Arch. path. Anat. 279, 819 (1931)Google Scholar
  316. Prinzmetal, M., E. M. Ornitz jr., B. Simkin and H. C. Bergman: Arterio-venous anastomoses in liver, spleen and lungs. Amer. J. Physiol. 152, 48 (1948).PubMedGoogle Scholar
  317. Quick, A. J.: The clinical application of the hippuric acid and prothrombin tests. Amer. J. clin. Path. 10, 222 (1940).Google Scholar
  318. Rabinowitsch, I. M.: Origin of urobilinogen, clinical experiment. Arch. int. Med. 46, 1014 (1930)Google Scholar
  319. Ralli, E. B., J. S. Robson, D. Clark and Ch. L. Hoagland: Factors influencing ascites in patients with cirrhosis of the liver. J. clin. Invest. 24, 316 (1945)PubMedGoogle Scholar
  320. Randall, J. T., R. D. B. Fraser, S. Jackson, A. V. W. Martin and A. C. T. North: Aspects of collagen structure. Nature (Lond.) 169, 1029 (1952)Google Scholar
  321. Rein, H.: Über ein Regulationssystem „Milz-Leber“ für den oxydativen Stoffwechsel der Körpergewebe und besonders des Herzens. Naturwissenschaften 36, 233, 260 (1949)Google Scholar
  322. Renold, A. E., A. B. Hastings and F. B. Nesbett: Utilization of glucose and fructose by liver from normal and diabetic rats. J. biol. Chem. 209, 687 (1954)PubMedGoogle Scholar
  323. Renold, A. E., and G. W. Thorn: Clinical usefulness of fructose. Amer. J. Med. 19, 163 (1955)PubMedGoogle Scholar
  324. Rich, A. R.: The formation of bile pigment. Physiol. Rev. 5, 182 (1925)Google Scholar
  325. Rich, A. R., and J. H. Bumstead: On the identity of hematoidin and bilirubin. Bull. Johns Hopk. Hosp. 36, 225 (1925)Google Scholar
  326. Rittenberg, D., and R. Schoenheimer: Deuterium as an indicator in the study of intermediary metabolism. VIII. Hydrogénation of fatty acids in the animal organism. J. biol. Chem. 117, 485 (1937)Google Scholar
  327. Robb-Smith, A. H. T.: Discussion on the collagen vascular diseases. Proc. roy. Soc. Med. 45, 811 (1952)PubMedGoogle Scholar
  328. Robb-Smith, A. H. T.: The functional significance of connective tissue. Lectures on the scientific basis of medicine, vol. II, 1952/53, p. 77—107. University of London, Athlone Press, 1954Google Scholar
  329. Roberts, W. M.: Variations in the phosphatase activity of the blood in disease. Brit. J. exp. Path. 11, 90 (1930)Google Scholar
  330. Roberts, W., and A. White: Studies on the origin of the serum proteins. J. biol. Chem. 180, 505 (1949)PubMedGoogle Scholar
  331. Robson, J. M., and C. A. Keele: Recent advances in pharmacology, p. 355. London: J.A.Churchill 1951Google Scholar
  332. Rosenfeld, G.: Die Oxydationswege des Zuckers. Berl. klin. Wschr. 1907, 1663Google Scholar
  333. Rosenthal, F., u. M. V. Falkenhausen: Beiträge zu einer Chromodiagnostik der Leberfunktion. (Chromo- choloskopie.) Klin. Wschr. 1922, 832Google Scholar
  334. Rosenthal, S. M., and E. C. White: Clinical application of the bromsulphalein test for hepatic function. J. Amer. med. Ass. 84, 1112 (1925)Google Scholar
  335. Rothlin, E., u. W. R. Schalch: Vergleichende Untersuchung einiger Gallensäuren. Helv. physiol. Acta 2, 249 (1944)Google Scholar
  336. Rüegg, E.: Über Adrenalinwirkung an der Hundeleber. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 171, 716 (1933)Google Scholar
  337. Rutherford, W.: On the physiological action of drugs on the secretion of bile. Trans, roy. Soc. Edinb. 29, 133 (1880).Google Scholar
  338. Sakami, W.: The conversion of formate and glycine to serine and glycogen in the intact rat. J. biol. Chem. 176, 995 (1948)PubMedGoogle Scholar
  339. Sato, A., and T. Yoshttke: Studies on the detoxi- cation hormone of the liver (yakriton). 103 d report. A working hypothesis concerning the effect of yakriton. Tohoko J. exp. Med. 51, 23 (1949)Google Scholar
  340. Sborov, V. M., A. R. Jay and J.Watson: The effect of aureomvcin on urobilinogen formation and the fecal flora. J. Lab. clin. Med. 37, 52 (1951)PubMedGoogle Scholar
  341. Schaffner, F., M. Meitus, J. de la Huerga, D. F. Magee, F. Steigmann and H. Popper: Relation of plasma to biliary phospholipids. Fed. Proc. 10, 369 (1951)Google Scholar
  342. Schegalow D: Über die Arbeit der Magendrüsen bei Unterbindung der Ausführungsgänge des Pankreas und über das Eiweißferment in der Galle. Sitzg der Ges. der russ. Ärzte. Wratsch 15. Arch. Verdau.-Kr. 8, 346 (1902)Google Scholar
  343. Schettler, G.: VII. Neues vom Cholesterinstoff Wechsel. Ergebn. inn. Med. Kinderheilk., N. F. 3, 299 (1952)Google Scholar
  344. Schmid, R.: Direct-reacting bilirubin, bilirubin glucuronide, in serum, bile, and urine. Science 124, 76 (1956)PubMedGoogle Scholar
  345. Schmid, R.: Neuere Gesichtspunkte auf dem Gebiete des Gallenfarbstoff — wechsels. Helv. med. Acta 24, 273 (1957)PubMedGoogle Scholar
  346. Schmidt, C. R., J. M. Beazell, A. J. Atkinson and A. C. Ivy: The effect of therapeutic agents on the volume and the constituents of bile. Amer. J. dig. Dis. 5, 613 (1938)Google Scholar
  347. Schoenheimer, R.: The dynamic state of body constituents. Cambridge, Mass.: Harvard University Press 1942Google Scholar
  348. Schoenheimer, R., S. Ratner-Rittenberg and M. Heidelberger: The ineraction of the blood proteins of the rat with dietary nitrogen. J. biol. Chem. 144, 541 (1942)Google Scholar
  349. Schoenheimer, R., and D. Rittenberg: Deuterium as an indicator in the study of intermediary metabolism. V. The des- aturation of fatty acide in the organism. J. biol. Chem. 113, 505 (1936)Google Scholar
  350. Schoenheimer, R., and D. Rittenberg: The study of intermediary metabolism of animals with the aid of isotopes. Physiol. Rev. 20, 218 (1940)Google Scholar
  351. Schoenheimer, R., D. Rittenberg, B. N. Berg and L. Rousselot: Deuterium as an indicator in the study of intermediary metabolism. VII. Studies in bile acid formation. J. biol. Chem. 115, 635 (1936)Google Scholar
  352. Schwab, L., and W. D. Lotspeich: Renal tubular reab- sorption of acetoacetate in the dog. Amer. J. Physiol. 176, 195 (1954)PubMedGoogle Scholar
  353. Schweizer, W., u. H. Reber: Zur Frage der Antikörperbildung in Lymphozyten. Z. ges. exp. Med. 116, 265 (1950)Google Scholar
  354. Schwiegk, H.: Untersuchungen über die Leberdurchblutung und den Pfortaderkreislauf. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 168, 693 (1932)Google Scholar
  355. Seegers, W. H.: Recent advances in our knowledge of prothrombin. Amer. J. clin. Path. 19, 41 (1949)Google Scholar
  356. Seifter, J., D. H. Baeder and A. J. Begany: Influence of hyaluronidase and steroids on permeability of synovial membrane. Proc. Soc. exp. Biol. (N. Y.) 72, 277 (1949)Google Scholar
  357. Seifter, J., D. H. Baeder u. A. Dervinis: Alteration in permeability of some membranes by hyaluronidase and inhibition of this effect by steroids. Proc. Soc. exp. Biol. (N. Y.) 72, 136 (1949)Google Scholar
  358. Seifter, J., D. R. Fitch, D. H. Baeder and A.J. Begany: The action of hyaluronidase and steroids on membrane permeability. Amer. J. Med. Sei. 219, 346 (1950)Google Scholar
  359. Seneviratne, R. D.: Quart. J. exp. Physiol. 35, 77 (1949). Zit. nach Ann. Rev. Physiol. 13 (1951)Google Scholar
  360. Shohl, A. T.: Mineral metabolism. New York: Reinhold Publ. corporation 1939Google Scholar
  361. Shore, M. L., and D. B. Zilversmit: Role of reticuloendothelial system in uptake of plasma phospholipids. Fed. Proc. 11, 147 (1952)Google Scholar
  362. Siedel, W., u. D. Fischer: Über die Konstitution des Bilirubins, Synthese der Neo- und der Iso-neo- xanthobilirubinsäure. Hoppe-Sevlers Z. physiol. Chem. 214, 145 (1933)Google Scholar
  363. Siedel, W., u. H. Möller: Über Mesobilifuscin, ein neues physiologisches Abbauprodukt des Haems bzw. Haematins. I. Mitt. Konstitution und Teilsynthese. Hoppe-Seylers Z. Physiol. Chem. 259, 113 (1939)Google Scholar
  364. Siedel, W., W. Stich u. F. Eisenreich: Pro-mesobilifuscin (Meso- bilileukan), ein neues physiologisches Abbauprodukt des Blutfarbstoffes. Naturwissenschaften 35, 316 (1948)Google Scholar
  365. Siegmund, H.: Üntersuchungen über Immunität und Entzündung. Verh. dtsch. path. Ges. 19, 114 (1923)Google Scholar
  366. Simkin, B., R. H. Broh-Kahn and A. Mirsky: Diet and activity of the insulin inactivation system of rat liver. Fed. Proc. 8, 146 (1949)Google Scholar
  367. Smith, H. P., and G. H. Whipple: Bile salt metabolism. IX. Eck fistula modifies bile salt output. J. biol. Chem. 89, 739 (1930)Google Scholar
  368. Smith, L. H., R. H. Ettinger and D. Seligson: A comparison of the metabolism of fructose and glucose in hepatic disease and diabetes mellitus. J. clin. Invest. 32, 273 (1953)PubMedGoogle Scholar
  369. Smyth, F. S., and G. H. Whipple: Bile salt metabolism. III. Gelatin, fish, yeast, cod liver and meat extracts. J. biol. Chem. 59, 647 (1924)Google Scholar
  370. Snell, A. H., and J. F. Weir: Medical treatment in diseases of the liver and bile passages. J. Amer. med. Ass. 89, 1209 (1927)Google Scholar
  371. Sobotka, H.: Physiological chemistry of the bile. London: Baillicrc, Tindall & Cox 1937Google Scholar
  372. Soettma, R.: Über die extrahepatische Bilirubinbildung. Arch. klin. Chir. 149, 206 (1928)Google Scholar
  373. Solvonuk, P. F., L. B. Jaques, J. E. Leddy, L. W. Trevoy and J. W. T. Spinks: Experiments with C14 menadione (Vitamin K3). Proc. Soc. exp. Biol. (N. Y.) 79, 597 (1952)Google Scholar
  374. Soodak, M., and F. Lipmann: Enzymatic condensation of acetate to acetoacetate in liver extracts. J. biol. Chem. 175, 999 (1948)PubMedGoogle Scholar
  375. Soskin, S., H. E. Essex, J. F. Herrick and F. C. Mann: The mechanism of regulation of the blood sugar by the liver. Amer. J. Physiol. 124, 558 (1938)Google Scholar
  376. Soskin, S., and R. Levine: Carbohydrate metabolism. Chicago, 111.: University Chicago Press 1947Google Scholar
  377. Sottrkes, T. L.: Carbohydrate metabolism. Biochemistry and physiology of nutrition, edit, by G. H. Bourne and G. W. Kidder, vol. I, p. 57. New York: Academic Press Inc., Publ. 1953Google Scholar
  378. Sprinson, D. B., and D. Rittenberg: The rate of interaction of amino acids of the diet with the tissue proteins. J. biol. Chem. 180, 715 (1949)PubMedGoogle Scholar
  379. Srere, P.A., I. L. Chaikoff, S. S. Treitman and L. S. Burstein: The extrahepatic synthesis of cholesterol. J. biol. Chem. 182, 629 (1950)Google Scholar
  380. Stadie, W. C., J. A. Zapp and F. D. W. Lukens: The effect of insulin upon ketone metabolism of normal and diabetic cats. J. biol. Chem. 132, 423 (1940)Google Scholar
  381. Staub, H.: Bahnung im intermediären Zuckerstoffwechsel. Bio- chem. Z. 118, 93 (1921)Google Scholar
  382. Staub, H.: Eine neue experimentelle toxische Leberschädigung mit Chloranil- Nebenprodukt (Chi. N. Pr.). I. Mitt. Chemische Untersuchungen zur Isolierung der toxischen Substanz. Biochem. Z. 178, 167 (1926)Google Scholar
  383. Staub, H.: Stoffwechseluntersuchungen an mit technischem Chloranil (t. Chi.) oder Chloranilnebenprodukten (Chi. N. Pr.) lebergeschädigten Kaninchen. II. Biochem. Z. 170, 125 (1926)Google Scholar
  384. Staub, H.: Experimentelle Leberschädigung mit technischem Chloranil (t. Chi.) und Chloranilnebenprodukt (Chi. N. Pr.). III. Mitt. Chemie normaler und toxisch geschädigter Kaninchenlebern. Biochem. Z. 179, 227 (1926) IV. Mitt. Pathologisch-anatoimsche Untersuchungen. Frankfurt. Z. Path. 35, 124 (1927)Google Scholar
  385. Staub, H.: Überfunktionelle Leberdiagnostik. Schweiz, med. Wschr. 1929, 308Google Scholar
  386. Staub, H.: Pankreas. In Handbuch der normalen und pathologischen Physiologie (Bethe-Bergmann-Embden-Ellinger), Bd. XVI/1, S. 557. Berlin: Springer 1930Google Scholar
  387. Staub, H.: Methode zur fortlaufenden Bestimmung des Gaswechsels isoliert durchströmter Organe im geschlossenen System. I. Mitt. Über Leberstoffwechsel. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 162, 420 (1931)Google Scholar
  388. Staub, H.: Methode zur isolierten Durchströmung der Säugetierleber in situ bei erhaltener, autonomer zentraler Innervation. II. Mitt. Über Leberstoffwechsel. Naunyn-Schmiedeberg’s Arch, exp. Path. Pharmak. 162, 428 (1931)Google Scholar
  389. Staub, H.: Gaswechsel- und Bilanz versuche an der isoliert durchströmten, innervierten oder nichtinnervierten Leber. III. Mitt. Über Leberstoffwechsel. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 162, 433 (1931)Google Scholar
  390. Staub, H.: Über beginnende Leberinsuffizienz. Dtsch. med. Wschr. 1931, 2133Google Scholar
  391. Staub, H.: Zur funktionellen Leberprüfung. Helv. med. Acta 14, 615 (1947)PubMedGoogle Scholar
  392. Staub, H.: Problematik in Physiologie, Klinik und Therapie der Leberkrankheiten. Helv. med. Acta 17, 376 (1950)PubMedGoogle Scholar
  393. Staub, H.: Kohlenhydratstoffwechsel, Insulin und Diabetes. Stuttgart: Georg Thieme 1956Google Scholar
  394. Staub, H., u. P. Clerc: Beitrag zur Ketonurie. Klin. Wschr. 1931, 2001Google Scholar
  395. Stein, H. B.: The van den Bergh reaction with particular reference to obstructive and hepato-cellular jaundice. S. Afr. J. med. Sci. 6, 104 (1941)Google Scholar
  396. Stein, M., B.Schwartz and L. A. Mirsky: The antidiuretic activity of plasma of patients with hepatic cirrhosis, congestive heart failure, hypertension and other clinical disorders. J. clin. Invest. 33, 77 (1954)PubMedGoogle Scholar
  397. Stetten jr., De W.: Biological relationships of choline, ethanolamine and related compounds. J. biol. Chem. 138, 437 (1941)Google Scholar
  398. Stetten jr., De W.: Biological relationships of choline, ethanolamine, and related compounds. J. biol. Chem. 140, 143 (1941)Google Scholar
  399. Stetten jr., De W.: Biological synthesis of choline by rats on diets with and without adequate lipotropic methyl. J. biol. Chem. 142, 629 (1942)Google Scholar
  400. Stetten jr., De W., and G. E. Boxer: Studies in carbohydrate metabolism. I. The rate of turnover of liver and carcass glycogen, studied with the aid of deuterium. J. biol. Chem. 155, 231 (1944)Google Scholar
  401. Stetten jr., De W., and G. F. Grail: Effect of dietary choline, ethanolamine, serine, cystine, homocystine, and guanidoacetic acid on the liver lipids of rats. J. biol. Chem. 144, 175 (1942)Google Scholar
  402. Stetten jr., De W., and G. F. Grail: The rates of replacement of depot and liver fatty acids in mice. J. biol. Chem. 148, 509 (1943)Google Scholar
  403. Stetten jr., De W., and Y. J. Topper: The metabolism of carbohydrates. Amer. J. Med. 19, 96 (1955)PubMedGoogle Scholar
  404. Still, E. U., J. W. Mc Bean and F. A. Ries: Studies on the physiology of secretin. IV. The effect on the secretion of bile. Amer. J. Physiol. 99, 94 (1931/32)Google Scholar
  405. Stransky, E.: Weitere Untersuchungen über die Pharmakologie der Gallensekretion. Biochem. Z. 155, 256 (1925)Google Scholar
  406. Stransky, E.: Untersuchungen über die Pharmakologie der Gallensekretion. IV. Ausscheidung von Stoffen durch die Galle. Z. ges. exp. Med. 77, 807 (1931)Google Scholar
  407. Strisower, E.H., I. L. Chaikoff and E. O. Weinman: Conversion of C14-palmatic acid to glucose. J. biol. Chem. 192, 453 (1951)PubMedGoogle Scholar
  408. Sutherland, E. W., S. P. Colo wick and F. C. Cori: The enzymatic conversion of glucose-6-phosphate to glycogen. J. biol. Chem. 140, 309 (1941)Google Scholar
  409. Sutherland, E. W., T. Z. Posternak and C. F. Cori: The mechanism of action of phosphoglucomutase and phosphoglyceric acid mutase. J. biol. Chem. 179, 501 (1949)PubMedGoogle Scholar
  410. Sweat, M. L., and L. T. Samuels: Diphosphopyridine nucleotide as an essential factor in the metabolism of testosterone by the liver. J. biol. Chem. 173, 433 (1948).PubMedGoogle Scholar
  411. Tada, Y., and K. Nakashima: A new dye for test of liver and biliary tract function. J. Amer. med. Ass. 83, 1292 (1924)Google Scholar
  412. Tanturi, C. A., and A. C. Ivy: A study of the effect of vascular changes in the liver and the excitation of its nerve supply on the formation of bile. Amer. J. Physiol. 121, 61 (1938)Google Scholar
  413. Tanturi, C. A., and A. C. Ivy: On the existence of secretory nerves in the vagi for and the reflex excitation and inhibition of bile secretion. Amer. J. Physiol. 121, 270 (1938)Google Scholar
  414. Taurog, A., F. N. Briggs and T. L. Chaikoff: I131-labeled L-thyroxine. J. biol. Chem. 191, 29 (1951)PubMedGoogle Scholar
  415. Tucker, H. F., and H. C. Eckstein: The effect of supplementary methione and cystine on the production of fatty livers by diet. J. biol. Chem. 121, 479 (1937)Google Scholar
  416. Twombly, G. H., and E. F. Schoenewaldt: The metabolism of radioactive dibromoestrone in man. Cancer (Philad.) 3, 601 (1950).Google Scholar
  417. Vannotti, A., u. A. Delachaux: Der Eisenstoffwechsel und seine klinische Bedeutung. Basel: Benno Schwabe & Co. 1942Google Scholar
  418. Vigneaud, V. du, J. P. Chandler, A. W. Moyer and D.M. Keppel: The effect of choline on the ability of homocystine to replace methione in the diet. J. biol. Chem. 131, 57 (1939)Google Scholar
  419. Virchow, R.: Die pathologischen Pigmente. Virchows Arch. path. Anat. 1, 379 (1847)Google Scholar
  420. Virtue, R. W., and M. E. Doster-Virtue: Studies on the production of taurocholic acid in the dog. J. biol. Chem. 127, 431 (1939)Google Scholar
  421. Vorhaus, L. J., and R. M. Kark: Serum Cholinesterase in health and disease. Amer. J. Med. 14, 707 (1953).PubMedGoogle Scholar
  422. Wachstein, M., and F. G. Zak: Intracellular bile canaliculi in the rabbit liver. Proc. Soc. exp. Biol. (N. Y.) 72, 234 (1949)Google Scholar
  423. Wachstein, M., and F. G. Zak: Alkaline phosphatase in experimental biliary cirrhosis. Amer. J. clin. Path. 20, 99 (1950)Google Scholar
  424. Wakim, K. G.: The effect of certain substances on the intrahepatic circulation of blood in the intact animal. Amer. Heart J. 27, 289 (1944)Google Scholar
  425. Wakim, K. G., and F. E. Mann: The intrahepatic circulation of the blood. Anat. Ree. 82, 233 (1942)Google Scholar
  426. Walker, W. J., E. Y. Lawry, D. E. Love, G. V. Mann, S. A. Levine and F. J. Stare: Effect of weight reduction and caloric balance on serum lipoprotein and cholesterol levels. Amer. J. Med. 14, 654 (1953)PubMedGoogle Scholar
  427. Walzel, P., u. O. Wteltmann: Studien zur Gallensekretion bei einer Leber-Gallenfistel nach vorausgegangener Totalexstirpation einer sog. idiopathischen Choledochuszyste. Mitt. Grenzgeb. Med. Chir. 37, 437 (1924)Google Scholar
  428. Wang, C. C., and M. I. Grossman: Nonexcretion of serum alkaline phosphatase by the liver and the pancreas of normal dogs. Amer. J. Physiol. 156, 256 (1949)PubMedGoogle Scholar
  429. Warren, R., and J. E. Rhoads: Hepatic origin of plasmaprothrombin. Observations after total hepat- ectomy in dog. Amer. J. med. Sei. 198, 193 (1939)Google Scholar
  430. Watson, C. J.: Some newer concepts of natural derivatives of hemoglobin; general considerations; serum bilirubin and bili- rubinuria, erythrocyte protoporphyrin. Blood 1, 99 (1946)PubMedGoogle Scholar
  431. Watson, C. J.: Urobilin and stercobilin. Harvey Lect. 44, 41 (1948/49)Google Scholar
  432. Watson, C. J., V. Sborov and S. Schwartz: IV. Formation of (laevorotatory) stercobilin from mesobilirubinogen in human feces. Proc. Soc. exp. Biol. (N. Y.) 49, 647 (1942)Google Scholar
  433. Watson, C. J., S. Schwartz and V. Sborov: III. Formation of d-urobilin from mesobilirubinogen in human bile. Proc. Soc. exp. Biol. (N. Y.) 49, 643 (1942)Google Scholar
  434. Weichselbaum, T. E., H. W. Margraf and R. Elman: Metabolism of intravenously infused fructose in man. Metabolism 2, 434 (1953)PubMedGoogle Scholar
  435. Werk, E. E., H. T. McPherson, L. W. Hamrick jr., J. D. Myers and F. L. Engel: Studies on ketone metabolism in man. I. A method for quantitative estimation of splanchnic ketone production. J. clin. Invest. 34, 1256 (1955)Google Scholar
  436. Whipple, G. H.: The origin and significance of the constituents of the bile. Physiol. Rev. 2, 440 (1922)Google Scholar
  437. Whipple, G. H., and C. M. Hooper: Icterus — a rapid change of hemoglobin to bile pigment in the circulation outside the liver. J. exp. Med. 17, 612 (1913)Google Scholar
  438. Whipple, G. H., L. L. Miller and F. S. Robscheit-Robbins: Raiding of body tissue protein to form plasma protein and hemoglobin. J. exp. Med. 85, 277 (1947)PubMedGoogle Scholar
  439. White, A. G., G. Rubin and L. Leiter: Studies in edema. IV. Water retention and the antidiuretic hormone in hepatic and cardiac disease. J. clin. Invest. 32, 931 (1953)PubMedGoogle Scholar
  440. Wilson, A., R. J. Calvert and H. Geoghegan: Plasma Cholinesterase activity in liver disease. J. clin. Invest. 31, 815 (1952)PubMedGoogle Scholar
  441. Wirts, C. W., and B. K. Bradford: The biliary excretion of bromsulfalein as a test of liver function in a group of patients following hepatitis or serum jaundice. J. clin. Invest. 27, 600 (1948)Google Scholar
  442. Wirts, C. W., and A. Cantarow: A study of the excretion of bromsulfalein in the bile. Amer. J. dig. Dis. 9, 101 (1942)Google Scholar
  443. With, T. K.: Studies on serum bilirubin. Acta med. scand. 115, 542 (1943)Google Scholar
  444. With, T. K.: Biology of bile pigments. Copenhagen: Arne Frost-Hansen 1954Google Scholar
  445. Wittich, V.: Zur Physiologie der menschlichen Galle. Pflügers Arch. ges. Phys ol. 6, 181 (1872)Google Scholar
  446. Wohlgemuth, J.: Über eine neue Methode zur quantitativen Bestimmung des diastatischen Fermentes. Biochem. Z. 9, 1 (1908)Google Scholar
  447. Wtood, H. G.: Symp. quant. Biol. 13, 201 (1948)Google Scholar
  448. Worm, M.: Über Vorkommen und Menge von Cholin und von cholinhaltigen Lipoiden in der Galle. Hoppe — Seylers Z. physiol. Chem. 257, 140 (1939).Google Scholar
  449. Zabin, I.: On the conversion of palmitic acid to stearic acid in animal tissues. J. biol. Chem. 189, 355 (1951)PubMedGoogle Scholar
  450. Zeile, K., u. W. Siedel: VII. Pyrrolfarbstoffe. In Physiologische Chemie, ein Lehr- und Handbuch, herausgeg. von B. Flaschenträger u. E. Lehnartz. Bd. I, S. 845—980: Die Stoffe. Berlin-Göttingen-Heidelberg: Springer 1951Google Scholar
  451. Zucker, T. F., P. G. Newburger and N. B. Berg: Amylase of serum in relation to functional states of the pancreas. Amer. J. Physiol. 102, 209 (1932)Google Scholar
  452. Zweifach, B. W., and R. Chambers: Blood-borne vasotropic substances in experimental shock. Amer. J. Physiol. 150, 239 (1947)PubMedGoogle Scholar
  453. Zweifach, B. W., and R. Chambers: The action of hyaluronidase extracts on the capillary wall. Ann. N. Y. Acad. Sci. 52, 1047 (1950)PubMedGoogle Scholar
  454. Zweifach, B. W., R. Chambers, B. E. Löwenstein and R. E. Lee: Vaso excitor and depressor substances as „toxic“ factors in experimentally induced shock. Proc. Soc. exp. Biol. (N. Y.) 56, 127 (1944).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1959

Authors and Affiliations

  • E. Grogg
  • H. Staub
    • 1
  1. 1.Medizinischen UniversitätsklinikBaselSwitzerland

Personalised recommendations