Funktionelle Orthologie und Pathologie der Nierenausscheidung

  • H. Sarre
  • J. Gayer
Part of the Handbuch der allgemeinen Pathologie book series (PATHOLOGIE, volume 5 / 2)

Zusammenfassung

Anatomische Besonderheiten des Glomerulum, wie die große Zahl von parallel und nicht seriengeschalteten Capillarschlingen, die Differenz des Durchmessers zwischen Vas afferens und efferens, der Anschluß des Vas afferens unmittelbar an größere Arterien, legen nahe, daß ein relativ hoher Blutdruck in den Glomerulumcapillaren besteht, der für eine Filtration günstig wäre. In der Tat ist der mittlere Druck in den Glumerulumcapillaren mit 60–80 mm Hg1 der höchste Capillardruck im Körper (etwa 60% des Aortendruckes). Die Glomerulumcapillarmembran, die Lamina densa, hat nach den elektronenmikroskopischen Untersuchungen von Hall 2 einen Durchmesser von etwa 500–600 Å = 0,05 µ. Sie ist unterbrochen von Poren mit einem Durchmesser von 100 Å, die ungefähr 1/20 der Oberfläche einnehmen. Nach diesen Befunden allein erscheint jede Theorie einer Sekretion durch diese dünnen Membranen, wie sie von Heidenhain 3 und Pütter 4 vermutet wurden, höchst unwahrscheinlich. In jüngster Zeit haben die Untersuchungen von Pappenheimer 5 die Abhängigkeit der Filtrationsrate von der Molekülgröße rechnerisch erwiesen (s. später unter 2. k, S. 11).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abderhalden, E.: Familiäre Cystindiathese. Z. physiol. Chem. 38, 557 (1903).Google Scholar
  2. Achard, C., J. Levy et Z. Marinowski: Sur l’acide urique ultrafiltrable. C. r. Soc. Biol. 111, 366 (1932).Google Scholar
  3. Addis, T.: The renal lesion in Brigth’s disease. Amer. J. Med. Sei. 176, 617 (1928).Google Scholar
  4. Addis, T.:Glomerular nephritis: Diagnosis and treatment. New York: Macmillan & Co. 1948.Google Scholar
  5. Adlersberg, D.: Newer advances in gout. Bull. New York Acad. Med. 25, 651 (1949).Google Scholar
  6. Adlersberg, D., E. Grishman and H. Sobotka: Uric acid partition in gout and in hepatic disease. Arch. Int. Med. 70, 101 (1942).Google Scholar
  7. Aitken, R. S.: On the renal threshold for chloride in man. J. of Physiol. 67, 199 (1929).Google Scholar
  8. Albright, F., W. Y. Consolazio, F. S. Coombs, H. W. Sulko Witsch and J. H. Talbot: Metabolic studies and therapy in case of nephrocalcinosis with rickets and dwarfism. Bull. Johns Hopkins Hosp. 66, 7 (1940).Google Scholar
  9. Albright, F., and E. C. Reifenstein: Parathyroid gland and metabolic bone disease. Baltimore: Williams & Wilkins Company 1948.Google Scholar
  10. Allen, T. H., and P. D. Orahovats: Spectrophotometric measurements of traces of dye T 1824 by extraction with cellophane from both blood serum and urine of normal dogs. Amer. J. Physiol. 154, 27 (1928).Google Scholar
  11. Alving, A. S., and B. P. Gordon: Studies of urea, creatinine and ammonia excretion in dogs in acidosis. J. of Biol. Chem. 120, 103 (1937).Google Scholar
  12. Alving, A. S., and A. E. Mirsky: The nature of plasma and urinary protein in nephrosis. J. Clin. Invest. 15, 215 (1936).PubMedGoogle Scholar
  13. Amberson, W. R., T. P. Nash, A. G. Mulder and D. Binns: The relationship between tissue chloride and plasma chloride. Amer. J. Physiol. 122, 224 (1948).Google Scholar
  14. Antopol, W., D. Lehr, J. Churg and H. Sprinz: Changes in the urinary tract and other organs after administration of three sulfanilamid derivates. Arch, of Path. 31, 592 (1941).Google Scholar
  15. Archibald, R. M.: The enzymatic determination of glutamine. J. of Biol. Chem. 154, 643 (1944).Google Scholar
  16. Archibald, R. M.: Preparation and assay of glutaminase for glutamine determinations. J. of Biol. Chem. 154, 657 (1944).Google Scholar
  17. Arkin, A., and H. Popper: Urea reabsorption and relation between creatinine and urea clearance in renal disease. Arch. Int. Med. 65, 627 (1940).Google Scholar
  18. Arons, W., W. Christensen and M. Sosman: Nephrocalcinosis visible by X-ray associated with chronic glomerulonephritis. Ann. Int. Med. 42, 260 (1955).PubMedGoogle Scholar
  19. Aschoff, L.: Über Nierenerkrankungen mit Brightschem Symptomenkomplex. Med. Klin. 1927, 1477.Google Scholar
  20. Austin, J. H., E. Stillman and D. D. van Slyke: Factors governing the excretion rate of urea. J. of Biol. Chem. 46, 91 (1921).Google Scholar
  21. Axelrod, D. R., and R. F. Pitts: Effects of hypoxia on renal tubular function. J. Appl. Physiol. 4, 593 (1951/52).Google Scholar
  22. Ayer, J. L., W. A. Schiess and R. F. Pitts: Independence of phosphate reabsorption and glomerular filtration in the dog. Amer. J. Physiol. 151, 168 (1947).PubMedGoogle Scholar
  23. Baez, S., A. Mazur and E. Shorr: Hepatorenal factors in circulatory homeostasis. XX. Antidiuretic action of hepatic vasodepressor, VDM (ferritin). Amer. J. Physiol. 162, 198 (1950).PubMedGoogle Scholar
  24. Baez, S., A. Mazur and E. Shorr:Role of neurohypophysis in ferritin-induced antidiuresis. Amer. J. Physiol. 169, 123 (1952).Google Scholar
  25. Baldes, E. J., and F. H. Smirk: The effect of water drinking, mineral starvation and salt administration on the total osmotic pressure of the blood in man, chiefly in relation to the problems of water absorption and water diuresis. J. of Physiol. 82, 62 (1934).Google Scholar
  26. Baldwin, D. S., H. J. Berman, H. O. Heinemann and H. W. Smith: The elaboration of osmotically concentrated urine in renal disease. J. Clin. Invest. 34, 800 (1955).PubMedGoogle Scholar
  27. Balint, P.: Persönliche Mitteilung 1956.Google Scholar
  28. Balint, P., u. M. Balint: Über die chemische Zusammensetzung der menschlichen Bluteiweißkörper. Biochem. Z. 305, 310 (1940); 308, 83 (1941); 313, 192 (1942); 315, 49 (1943).Google Scholar
  29. Balint, P., A. Fekete, K. Lazlo u. G. Pinter: Nervous factors in the genesis of posthaemorrhagic anuria. Acta physiol. (Budapest) 6, 69 (1954).Google Scholar
  30. Barcley, J. A., W. J. Cooke u. R. A. Kenny: Evidence for a threecomponent system of renal excretion. Acta med. scand. (Stockh.) 128, 500 (1947).Google Scholar
  31. Barcroft, J., and A. T. G. Brodie: The gaseous metabolism of the kidney. J. of Physiol. 32, 18 (1904).Google Scholar
  32. Barcroft, J., and A. T. G. Brodie: The gaseous metabolism of the kidney. J. of Physiol. 33, 52 (1905).Google Scholar
  33. Barcroft, J., and H. Straub: The secretion of urine. J. of Physiol. 41, 145 (1910).Google Scholar
  34. Barger, A. C., R. S. Ross and H. L. Price: Reduced sodium excretion in dogs with mild valvular lesions of the heart and in dogs with congestive failure. Amer. J. Physiol. 180, 249 (1955).PubMedGoogle Scholar
  35. Bargmann, W.: Über die neurosekretorische Verknüpfung von Hypothalamus und Neurohypophyse. Z. Zellforsch. 34, 610 (1949).Google Scholar
  36. Bargmann, W.: Das Zwischenhirn-Hypophysensystem. Berlin-Göt- tingen-Heidelberg: Springer 1954.Google Scholar
  37. Bargmann, W., u. W. Hild: Über die Morphologie der neurosekretorischen Verknüpfung von Hypothalamus und Neurohypophyse. Acta anat. (Basel) 8, 264 (1949).Google Scholar
  38. Bariety, M.: L’énervation rénale expérimentale. Considérations physiopathologiques et pharmacodynamiques. Presse méd. 1939, 1609.Google Scholar
  39. Barker, M. H., and E. J. Kirk: Experimental edema in dogs in relation to edema of renal origin in patients. Arch. Int. Med. 45, 319 (1930).Google Scholar
  40. Barrnett, R. J., and A.M. Seligman: Histochemical demonstration of protein-bound sulfhydryl groups. Science (Lancaster, Pa.) 116, 323 (1952).Google Scholar
  41. Bayliss, L. E., and A. Brown: The part played by the renal nerves in the production of water diuresis in the hypophysectomized and decerebrated dog. J. of Physiol. 98, 190 (1940).Google Scholar
  42. Bearn, A. G., and H. G. Kunkel: Abnormalities of copper metabolism in Wilsons’ disease and their relationship to the aminoaciduria. J. Clin. Invest. 33, 400 (1954).PubMedGoogle Scholar
  43. Bell, E. T.: Renal diseases. Philadelphia: Lea a. Febiger 1947, 1950.Google Scholar
  44. Bennhold, H.: Die Serum — elektrophorese in Klinik und Forschung, Möglichkeiten und Ausblick. Med. Klin. 1954, 8.Google Scholar
  45. Bennhold, H., E. Kylin u. S. Rusnyak: Die Eiweißkörper des Blutplasmas. Dresden u. Leipzig 1938.Google Scholar
  46. Bensley, R. R., and W.B. Steen: The functions of the differentiated segments of the uriniferous tubule. Amer. J. Anat. 41, 75 (1928).Google Scholar
  47. Berger, E. Y., S. J. Färber and D. P. Earle jr.: Renal excretion of mannitol. Proc. Soc. Exper. Biol. a. Med. 66, 62 (1947).Google Scholar
  48. Berger, E. Y., M. Galdston and S. Horowitz: Effect of anoxic anoxia on human kidney. J. Clin. Invest. 28, 648 (1949).Google Scholar
  49. Berglund, H., and A. R. Frisk: Uric acid elimination in man. Acta med. scand. (Stockh.) 86, 233 (1935).Google Scholar
  50. Berliner, R. W.: Renal excretion of potassium and hydrogen ions. Federat. Proc. 11, 695 (1952).Google Scholar
  51. Berliner, R. W.: The realtionship between potassium excretion and urine acidification. The Kidney, Ciba Foundation Symposium, S. 147, 1954.Google Scholar
  52. Berliner, R. W., J. G. Hilton, T. F. Yii and T. J. Kennedy: The renal mechanism for urate excretion in man. J. Clin. Invest. 29, 396 (1950).PubMedGoogle Scholar
  53. Berliner, R. W., and T. J. Kennedy jr.: Renal tubular secretion of potassium in the normal dog. Proc. Soc. Exper. Biol. a. Med. 67, 542 (1948).Google Scholar
  54. Berliner, R. W., T. J. Kennedy jr. and J. G. Hilton: Studies in the renal mechanisms for the excretion of potassium. J. Clin. Invest. 28, 770 (1949).Google Scholar
  55. Berliner, R. W., T. J. Kennedy jr. and J. G. Hilton: Renal mechanism for excretion of potassium. Amer. J. Physiol. 162, 348 (1950).PubMedGoogle Scholar
  56. Berliner, R. W., T. J. Kennedy and J. Orloff: Relationship between acidification of the urine and potassium metabolism. Effect of carbonic anhydrase inhibition on potassium excretion. Amer. J. Med. 11, 274 (1951).PubMedGoogle Scholar
  57. Berliner, R. W., T. J. Kennedy and J. Orloff: Factors affecting the transport of potassium and hydrogen ions by the renal tubules. Arch, internat. Pharmacodynamic 97, 299 (1954).Google Scholar
  58. Bernard, C.: Leçons sur la chaleur animale. Paris 1876.Google Scholar
  59. Beyer, K. H.: New concept of competitive inhibition of the renal tubular excretion of penicillin. Science (Lancaster, Pa.) 105, 94 (1947).Google Scholar
  60. Beyer, K. H., P. A. Mattis, E. A. Patch and H. F. Russo: Para- aminohippuric acid: Its pharmacodynamic actions. J. of Pharmacol. 84,136 (1945).Google Scholar
  61. Beyer, K. H., S. E. Mckinney, E. K. Tillson and C. W. Green: 4-Carboxyphenylmethanesulfonanilide (caronamide): Its toxicologic effects. J. of Pharmacol. 91, 263 (1947).Google Scholar
  62. Beyer, K. H., A. K. Miller, H. F. Russo, E. A. Patch and W. F. Verwey: The inhibitory effect of caronamide on the renal elimination of penicillin. Amer. J. Physiol. 149, 355 (1947).PubMedGoogle Scholar
  63. Beyer, K. H., L. Peters, R. Woodward and W. F. Verwey: The enhancement of the physiological economy of penicillin in dogs by the simultaneous administration of para-aminohippuric acid. J. of Pharmacol. 82, 310 (1944).Google Scholar
  64. Beyer, K. H., H. F. Russo, E. A. Patch, E. K. Tillson and G. Shaner: Certain pharmacologic properties of 4-carboxyphenylmethanesulfonanilide (caronamide), including its effect on the renal clearance of compounds other than penicillin. J. of Pharmacol. 91, 272 (1947).Google Scholar
  65. Beyer, K. H., W. F. Verwey, R. Woodward, L. Peters and P. A. Mattis: The enhancement of the plasma concentration of penicillin in dogs by the simultaneous administration of para-aminohippuric acid. III. Amer. J. Med. Sei. 209, 608 (1945).Google Scholar
  66. Beyer, K. H., V. D. Wiebelhaus, E. K. Tillson, H. F. Russo and K. M. Wilhoyte: “Benemid”, p-(di-n-propyl-sulfamyl)-benzoic acid: Inhibition of glycine conjugativereactions. Proc. Soc. Exper. Biol. a. Med. 74, 772 (1950).Google Scholar
  67. Beyer, K. H., L. D. Wright, F. H. Russo, R. Skeggs and E. A. Patch: The renal clearance of essential amino acids: tryptophane, leucine, isoleucine, and valine. Amer. J. Physiol. 146, 330 (1946).PubMedGoogle Scholar
  68. Beyer, K. H., L. D. Wright, H. R. Skeggs, H. F. Russo and G. A. Shaner: Renal clearance of essential amino acids: their competition for reabsorption by the renal tubulus. Amer. J. Physiol. 151, 202 (1947).PubMedGoogle Scholar
  69. Bier, A.: Die Entstehung des Kollateralkreislaufs. I. Teil: Der arterielle Kreislauf. Arch. path. Anat. 147, 256, 444 (1897).Google Scholar
  70. Bier, A.: Die Entstehung des Kollateralkreislaufs. Teil II: Der Rückfluß des Blutes aus ischämischen Körperteilen. Arch. path. Anat. 153, 306, 434 (1898).Google Scholar
  71. Bieter, R. N.: The secretion pressure of the aglomerular kidney. Amer. J. Physiol. 97, 66 (1931).Google Scholar
  72. Bieter, R. N.: Excretion of phenol red by the aglomerular kidney. Proc. Soc. Exper. Biol, a. Med. 30, 981 (1933).Google Scholar
  73. Bieter, R. N., and A. D. Hirschfelder: The excretion of dyes and other substances in the frogs kidney and its bearing upon the theories of renal secretion, Amer. J. Physiol. 68, 326 (1924).Google Scholar
  74. Biggart, J. H., and G. L. Alexander: Experimental diabetes insipidus. J. of Path. 48, 405 (1939).Google Scholar
  75. Bing, J., and P. Effersöe: Comparative tests of thiosulphate and creatinine clearance in rabbits and cats. Acta physiol. scand. (Stockh.) 15, 231 (1948).Google Scholar
  76. Birnie, J. H.: Inactivation of posterior pituitary antidiuretic hormone by liver extracts. Federat. Proc. 9, 12 (1950).Google Scholar
  77. Birnie, J. H., W. J. Eversole, W. R. Boss, C. M. Osborn and R. Gaunt: Properties of the antidiuretic substance in the blood of normal and adrenal-ectomized rats. Federat. Proc. 8, 12 (1949).Google Scholar
  78. Birnie, J. H., W. J. Eversole and R. Gaunt: The extra-renal action of desoxycorticosteron. Survival and water intoxication studies. Endocrinology 42, 412 (1948).PubMedGoogle Scholar
  79. Birnie, J. H., R. Jenkins, W. J. Eversole and R. Gaunt: Antidiuretic substance in blood of normal and adrenalectomized rats. Proc. Soc. Exper. Biol. a. Med. 70, 83 (1949).Google Scholar
  80. Bishop, C., R. Rand and J. H. Talbott: The effect of benemid (p-(di-n-propylsulfamyl)-benzoic acid) on uric acid metabolism in one normal and one gouty subject. J. Clin. Invest. 30, 889 (1951).PubMedGoogle Scholar
  81. Bjering, T., u. E. Ollgaard: Studies in sulfate clearance. Acta med. scand. (Stockh.) 102, 55 (1939).Google Scholar
  82. Black, D. A. K., and M. D. Milne: Experimental potassium depletion in man. Clin. Sei. 11, 397 (1952).Google Scholar
  83. Black, D. A. K., R. Platt, Rowlands and Varley: Renal hemodynamics in acute nephritis. Clin. Sei. 6, 295 (1948).Google Scholar
  84. Blainey, J. D., J. Hardwicke and A. G. W. Whitfield: The nephrotic syndrome associated with trombosis of the renal veins. Lancet 1954 II, 1208.Google Scholar
  85. Blauch, M. B., and C. F. Koch: A new method for the determination of uric acid in blood with uricase. J. of Biol. Chem. 130, 443 (1939).Google Scholar
  86. Blegen, E., H. N. Haugen and K. Aas: Endogenous creatinine clearance. Scand. J. Clin. a. Labor. Invest. 191 (1949).Google Scholar
  87. Block, M. A., K. G. Wakim and F. C. Mann: Circulation through kidney during stimulation of renal nerves. Amer. J. Physiol. 169, 659 (1952).Google Scholar
  88. Block, M. A., K. G. Wakim and F. C. Mann: Renal function during stimulation of renal nerves. Amer. J. Physiol. 169, 670 (1952).PubMedGoogle Scholar
  89. Block, M. A., K. G. Wakim and F. C. Mann: Observations of neoprene casts of vascular bed of kidney. Proc. Soc. Exper. Biol. a. Med. 78, 610 (1952).Google Scholar
  90. Block, M. A., K. G. Wakim and F. C. Mann: Reactions of vessels of rat kidney after experimental occlusion of renal artery for various periods. Proc. Soc. Exper. Biol. a. Med. 80, 465 (1952).Google Scholar
  91. Block, M. A., K. G. Wakim and F. C. Mann: Certain features of vascular beds of corticomedullary and medullary regions of kidney. Arch, of Path. 53, 437 (1952).Google Scholar
  92. Blum, L.: L’azotémie par manque de chlorure de sodium. Ann. de Physiol. 4, 660 (1928).Google Scholar
  93. Blum, L.: L’azotémie par manque de sel. Paris: Masson & Cie. 1930.Google Scholar
  94. Blum, L., et P. Grabar: Troubles de la fonction rénale par hypochloruration. Monde méd. 1928, 731.Google Scholar
  95. Blum, L., et P. Grabar: Presse méd. 1928, 135.Google Scholar
  96. Blum, L., et P. Grabar: Troubles de la sécrétion rénale par manque de chlorure de sodium. C. r. Soc. Biol. Paris 48 (1928).Google Scholar
  97. Bock, H. E., u. A. Bornstein: Die humoral intakte, überlebende Niere. Pflügers Arch. 229, 187 (1931).Google Scholar
  98. Boger, W. P., and J. W. Crosson: Effect of caronamide on excretion of phenolsulfonphthalein. Amer. J. Clin. Path. 19, 381 (1949).Google Scholar
  99. Boger, W. P., u. R. T. Smith: Role of probenecid in the therapy of gout. Sv. Läkartidn. 51, 2021 (1954).Google Scholar
  100. Boger, W. P., and S. C. Strickland: Probenecid (Benemid). Its use and side- effects in 2502 patients. Arch. Int. Med. 95, 83 (1955).Google Scholar
  101. Bohle, A.: Kritischer Beitrag zur Morphologie einer endokrinen Nierenfunktion und deren Bedeutung für den Hochdruck. Arch. Kreislauf forsch. 20, 193 (1954).Google Scholar
  102. Bohn, H.: Untersuchungen zum Mechanismus des blassen Hochdruck. Z. klin. Med. 119, 100 (1932).Google Scholar
  103. Bohn, H., u. W. Schlapp: Weitere Erfahrungen über den Nachweis pressorischer Stoffe im Blute beim blassen Hochdruck. Z. Klin. Med. 127, 233 (1935).Google Scholar
  104. Bonomini, V., G. Gunellae B. Magnani: Contibuto alio studio dei rapporti cardiorenali nella patogenesi dello scompenso. Arch. Pat. e Clin. med. 31, 338 (1954).Google Scholar
  105. Bonsnes, R., L. Dill and E. Dana: The effect of diodrast on the normal uric acid clearances. J. Clin. Invest. 23, 776 (1944).PubMedGoogle Scholar
  106. Bordley, J., and A. N. Richards: Quantitative studies of the composition of glomerular urine. VIII. The concentration of uric acid in glomerular urine of snakes and frogs, determined by an ultramicro-adaption of Folin’s method. J. of Biol. Chem. 101, 193 (1933).Google Scholar
  107. Borst, J., L. de Vries, J. Molhuysen, J. Gerbrandy u. G. Blomert: Die drei Grundformen von Diurese und Polyurie bei paroxysmaler Tachycardie. Nederl. Tijdschr. Genessk. 1952, 2235.Google Scholar
  108. Bradley, S. E.: The validity of the clearance technique in the measurement of renal blood flow in normal man and in patients with essential hypertension. Josiah Macy jr. Foundation Conference, Factors regulating blood pressure. Trans. First Conference. April 24–25, S. 119 (1947).Google Scholar
  109. Bradley, S. E., and G. P. Bradley: The effect of increased intraabdominal pressure on renal function in man. J. Clin. Invest. 26, 1010 (1947).Google Scholar
  110. Bradley, S. E., G. P. Bradley, C. J. Tyson, J. J. Curry and W. D. Blake: Renal function in renal diseases. Amer. J. Med. 9, 766 (1950).PubMedGoogle Scholar
  111. Bradley, S. E., J. J. Curry and G. P. Bradley: Renal extraction of p-aminohippurate in normal subjects and in essential hypertension and chronic diffuse glomerulonephritis. Federat. Proc. 6, 79 (1947).Google Scholar
  112. Bradley, S. E., and M. H. Halperin: Renal oxygen consumption in man during abdominal compression. J. Clin. Invest. 27, 635 (1948).Google Scholar
  113. Bradley, S. E., and C. J. Tyson: The “nephroticsyndrome”. New England J. Med. 238, 223 (1948).Google Scholar
  114. Brand, E., B. Kassell and L. J. Saidel: Chemical, clinical and immunological studies on products of human plasma fractionation. III. Amino acid composition of plasma proteins. J. Clin. Invest. 23, 437 (1944).PubMedGoogle Scholar
  115. Brandfonbrenner, M., and H. M. Geller: Effect of dibenamine on renal blood flow in hemorrhagic shock. Amer. J. Physiol. 171, 482 (1952).Google Scholar
  116. Braun-Menéndez, E.: Hypophysis and blood pressure. Cardiologia (Basel) 21, 272 (1952).Google Scholar
  117. Braun-Menéndez, E., J. C. Fasciolo, L. F. Leloir, J. M. Munoz and A.C. Taquini: Renal hypertension. Springfield: Ch. C. Thomas 1946.Google Scholar
  118. Brazeau, P., and A. Gilman: Effect of C02-tension on renal tubular reabsorption of bicarbonate. Amer. J. Physiol. 175, 33 (1953).PubMedGoogle Scholar
  119. Breed, E. S., M. H. Maxwell and H. W. Smith: Significance of the renal juxtamedullary circulation in man. Amer. J. Physiol. 9, 216 (1950).Google Scholar
  120. Brick, J. B.: The clinical significance of aminoaciduria. New England J. Med. 247, 635 (1952).Google Scholar
  121. Briggs, A. P., D. M. Farrell, W. F. Hamilton, I. R. Remington, N. C. Wheeler and J. A. Winslow: Renal and circulatory factors in edema formation of congestive heart failure. J. Clin. Invest. 27, 810 (1948).Google Scholar
  122. Brinkman, R., R. Magaria, N. U. Meldrum and F. J. W. Roughton: The CO2-catalyst present in blood. J. of Physiol. 75, 3 (1932).Google Scholar
  123. Brochner-Mortensen, F. B.: Uric acid in blood and urine. Acta med. scand. (Stockh.) Suppl. 84 (1937).Google Scholar
  124. Brod, J., and J. H. Sirota: The renal clearance of endogenous,,creatinine” in man. J. Clin. Invest. 27, 645 (1948).Google Scholar
  125. Brod, J., and J. H. Sirota: Effects of emotional disturbance on water diuresis and renal blood flow in rabbit. Amer. J. Physiol. 157, 31 (1949).Google Scholar
  126. Brodsky, W. A., and S. Rapoport: The mechanism of polyuria of diabetes insipidus in man. The effect of osmotic loading. J. Clin. Invest. 30, 282 (1951).PubMedGoogle Scholar
  127. Bronsky, D., A. Dubin and D. S. Kushner: Diuretic action of benemid. Amer. J. Med. 18, 259 (1955).PubMedGoogle Scholar
  128. Brown, R. J. K.: A clinico-pathological study of cystinosis on two siblings. Arch. Dis. Childh. 27, 428 (1952).PubMedGoogle Scholar
  129. Brull, L.: Contribution à l’étude de l’état physico-chimique des constituants minéraux et du glucose plasmatiques. Arch, internat. Physiol. 32, 138 (1930).Google Scholar
  130. Brull, L.: Het werkingsmechanisme der bijschildklier. Bull. Acad. roy. Méd. 4, 135 (1939).Google Scholar
  131. Brull, L.: Reins non anesthésiés transportés au cou. C. r. Soc. Biol. Paris 130, 813 (1939).Google Scholar
  132. Brun, C.: Thiosulfate determination in kidney function tests; simple method for determination of thiosulfate in blood and urine. J. Labor, a. Clin. Med. 35, 152 (1950).Google Scholar
  133. Brun, C., T. Hilden u. F. Raaschou: The maximum tubular excretion of diodrast in the normal human kidney. Acta med. scand. (Stockh.) 127, 464 (1947).Google Scholar
  134. Brun, C., T. Hilden u. F. Raaschou: On the excretion of p-aminohippuric acid through the kidneys. Acta med. scand. (Stockh.) 127, 471 (1947).Google Scholar
  135. Brun, C., E. O. E. Knudsen u. F. Raaschou: The influence of posture on the kidney function. II. Glomerular dynamics in the passive erect posture. Acta med. scand. (Stockh.) 122, 332 (1945).Google Scholar
  136. Brun, C., E. O. E. Knudsen u. F. Raaschou: Post syncopal oliguria. Kidney function and circulatory collapse. Acta med. scand. (Stockh.) 122, 381 (1945).Google Scholar
  137. Buchborn, E.: Ein quantitativer biologischer Adiuretin-(Vasopressin-) Nachweis an der Kröte. Z. exper. Med. 125, 614 (1955).Google Scholar
  138. Buchborn, E.: Adiuretin und Serumosmolarität. Klin. Wschr. 1956, 953.Google Scholar
  139. Buchborn, E.: Effektiver osmotischer Plasmadruck und Adiuretinproduktion. Klin. Wschr. 1957, 717.Google Scholar
  140. Bucht, H., L. Werkö and B. Josephson: The oxygen consumption of the human kidney during heavy tubular excretory work. Scand. J. Clin. a. Labor. Invest. 1, 272 (1949).Google Scholar
  141. Bulger, H. A., and H. E. Johns: The determination of plasma uric acid. j. of Biol. Chem. 140, 427 (1941).Google Scholar
  142. Burch, G. E., P. Reaser and J. Cronvich: Rates of sodium turnover in normal subjects and in patients with congestive heart failure. J. Labor, a. Clin. Med. 32, 1169 (1947).Google Scholar
  143. Burgess, W. W., A.M. Harvey and E. K. Marshall jr.: The site of the antidiuretic action of pituitary extract. J. of Pharmacol. 49, 237 (1933).Google Scholar
  144. Burton, Opitz u. Lucas: Über die Blutversorgung der Tiere. I. Der Einfluß der Erhöhung des Druckes in den Harnwegen sowie der Reizung und Durchschneidung der den Plexus renalis bildenden Nervenfasern. Arch. ges. Physiol. 123, 553 (1908); 127, 143, 148 (1908).Google Scholar
  145. Byers, S. O., and M. Friedman: Rate of entrance of urate and allantoin into the cerebrospinal fluid of the dalmatian and non dalmatian dog. Amer. J. Physiol. 157, 394 (1949).PubMedGoogle Scholar
  146. Bykow, K.M., u. J. A. Alexejew-Berkmann: Die Ausbildung bedingter Reflexe auf die Harnausscheidung; bedingte Reflexe bei denervierter Niere. Pflügers Arch. 227, 301 (1931).Google Scholar
  147. Callaway, J. J., and W. Roemmich: Lower nephron nephrosis: Development of hypo- kaliaemia during recovery. Ann. Int. Med. 37, 784 (1952).PubMedGoogle Scholar
  148. Cargill, W. H.: The measurement of glomerular and tubular plasma flow in the normal and diseased human kidney. J. Clin. Invest. 28, 533 (1949).Google Scholar
  149. Carrel, A. C., and C. C. Guthrie: Anastomosis of blood vessels by the patching method and transplantation of the kidney. J. Amer. Med. Assoc. 47, 1648 (1906).Google Scholar
  150. Castex, M. R., A. Biasotti u A. Patalano: La reabsorcion tubular de glucosa en la diabetes renal. Rev. Soc. argent. Biol. 18, 351 (1942).Google Scholar
  151. Castleman, B., and R. H. Smithwick: The relation of vascular disease to the hypertension state. Based on an study of renal biopsv from one hundred hvpertensive patients. J. Amer. Med. Assoc. 121, 1256 (1948).Google Scholar
  152. Castleman, B., and R. H. Smithwick: New’England J. Med. 239–129 (1948).Google Scholar
  153. Chambers, G. H.: Changes in the rat’s posterior pituitary following sodium chloride administration. Anat. Ree. 92, 391 (1945).Google Scholar
  154. Chambers, G. H., E. V. Melville, R. S. Hare and K. Hare: Regulation of the release of Pituitrin by changes in the osmotic pressure of the plasma. Amer. J. Physiol. 144, 311 (1945).Google Scholar
  155. Chantrenne, H.: The requirement for coencvm A in the enzymatic synthesis of hippuric acid. J. of Biol. Chem. 189, 227 (1951).Google Scholar
  156. Chapman, C. B., and A. Henschel: The effect of water diuresis on renal plasma flow. Science (Lancaster, Pa.) 109, 232 (1939).Google Scholar
  157. Chapman, C. B., A. Henschel, J. Minckler, A. Forsgren and A. Keys: The effect of exercise on renal plasma flow in normal male subjects. J. Clin. Invest. 27, 639 (1948).Google Scholar
  158. Chart, J. J., and E. S. Shipley: The mechanism of sodium retention in cirrhosis of the liver. J. Clin. Invest. 32, 560 (1953).Google Scholar
  159. Chart, J. J., E. S. Shipley and E. G. Gordon: Evidence for sodium retaining factor in toxemia of pregnancy. Proc. Soc. Exper. Biol. a. Med. 78, 244 (1951).Google Scholar
  160. Chasis, H., H. A. Ranges, W. Goldring and H. W. Smith: The control of renal blood flow and glomerular filtration in normal man. J. Clin. Invest. 17, 683 (1938).PubMedGoogle Scholar
  161. Chasis, H., J. Redish, W. Goldring, H. A. Ranges and H. W. Smith: The use of sodium-p-amino- hippurate for the functional evaluation of the human kidney. J. Clin. Invest. 24, 583 (1945).PubMedGoogle Scholar
  162. Chasis, H., and H. W. Smith: The excretion of urea in normal man and in subjects with glomerulonephritis. J. Clin. Invest. 17, 347 (1938).PubMedGoogle Scholar
  163. Chen, G., and E. M. K. Geiling: Antidiuretic effect of posterior pituitary extract in completely and partially hypophysectomized rats. Proc. Soc. Exper. Biol. a. Med. 52, 152 (1943).Google Scholar
  164. Chen, P. S., and W. F. Neuman: Renal excretion of calcium be the dog. Amer. J. Physiol. 180, 623 (1955).PubMedGoogle Scholar
  165. Chen, P. S., and W. F. Neuman: Renal reabsorption of calcium through its inhibition by various chemical agents. Amer. J. Physiol. 180, 632 (1955).PubMedGoogle Scholar
  166. Chesley, L. C.: The validity of the calculation of standard urea clearances form low urine volumes. J. Clin. Invest. 16, 653 (1937).PubMedGoogle Scholar
  167. Chesley, L. C.: Renal excretion at low urine volumes an the mechanism of oliguria. J. Clin. Invest. 17, 591 (1938).PubMedGoogle Scholar
  168. Chesley, L. C., and E. R. Chesley: The diodrast clearance and renal blood flow in normal pregnant and non pregnant-women. Amer. J. Physiol. 127, 731 (1939).Google Scholar
  169. Chinard, F. P., H. D. Lauson, H. A. Eder, R. L. Greif and A. Hiller: A study of the mechanism of proteinuria in patients with the nephrotic syndrome. J. Clin. Invest. 33, 621 (1954).PubMedGoogle Scholar
  170. Christensen, J. F.: Three famillial cases of atypal late rickets. Acta paediatr. (Stockh.) 28, 247 (1941).Google Scholar
  171. Christman, A. A., P. W. Forster and M. B. Esterer: Allantoin content of blood. J. of Biol. Chem. 155, 161 (1944).Google Scholar
  172. Clark, J. K, and H. G. Barker: Effect of work on renal oxygen utilization. Federat. Proc 8, 26 (1949).Google Scholar
  173. Clausen, H.: Clearancesysteme, Halbwertszeitmethcde nach Dost und klinische Ergebnisse. Med. Mschr. 6, 568 (1952).PubMedGoogle Scholar
  174. Clausen, H.: Über die Clearancezeit (Halbwertszeit nach Dost). Z. inn. Med. 9, 305 (1954).Google Scholar
  175. Clay, R. D., E. M. Darmady and M. Hawkins: The nature of the renal lesion in the Fanconi-Syndrome. J. of Path. a. Bact. 65, 551 (1953).Google Scholar
  176. Cleve, H., u. F. Hartmann: Zur Entstehung der Nephrosen durch Plasma-pherese am Hund. Arch, exper. Path. u. Pharmakol. 223, 198 (1954).Google Scholar
  177. Climenko, D. R., and A. W. Wright: Effect of continued administration of sulfathiazole and sulfapyridine on monkeys. Arch, of Path. 32, 794 (1941).Google Scholar
  178. Conn, J. W.: Primary aldosteronism a new clinical syndrome. J. Labor, a. Clin. Med. 45, 6 (1955).Google Scholar
  179. Cooke, W. T., J. A. Barcley, A. P. T. Govan and L. Nagley: Osteoporosis associated with low serum phosphorus and renal glycosuria. Arch. Int. Med. 80, 147 (1947).Google Scholar
  180. Coombs, F. S., L. J. Pecora, E. Thorogood, W. V. Consolazio and J. H. Talbott: Renal function in patients with gout. J. Clin. Invest. 19, 525 (1940).PubMedGoogle Scholar
  181. Cooper, A. M., R. D. Eckardt, W. W. Faloon and C. S. Davidson: Investigation of the aminoaciduria in Wilson’s disease (hepatolenticular degeneration): Demonstration of a defect in renal function. J. Clin. Invest. 29, 265 (1950).PubMedGoogle Scholar
  182. Cope, C. L.: Inorganic sulfate excretion by the human kidney. J. of Physiol. 76, 329 (1932).Google Scholar
  183. Copenüaver, J. H., and R. P. Forster: Relation of intracellular accumulation of actively transported substances in thin slices of renal cortex to rate of secretion in vivo. Amer. J. Physiol. 183, 605 (1955).Google Scholar
  184. Corcoran, A. C., H. W. Smith and I. H. Page: The removal of diodrast from blood by the dog’s explanted kidney. Amer. J. Physiol. 134, 333 (1941).Google Scholar
  185. Corcoran, A. C., R. D. Taylor and I. H. Page: Circulatory responses to spinal and caudal anesthesia in hypertension. Relation to the effect of sympathectomy II. Effect on renal function. Amer. Heart J. 36,226 (1948).PubMedGoogle Scholar
  186. Corey, E. L., and S. W. Britton: The antagonistic action of desoxycorticosterone and post-pituitary extract on chloride and water balance. Amer. J. Physiol. 133, 511 (1941).Google Scholar
  187. Corey, F., H. Silvette and S. W. Britton: Hypophyseal and adrenal influence on renal function in rats. Amer. J. Physiol. 125, 644 (1939).Google Scholar
  188. Corneal, F. B., G. Hildick-Smith, M. G. Fell and T. F. McNair Scott: The evaluation of an effective dosage of caronamide (4-Carboxyphenylmethane-sulfonanilide) for the suppression of tubular excretion of penicillin in children. J. Clin. Invest. 27, 628 (1948).Google Scholar
  189. Coye, R. D., D. L. Maude, R. F. Dibble and C. L. Yuile: Experimental proteinuria. An electrophoretic study of three different types in dogs. Arch, of Path. 60, 548 (1955).Google Scholar
  190. Crawford, J. D., and B. Pikham: An assay method for antidiuretic hormone based on a more specific response index. Endocrinology 55, 521 (1924).Google Scholar
  191. Cross, R. J., and J. V. Taggart: Renal tubular transport: accumulation of p-aminohippurate by rabbit kidney slices. Amer. J. Physiol. 161, 181 (1950).PubMedGoogle Scholar
  192. Cross, R. J., J. Y. Taggart, G. A. Covo and D. E. Green: Studies on the cyclo- phorase system. VI. The coupling of oxydation and phosphorylation. J. of Biol. Chem. 177, 655 (1949).Google Scholar
  193. Crosson, J. W., W. P. Boger, C. C. Shaw and A. K. Miller: Caronamide for increasing penicillin plasma concentrations in man. J. Amer. Med. Assoc. 134, 1538 (1947).Google Scholar
  194. Cushny, C. A. R.: The secretion of the urine, 2. Aufl. London: Longmans, Green & Co. 1926.Google Scholar
  195. Daniel, P.M., M. M. L. Prichard and J.N. Ward-Mc Quaid: Removal of the clip on the renal artery in rabbits with experimental chronic hypertension. Quart. J. Exper. Physiol. 39, 101 (1945).Google Scholar
  196. Darmady, E. M.: Renal lesions in relation to aminoaciduria and water-diuresis. The kidney. Ciba-Foundation-Symposion, S. 27. London: J. A. Churchill 1954.Google Scholar
  197. Darrow, D. C., R. E. Cooke and F. E. Coville: Kidney elektrolytes in rats with alcalosis associated with potassium deficiency. Amer. J. Physiol. 172, 55 (1953).PubMedGoogle Scholar
  198. Davenport, H. W., and A. E. Wilhelmi: Renal carbonic anhydrase. Proc. Soc. Exper. Biol. a. Med. 48, 53 (1941).Google Scholar
  199. Davies, D. F., and N. W. Shock: Age changes in glomerular filtration rate, effective renal plasma flow and tubular excretory capacity in adult man. J. Clin. Invest. 29, 496 (1950).PubMedGoogle Scholar
  200. Dean, R. F. A., and R. A. Mc Cance: Phosphate clearances in infants and adults. J. of Physiol. 107, 182 (1948).Google Scholar
  201. Debré, R., J. Marie, F. Clèret et R. Messimy: Rachitisme tardif coexistant avec une néphrite chronique et une glycosurie. Arch. Méd. Enf. 37, 597 (1934).Google Scholar
  202. Delàville, M., et C. Jones: Uric acid content of blood plasma. C. r. Soc. Biol. Paris 92, 522 (1925).Google Scholar
  203. DellOro u E. Braun-Menéndez: Dosaye de renina in la sangre de peros hipertensos por isquemia renal. Rev. Soc. argent. Biol. 18, 65 (1942).Google Scholar
  204. Delorme, M. L., et M. Caroit: Étude de la diurèse et recherche d’un principe antidiurétique au cours des hépatites provoquées par le régime hypoprotidique chez le rat. Arch. Sci. physiol. 8, 329 (1954).Google Scholar
  205. Deming, Q. B., and J. A. Luetscher jr.: Bioassay of desoxycorticosterone- like material in urine. Proc. Soc. Exper. Biol. a. Med. 73,171 (1950).Google Scholar
  206. Dempster, W. J., M. G. Eggleton and S. Schuster: The effect of hypertonic infusions on glomerular filtration rate and glucose reabsorption in the kidney of the dog. J. of Physiol. 132, 213 (1956).Google Scholar
  207. Dent, C. E., and G. A. Rose: Aminoacid metabolism in cystinuria. Quart. J. Med. 20, 205 (1951).PubMedGoogle Scholar
  208. Deutsch, E.: Mitteilungen zur Nierenclearance. 3. Zur Bestimmung des Glomerulum- filtrates mit Hilfe der Inulin- und Kreatininclearance. Klin. Med. (Wien) 7, 385 (1952).Google Scholar
  209. Dexter, L., and F. Haynes: Relation of renin to human hypertension with particular reference to eclampsia, praeeclampsia and acute glomerulonephritis. Proc. Soc. Exper. Biol. a. Med. 55, 288 (1944).Google Scholar
  210. Diaz, C. J.: Nature et signification de la dite néphrose chronique ou lipoidique. Schweiz. med. Wschr. 1950, 965.Google Scholar
  211. Dicker, S. E.: Changes in water and ion metabolism and in kidney functions during developement of edema in rats fed on proteindeficient diets. Biochemic. J. 46, 53 (1950).Google Scholar
  212. Dicker, S. E.: A method for the assay of very small amounts of antidiuretic activity with a note on the antidiuretic titre of rats blood. J. of Physiol. 122, 149 (1953).Google Scholar
  213. Dicker, S. E., and A. L. Greenbaum: The degree of inactivation of the antidiuretic activity of vasopressin by the kidneys and the liver of rats. J. of Physiol. 126, 116 (1954).Google Scholar
  214. Dirr, K., u. G. Gôtz-Schriever: Myelom- und NephroseeiweiB im Urin und ihre Erkennung durch Aminosàurebestimmung. Z. klin. Med. 145, 186 (1949).Google Scholar
  215. Dock, W.: Proteinuria and associated renal changes. New England J. Med. 227, 633 (1942).Google Scholar
  216. Dodds, E. C., S. H. Liu and R. L. Noble: Water balance and blood changes following posterior pituitary extract administration. J. of Physiol. 94, 124 (1938).Google Scholar
  217. Dogliotti, A.M., e M. Bogetti: Sull’esistenza di influenze nervose specifiche sulla secrezione renale del cloruro di sodio. Boll. Soc. ital. Biol. sper. 5, 876 (1930).Google Scholar
  218. Dole, V. P.: Back-diffusion of urea in the mammalian kidney. Amer. J. Physiol. 139, 504 (1943).Google Scholar
  219. Doolan, P.D., H.A. Harper, M. E. Hutchin and W. W. Shreeve: Renal clearance of 18 individual amino acids in human subjects. J. Clin. Invest. 34, 1247 (1955).PubMedGoogle Scholar
  220. Dorman, P. J., W. J. Sullivan and R. F. Pitts: The renal response to acute respiratory acidosis. J. Clin. Invest. 33, 82 (1954).PubMedGoogle Scholar
  221. Dorman, P. J., W. J. Sullivan and R. F. Pitts: Factors determining carbon dioxide tension of urine. Federat. Proc. 13, 38 (1954).Google Scholar
  222. Dost, F. H.: Klinischer Beitrag zur Kenntnis der Potentialgifte. Klin. Wschr. 26, 545 (1948).Google Scholar
  223. Dost, F. H.: Die Clearance. Klin. Wschr. 27, 257 (1949).Google Scholar
  224. Dost, F. H.: Der Blutspiegel. Kinetik der Konzentrationsabläufe in der Kreislaufflüssigkeit. Leipzig: Georg Thieme 1953.Google Scholar
  225. Dost, F. H.: Halbwertszeit und totale Clearance. Z. inn. Med. 9, 546 (1954).Google Scholar
  226. Doty, J. R.: Reabsorption of certain amino acids and dervatives by the kidney tubules. Proc. Soc. Exper. Biol. a. Med. 46, 129 (1941).Google Scholar
  227. Doxiadis, S. A.: Idiopathic renal acidosis in infancy. Arch. Dis. Childh. 27, 409 (1952).PubMedGoogle Scholar
  228. Dreifus, L. S., M. N. Frank and S. Bellet: Determination of osmotic pressure in diabetes insipidus. A new diagnostic test. New England J. Med. 251, 1091 (1954).Google Scholar
  229. Dunn, J. S., W. W. Kay and H. L. Sheehan: The elimination of urea by the mammalian kidney. J. of Physiol. 73, 371 (1931).Google Scholar
  230. Dunn, J. S., and C. J. Polson: Experimental uric acid nephritis. J. of Path. a. Bact. 29, 337 (1926).Google Scholar
  231. Dutz, H., u. W. Hauschild: Zum Mechanismus der Salyrgandiurese beim Diabetes insipidus. Z. exper. Med. 126, 504 (1955).Google Scholar
  232. Dworetzky, M.: Reversible metastatic calcification (Milk drinkers syndrom). J. Amer. Med. Assoc. 155, 830 (1954).Google Scholar
  233. Dziemian, A. J.: The effects of burns on kidney function. Federat. Proc. 7, 29 (1948).Google Scholar
  234. Earle, D. P., J. V. Taggart and J. A. Shannon: Glomerulonephritis; survey of functional organization of kidney in various stages of diffuse glomerulonephritis. J. Clin. Invest. 23, 119 (1944).PubMedGoogle Scholar
  235. Eaton, A. G., F. P. Ferguson and F. T. Byer: The renal reabsorption of amino acids in dogs: valine, leucine and isoleucin. Amer. J. Physiol. 145, 491 (1946).PubMedGoogle Scholar
  236. Ebbecke, U.: Die lokale vasomotorische Reaktion der Haut und der inneren Organe. Pflügers Arch. 169,1 (1917).Google Scholar
  237. Ebbecke, U.: Über Gefäßreaktionen der Niere und den Antagonismus von Glomerulus- und Tubulusdurchblutung. Pflügers Arch. 226, 761 (1931).Google Scholar
  238. Eckardt, R. R., A. M. Cooper, W.W. Faloon and C. S. Davidson: Urinary excretion of amino acids in man. Trans. New York Acad. Sci. 10, 284 (1948).Google Scholar
  239. Edelman, I. S., B.W. Zweifach, D. J. Escher, J. Grossman, R. Mokotoff, R. E. Weston, L. Leiter and E. Shorr: Studies on VEM and VDM in blood in relation to renal hemodynamics and renal oxygen extraction in chronic congestive heart failure. J. Clin. Invest. 29, 925 (1950).PubMedGoogle Scholar
  240. Edwards, J. G.: The renal tubule and glomerulus. Amer. J. Physiol. 95, 493 (1930).Google Scholar
  241. Edwards, J. G.: Functional sites and morphological differentiation in the renal tubule. Anat. Ree. 55, 343 (1933).Google Scholar
  242. Eger, W.: Ein Beitrag über die Beziehungen der chronischen Niereninsuffizienz zu innersekretorischen Drüsen an Hand experimenteller Untersuchungen. Klin. Wschr. 1953, 409.Google Scholar
  243. Eger, W.: Der experimentelle Hyperparathyreoidismus. Yerh. Dtsch. Ges. inn. Med. 62,403 (1956).Google Scholar
  244. Eggleton, M.G., and Y. A. Habib: Urinary excretion of phosphate in man and the cat. J. of Physiol. 111, 423 (1950).Google Scholar
  245. Eichholtz, F., and E. H. Starling: The action of inorganic salts on the secretion of the isolated kidney. Proc. Roy. Soc. Lond., Ser. B 98, 93 (1925).Google Scholar
  246. Eichna, L. W., S. F. Färber, A. R. Berger, D. P. Earle, B. Rader, E. Peilegrino, R. E. Albert, J. D. Alexander, H. Taube and S. Youngwirth: The interrelationship of the cardiovascular, renal and elektrolyte effects of intravenous digoxin in congestive heart failure. J. Clin. Invest. 30, 1250 (1951).PubMedGoogle Scholar
  247. Ekehorn, G.: XV. The quantitative nature of renal research and other concluding remarks. Acta med. scand. (Stockh.) 126, 3 (1946), Suppl. 185.Google Scholar
  248. Ellermann, M.: Le diabète insipide héréditaire. Acta psychiatr. (Kobenh.) 14, 233 (1939).Google Scholar
  249. Ellinger, P., u. A. Hirt: Zur Funktion der Nierennerven. Arch, exper. Path. u. Pharmakol. 106, 135 (1925).Google Scholar
  250. Elliot, G. de C., L. Hahn u. G. Hevesy: Note on inorganic phosphate of blood plasma. Acta physiol. scand. (Stockh.) 16, 20 (1948).Google Scholar
  251. Elsom, K. A., P.A. Bott and E.H. Shiels: On the excretion of skiodan, diodrast and hippuran by the dog. Amer. J. Physiol. 115, 548 (1936).Google Scholar
  252. Elsom, K. A., P. A. Bott and A.M. Walker: The simultaneous measurement of renal blood flow and the excretion of hippuran and phenol red by the kidney. Amer. J. Physiol. 118, 739 (1937).Google Scholar
  253. Engel, W. J.: Nephrcalcinosis. J. Amer. Med. Assoc. 145, 288 (1951).Google Scholar
  254. Enger, R.: Über den chemischen Mechanismus des renalen Hochdruckes. Dtsch. Arch. klin. Med. 189, 75 (1942).Google Scholar
  255. Enger, R., u. H. Gerstner: Der Einfluß der Niere auf den Blutdruck nach ihrer völligen Lösung aus dem Gewebszusammenhang des Organismus. Z. exper. Med. 102, 413 (1938).Google Scholar
  256. Enger, R., W. Gerstner u. H. Sarre: Die Abhängigkeit der Nierendurchblutung vom Ureterendruck. Zbl. inn. Med. 58, 865 (1937).Google Scholar
  257. Enger, R., F. Linder u. H. Sarre: Erzeugung eines renalen Hochdruckes bei hypophysen- und nebennierenlosen Hunden. Z. exper. Med. 104, 10 (1938).Google Scholar
  258. Enger, R., F. Linder u. H. Sarre: Wirkung quantitativ abgestufter Drosselung der Nierendurchblutung auf den Blutdruck. Z. exper. Med. 104 (1938).Google Scholar
  259. Epstein, A. A.: Concerning the causation of edema in chronic parenchymatons nephritis. Methods for its alleviation. Amer. J. Med. Sci. 154, 638 (1917).Google Scholar
  260. Epstein, A. A.: Further observations on the nature and treatment of the chronic nephrosis. Amer. J. Med. Sci. 163, 167 (1922).Google Scholar
  261. Epstein, F. H., A. V. N. Goodyer, F. D. Lawrason and A. S. Relman: Studies of the antidiuresis of quiet standing: The importance of changes in plasma volume and glomerular filtration-rate. J. Clin. Invest. 30, 63 (1951).PubMedGoogle Scholar
  262. Ericson, E., u. A. Svanborg: Salt losing syndrom in nephropathy. Acta med. scand. (Stockh.) 153, 283 (1956).Google Scholar
  263. Eversole, W. J., J. H. Birnie and R. Gaunt: Inactivation of posterior pituitary antidiuretic hormone by the liver. Endocrinology 45, 378 (1949).PubMedGoogle Scholar
  264. Fahr, T.: Beiträge zur Frage der experimentellen Glomerulonephritis. Verh. dtsch. path. Ges. 28, 179 (1935).Google Scholar
  265. Fahr, T.: Über experimentelle Glomerulonephritis. Klin. Wschr. 1936, 505.Google Scholar
  266. Fahr, T.: Zur Frage der sogenannten Feldnephritis. Klin. Wschr. 1944, 125.Google Scholar
  267. Fanconi, G.: Die nichtdiabetischen Glykosurien und Hyperglykämien des älteren Kindes. Jb. Kinderheilk. 133, 257 (1931).Google Scholar
  268. Fanconi, G.: Der frühinfantile nephrotisch-glykosurische Zwergwuchs mit hypo- phosphatämischer Rachitis. Jb. Kinderheilk. 147, 1299 (1936).Google Scholar
  269. Fanconi, G.: Der nephrotisch-glykos-urische Zwergwuchs mit hypophosphatämischer Rachitis. Dtsch. med. Wschr. 1936, 1169.Google Scholar
  270. Fanconi, G.: Die tubuläre Insuffizienz und verwandte Störungen. Med. Klin. 1954, 209.Google Scholar
  271. Fanconi, G.: Nebenschilddrüsen, Knochen und Nieren mit besonderer Berücksichtigung der Nieren. Verh. Dtsch. Ges. inn. Med. 62, 423 (1956).Google Scholar
  272. Farah, A., E. J. Cafruny and H. S. di Stefano: Histo- chemical studies on the site of action of mercurial diuretics. J. Histochem. a. Cytochem. 3, 271 (1955).Google Scholar
  273. Farah, A., F. Koda and M. Frazer: Studies on the control of the renal tubular transport of p-amino-hippurate by the anterior pituitary. Endocrinology 58, 399 (1956).PubMedGoogle Scholar
  274. Färber, S. J., E. Y. Berger and D. P. Earle: Effect of diabetes and insulin on the maximum capacity of the renal tubules to reabsorb glucose. J. Clin. Invest. 30, 125 (1951).PubMedGoogle Scholar
  275. Fasciolo, J. C., B. A. Houssay and A. C. Taquini: The blood-pressure raising secretion of the ischemic kidney. J. of Physiol. 94, 281 (1938).Google Scholar
  276. Fay, M., V. G. Behrmann and D. M. Buck: The parathyreoids and the clearance of inorganic phosphate. Amer. J. Physiol. 136, 716 (1942).Google Scholar
  277. Feher, L.: Die periphere Inaktivierung des Adiuretins. Acta med. (Budapest) Suppl. I, 6, 33 (1954).Google Scholar
  278. Ferguson, E. B.: A study of the regulation of the rate of urinary ammonia excretion in the rat. J. of Physiol. 112, 420 (1951).Google Scholar
  279. Ferguson, M. H., O. Olbrich, J. L. Robson and C. P. Stewart: The use of inulin clearances as a. measure of glomerular filtration. Quart. J. Exper. Physiol. 35, 251 (1950).Google Scholar
  280. Feyel, T., et R. Vieillefosse: Les sécrétions rénales de l’urée et des chlorures; étude cytophysiologique. Archives Anat. microsc. 35, 5 (1939).Google Scholar
  281. Findley, K. H.: Angio-architecture of the hypothalmus and its peculiarities. Chapter 8 in vol. XX, Res. Pubi. Assoc. Res. Nerv. Ment. Dis. Baltimore: Williams & Wilkins Company 1940.Google Scholar
  282. Findley, T., J.C. Edwards, E. Clinton and H. L. White: Clearance of diodrast, phenolsulfonphthalein and inulin in hypertension and in nephritis. Arch. Int. Med. 70, 935 (1942).Google Scholar
  283. Findley jr. T., and H. L. White: The response of normal individuals and patients with diabetes insipidus to the ingestion of water. J. Clin. Invest. 16, 197 (1937).PubMedGoogle Scholar
  284. Fingl, E.: Tubular excretion of creatinine in the rat. Amer. J. Physiol. 169, 357 (1952).PubMedGoogle Scholar
  285. Fisher, C., and W. R. Ingram: The effect of interruption of the supraopticohypophyseal tracts on the antidiuretic, pressor and oxytocic activity of the posterior lobe of the hypophysis. Endocrinology 20, 762 (1936).Google Scholar
  286. Fisher, C., W. R. Ingram and S.W. Ranson: Diabetes insipidus and the neuro-hormonal control of water balance: A contribution to the structure and function of the hypothalamicohypo- physeal system. Ann Arbor, Mich.: Edwards Brothers 1938.Google Scholar
  287. Flasher, J., and D. R. Drury: Effects of removal of ischemic kidney in rabbits with unilateral renal hypertension as comparet to unilateral nephrectomy in normal rabbits. Amer. J. Physiol. 158,438 (1949).PubMedGoogle Scholar
  288. Foa, P. P., and N. L. Foa: A simple method for determining effective renal blood flow and tubular excretory mass in man. Proc. Soc. Exper. Biol. a. Med. 51, 375 (1942).Google Scholar
  289. Foa, P. P., W. W. Woods, M. M. Peet and N. L. Foa: Effective renal blood flow, glomerular filtration rate and tubular excretory mass in arterial hypertension. Arch. Int. Med. 69, 822 (1942).Google Scholar
  290. Forssman, H.: On hereditary diabetes insipidus with special regard to a sexlinked form. Acta med. scand. (Stockh.) Suppl. 159 (1945).Google Scholar
  291. Forssman, H.: Form of diabetes insipidus characterized by sex linked inheritance and unresponsiveness to the antidiuretic hormone. New genotypic entity. Act. Endocrinol. (Copenh.) 16, 355 (1954).Google Scholar
  292. Forster, R. P.: A renal clearance analysis of phenol red elimination in the frog. J. Cellul. a. Comp. Physiol. 16, 113 (1940).Google Scholar
  293. Forster, R. P.: Use of thin kidney slices and isolated renal tubules for direct study of cellular transport kinetics. Science (Lancaster, Pa.) 108, 65 (1948).Google Scholar
  294. Forster, R. P., and J. V. Taggart: Use of isolated renal tubules for examination of metabolic processes associated with active tubular transport. J. Cellul. a. Comp. Physiol. 36, 251 (1950).Google Scholar
  295. Fourman, P.: The ability of the normal kidney to conserve potassium. Lancet 1952 I, 1042.Google Scholar
  296. Franglen, T., E. Mc Garry and A. G. Spencer: Renal function and the excretion of potassium in acute alcalosis. J. of Physiol. 121, 35 (1953).Google Scholar
  297. Frank, E., u. J. Franko: Sur la forme grave du diabète rénal avec cétose. Istanbul Contrib. Clin. Sci. 1, 191 (1951).Google Scholar
  298. Franklin, J., L. E. Mc Gee and E. A. Ullmann: Effects of the severe asphyxia on the kidney and urine flow. J. of Physiol. 112, 43 (1951).Google Scholar
  299. Franklin, J., J. Genest and E. Newman: The mechanism of excretion of ammonium thiosulfate. Bull. Johns Hopkins Hosp. 81, 168 (1947).PubMedGoogle Scholar
  300. Freeman, F., and I. Dunsky: Resistant rickets. Amer. J. Dis. Childh. 79, 409 (1950).Google Scholar
  301. Freeman, S., and T. S. Chang: Role of the kidney and of citric acid in production of a transient hypercalcemia following nephrectomy. Amer. J. Physiol. 160, 335 (1950).Google Scholar
  302. Freudenberg, E.: Knochenanalyse eines Falles von Cystinkrankheit. Ann. paediatr. (Basel) 156, 335 (1941).Google Scholar
  303. Frey, E.: Die Rückresorption von Wasser in den Harnkanälchen der Gesamtkonzentration entsprechend. Pflügers Arch. 139, 465 (1911).Google Scholar
  304. Frey, E.: Der Mechanismus der Harneindickung und der Harn ver dünnung. Arch, exper. Path. u. Pharmakol. 177, 134 (1935).Google Scholar
  305. Frey, E.: Schaltstelle des Blutstromes in der Niere und Hypophysenhinterlappenhormon. Arch, exper. Path. u. Pharmakol. 182, 633 (1936).Google Scholar
  306. Frey, E.: Nierentätigkeit und Wasserhaushalt. Lehrbuch der Physiologie, herausgegeben von W. Trendelenburg u. E. Schütz. Berlin- Göttingen-Heidelberg: Springer 1951.Google Scholar
  307. Frey, E., u. J. Frey: Die Funktionen der gesunden und kranken Niere. Berlin-Göttingen-Heidelberg: Springer 1950.Google Scholar
  308. Frey, J.: Die Filtrations- diuresen in ihrer klinischen Bedeutung. Verh. dtsch. Ges. Inn. Med. 58, 200 (1952).Google Scholar
  309. Frey, J.: Pathophysiologische Grundlagen der Nierenfunktionsprüfungen. Urologia 6, 467 (1952).Google Scholar
  310. Frey, J.: Pathophysiologische Fragen über Tubulusfunktionen. Pathologische Physiologie und Klinik der Nierensekretion. 3. Freiburger Symposion. S. 136. Berlin: Springer 1955.Google Scholar
  311. Frey, J., u. J. Schirmeister: Die renale Wasserausscheidung bei oraler Aufnahme größerer Wassermenge (Wasserdiurese). Arch, exper. Path. u. Pharmakol. 223, 117 (1954).Google Scholar
  312. Frey, J., u. J. Schirmeister: Über Besonderheiten der Filtrationsdiurese. Arch, exper. Path. u. Pharmakol. 223, 122 (1954).Google Scholar
  313. Frey, J., J. Schirmeister u. H. Henning: Die,,Clearance der Harnfixasumme” (Ci) unter verschiedenen Absonderungsarten der gesunden Nieren und ihre Beziehungen zur renalen Wasserbearbeitung. Arch, exper. Path. u. Pharmakol. 223, 107 (1954).Google Scholar
  314. Frey, W.: Nieren und ableitende Harnwege. In Handbuch der inneren Medizin Bd. VIII. Berlin: Springer 1951.Google Scholar
  315. Friedman, M.: The effect of glycine on the production and excretion of uric acid. J. Clin. Invest. 26, 815 (1947).Google Scholar
  316. Friedman, M.: Observations concerning the effects of (1) sodium salicylate and (2) sodium salicylate and glycine upon the production and excretion of uric acid and allantoin in the rat. Amer. J. Physiol. 152, 302 (1948).PubMedGoogle Scholar
  317. Friedman, M., D. Bernstein and S. O. Byers: Role of the adrenal cortex in the excretion of purines. Federat. Proc. 8, 52 (1949).Google Scholar
  318. Friedman, M., and S. O. Byers: Effect of sodium salicylate upon the uric acid clearance of the dalmatian dog. Amer. J. Physiol. 154, 167 (1948).PubMedGoogle Scholar
  319. Friedman, M., S. O. Byers and P. Abraham: Renal clearance of allantoin as a measure of glomerular filtration rate. Amer. J. Physiol. 155, 278 (1948).PubMedGoogle Scholar
  320. Friedman, M., and A. Kaplan: Studies concerning the site of renin formation in the kidney. IV. The renin content of the mammalian kidney following specific necrosis of proximal convoluted tubular epithelium. J. of Exper. Med. 77, 65 (1943).Google Scholar
  321. Friedman, M., A. Selzer, H. Rosenblum, P. Mc Lean and W. Picard: The renal blood flow in coarctation of the aorta. J. Clin. Invest. 20, 107 (1941).PubMedGoogle Scholar
  322. Friedman, M., A. Selzer, J. Sugarman and M. Sokolow: The renal blood flow, glomerular filtration rate and degree of tubular reabsorption of glucose in renal glycosuria. Amer. J. Med. Sei. 204, 22 (1942).Google Scholar
  323. Friedman, S., K. Mackenzie and C. Friedman: Renal clearance of allantoin as a measure of glomerular filtration rate. Amer. J. Physiol. 155, 278 (1948).PubMedGoogle Scholar
  324. Fuchs, F., u. H. Popper: Blut- und Saftströmung in der Niere. Erg. inn. Med. 54,1 (1938).Google Scholar
  325. Fuller, G. R., M. B. Macleod and R. F. Pitts: Influence of administration of potassium salts on the renal tubular reabsorption of bicarbonate. Amer. J. Physiol. 182, 111 (1955).PubMedGoogle Scholar
  326. Gänsslen, M.: Der feinere Gefäßaufbau gesunder und kranker menschlicher Nieren. Erg. inn. Med. 47, 275 (1934).Google Scholar
  327. Garrod, D., S. A. Davies and G. Caiiill: The action of cortisone and desoxycorticosterone-acetate on glomerular filtration rate and sodium and water exchange in the adrenalectomized dog. J. Clin. Invest. 34, 761 (1955).PubMedGoogle Scholar
  328. Gauer, O. H., u. J. P. Henry: Beiträge zur Homöostase des extraarteriellen Kreislaufs. Volumenregulation als unabhängiger physiologischer Parameter. Klin. Wschr. 1956, 356.Google Scholar
  329. Gaunt, R., J. H. Birnie and W. J. Eversole: Adrenal cortex and water metabolism. Physiologic. Rev. 29, 281 (1949).Google Scholar
  330. Gayer, J.: Über die Speicherung von Inulin im Nierenparenchym. XX. In-ternat. Kongr. für Physiologie, Brüssel 1956.Google Scholar
  331. Gayer, J.: Über die vasopressorische Aktivität im Plasma essentieller Hypertoniker. Verh. dtsch. Ges. inn. Med. 62, 565 (1956).Google Scholar
  332. Gayer, J., u. J. Kramer: Die tubuläre Sekretion von endogenem Kreatinin. Klin. Wschr. 1957.Google Scholar
  333. Gayer, J., u. H. Sarre: Über die Vasopressorische Aktivität im Plasma essentieller Hypertoniker. Vorl. Mitt. Klin. Wschr. 1956, 334.Google Scholar
  334. Gerard, P.: Comparative histopathology of the vertebrate nephron. J. of Anat. 70, 354 (1936).Google Scholar
  335. Gerard, P., et R. Cordier: Sur l’interprétation des altérations morphologiques observées dans le rein au cours de la néphrose lipoïdique. Arch, internat. Méd. expér. belg. 8, 225 (1933).Google Scholar
  336. Gersh, I.: Reabsorption of water during pituitary antidiuresis. J. of Pharmacol. 52, 231 (1934).Google Scholar
  337. Gersh, I.: The site of renal elimination of hemoglobin in the rabbit. Anat. Ree. 65, 371 (1936).Google Scholar
  338. Gersh, I.: The structure and function of the parenchymatous glandular cells in the neurohypophysis of the rat. Amer. J. Physiol. 64, 407 (1939).Google Scholar
  339. Gersh, I., and C. M. Brooks: Correlation of physiological and cytological changes in the neurohypophysis of rats with experimental diabetes insipidus. Endocrinology 28, 6 (1941).Google Scholar
  340. Gersh, I., and E. J. Stieglitz: Studies on the mammalian kidney. I. Anat. Ree. 58, 349 (1934).Google Scholar
  341. Gibbs, O. S.: The secretion of uric acid by the fowl. Amer. J. Physiol. 88, 87 (1929).Google Scholar
  342. Giebisch, G.: Measurement of pH, chloride and inulin concentrations in proximal tubule fluid of necturus. Amer. J. Physiol. 185, 171 (1956).PubMedGoogle Scholar
  343. Gilligan, D. R., M. D. Altschtjle and E. M. Katersky: Studies of hemoglobinemia and hemoglobinuria produced in man by intranvenous injektion of hemoglobin solutions. J. Clin. Invest. 20, 177 (1941).PubMedGoogle Scholar
  344. Gilman, A., and L. Goodman: Pituitrin anemia. Amer. J. Physiol. 118, 241 (1937).Google Scholar
  345. Gilman, A., and L. Goodman: The secretory response of the posterior pituitary to the need for water conservation. J. of Physiol. 90, 113 (1937).Google Scholar
  346. Gilman, A., F. Philips and A. Koelle: The renal clearance of thiosulfate with observations on its volume distribution. Amer. J. Physiol. 146, 348 (1946).PubMedGoogle Scholar
  347. Gilson, S. B.: Studies on proteinuria in rat. Proc. Soc. Exper. Biol. a. Med. 72, 608 (1949).Google Scholar
  348. Giroud, A., and O.P. Leblond: Histological study of renal elimination of ascorbic acid. Anat. Ree. 68, 113 (1937).Google Scholar
  349. Gitlin, D., and C. A. Janeway: Immunological study of the albumins of serum, urine, ascitic fluid, and edema fluid in the nephrotic syndrome. J. Clin. Invest. 31, 223 (1952).PubMedGoogle Scholar
  350. Glass, J.: Untersuchungen über die experimentelle Chlorverarmung, ihre Folgen und die Ursache des Dechlorurationstodes. Z. exper. Med. 82, 776 (1932).Google Scholar
  351. Glim- stedt, G.: Quantitativ-histochemische Untersuchung über die Nieren. Z. mikrosk.-anat. Forsch. 52, 335 (1942).Google Scholar
  352. Goettsch, E., J. D. Lyttle, W. M. Grim and P. Dunbar: The renal amino acid clearance in the normal dog. Amer. J. Physiol. 140, 688 (1944).Google Scholar
  353. Goetsch, E., and E. B. Reeves: Observations on the nature of serum proteins in nephrosis. J. Clin. Invest. 15, 173 (1936).Google Scholar
  354. Goldblatt, H.: Studies on experimental hypertension. III. The production of persistent hypertension in monkeys (Macaque) by renal ischemia. J. of Exper. Med. 65, 671 (1937).Google Scholar
  355. Goldblatt, H.: Experimental hypertension induced by renal ischemia. The Harvey Lectures Bull. New York Acad. Med. 1938.Google Scholar
  356. Goldblatt, H.: Studies on experimental hypertension V. The pathogenesis of experimental hypertension due to renal ischemia. Ann. Int. Med. 11, 69 (1937).Google Scholar
  357. Goldblatt, H.: The renal origin of hypertension. Physiologic. Rev. 27, 120 (1947).Google Scholar
  358. Goldblatt, H., J. Lynch, R. F. Hanzal and W. W. Summerville: Studies on experimental hypertension. I. The production of persistent elevation of systolic blood pressure by means of renal ischemia. J. of Exper. Med. 59, 347 (1934).Google Scholar
  359. Goldring, W., and H. Chasis: Hypertension and hypertensive disease, S. 56. Commonwealth Fund. New York 1944.Google Scholar
  360. Goldring, W., H. Chasis, H. A. Ranges and H. W. Smith: Relations of effective renal blood flow and glomerular filtration to tubular excretory mass in normal man. J. Clin. Invest. 19, 739 (1940).PubMedGoogle Scholar
  361. Goldring, W., H. Chasis, H. A. Ranges and H. W. Smith: Effective renal blood flow in subjects with essential hypertension. J. Clin. Invest. 20, 637 (1941).PubMedGoogle Scholar
  362. Goldring, W., R. W. Clarke and H. W. Smith: The phenol red clearance in normal man. J. Clin. Invest. 15, 221 (1936).PubMedGoogle Scholar
  363. Goldstein, A.: The interactions of drugs and plasma proteins. J. of Pharmakol. 95, 102 (1949).Google Scholar
  364. Gomez, D.M.: Evaluation of renal resistances with special reference to changes in essential hypertension. J. Clin. Invest. 30, 1143 (1951).PubMedGoogle Scholar
  365. Goodyer, A. V. N., and C. A. Jaeger: Renal response to nonshocking hemorrhage. Role of the autonomic nervous system and of the renal circulation. Amer. J. Physiol. 180, 69 (1955).PubMedGoogle Scholar
  366. Goodyer, A. V. N., and D. W. Seldin: The effects of quiet standing on solute diuresis. J. Clin. Invest. 32, 242 (1953).PubMedGoogle Scholar
  367. Goudsmit jr. A., M. H. Power and J. L. Bollmann: The excretion of sulfates by the dog. Amer. J. Physiol. 125, 506 (1939).Google Scholar
  368. Govaerts, J.: Etude de l’état physico-chimique de l’ion phosphorique dans le plasma à l’aide du radio- phosphore 15 P 32 en rapport avec le seuil d’élimination urinaire de l’ion phosphorique. Arch, internat. Pharmacodynamic 75, 261 (1948).Google Scholar
  369. Govaerts, P.: Interprétation physiologique des relations mathématiques existant entre le taux du glucose sanguin et le débit urinaire de cette substance. Acta clin. belg. 5, 1 (1950).Google Scholar
  370. Govaerts, P., et P. Lambert: Pathogénie du diabète rénal. Acta clin. belg. 4, 341 (1949).Google Scholar
  371. Govaerts, P., et A. Verniory: Variations de la densité du sang artériel et de sa teneur en hémoglobine au cours de la diurèse aqueuse, chez l’homme. Rev. belge Path. 18, 78 (1947).Google Scholar
  372. Grabfield, G. P., and D. Swanson: Studies on denervated kidney; effects of unilateral denervation in acute experiments on sodium chloride excretion. Arch, internat. Pharmacodynamic 61, 92 (1939).Google Scholar
  373. Gray, J. D., and S. T. Laufer: Bernheim’s syndrome terminating in nephrosis. Canad. Med. Assoc. J. 73, 947 (1955).PubMedGoogle Scholar
  374. Green, D. M., T. B. Reynolds and R. J. Girerd: Mechanism of desoxycorticosteron action. X. Effects on tissue sodium concentration. Amer. J. Physiol. 181, 105 (1955).PubMedGoogle Scholar
  375. Greenspan, E. M.: Hyperchloraemic acidosis and nephrocalcinosis. Arch. Int. Med. 38, 271 (1949).Google Scholar
  376. Greenwald, I.: The effect of phosphate on the solubility of calcium carbonate and of bicarbonate on the solubility of calcium and magnesium phosphates. J. of Biol. Chem. 161, 697 (1945).Google Scholar
  377. Gregory, R., W. Levin, G. T. Ross and A. Bennett: Studies on hypertension. VI. Effect of lowering the blood pressures of hypertensive patients by high spinal anesthesia on the renal function as measured by inulin and diodrast clearance. Arch. Int. Med. 77, 385 (1946).Google Scholar
  378. Gremels, H.: Über den Einfluß von Diureticis auf den Sauerstoffverbrauch am Starlingschen Nierenpräparat. Arch, exper. Path. u. Pharmakol. 140, 205 (1929).Google Scholar
  379. Gremels, H., u. L. T. Poulsson: Zur Physiologie der isolierten Niere. Arch, exper. Path. u. Pharmakol. 162, 86 (1931).Google Scholar
  380. Grollman, A.: The combination of phenol red and proteins. J. of Biol. Chem. 64, 141 (1925).Google Scholar
  381. Grollman, A.: The relation of the filteribility of dyes to their excretion and behavior in the animal body. Amer. J. Physiol. 75, 287 (1926).Google Scholar
  382. Grollman, A.: The condition of the inorganic phosphorus of the blood with special reference to the calcium concentration. J. of Biol. Chem. 72, 565 (1927).Google Scholar
  383. Gross, F.: Nebennierenrinde und Wasser- Salzstoffwechsel unter besonderer Berücksichtigung von Aldosteron. Klin. Wschr. 1956, 929.Google Scholar
  384. Gross, P., F. P. Cooper and M. Levis: Urinary concretions caused by sulfapyridine. Proc. Soc. Exper. Biol. a. Med. 40, 448 (1939).Google Scholar
  385. Grupp, G.: Diskussionsbemerkungen im 3. Freiburger Symposion: Pathologische Physiologie und Klinik der Nierensekretion. Berlin- Göttingen-Heidelberg: Springer 1955.Google Scholar
  386. Grupp, G., u. K. Heyn: Der Wärmeverlust der Niere über die Oberfläche. Z. Biol. 1956.Google Scholar
  387. Grupp, G., u. K. Hierholzer: Der Sauerstoffverbrauch von Nierengewebe verschiedener Zonen. Z. Biol. 1956.Google Scholar
  388. Gsell, O.: Beiträge zur Hypochlorämie. II. Hypochlorämische Urämie mit Kalknephrose. Helvet. med. Acta 3, 197 (1936).Google Scholar
  389. Guild, H. G, J. A. Pierce and J. L. Lilienthal: An unfamiliar rachitic syndrome. Amer. J. Dis. Childh. 54, 1186 (1937).Google Scholar
  390. Gutman, A. B.: In combined staff clinic on uric acid metabolism and gout. Amer. J. Med. 9, 799 (1950).Google Scholar
  391. Gutman, A. B.: Some recent advances in the study of uric acid metabolism and gout. Bull. New York Acad. Med. 27, 144 (1951).Google Scholar
  392. Gutman, A. B.: Gout, a derangement of purine metabolism. Adv. Int. Med. 5, 227 (1952).Google Scholar
  393. Gutman, A. B., and T. F. Yü: Benemid (p-(di-n-propylsulfamyl)-benzoic acid) as a uricosuric agent in chronic gouty arthritis. Trans. Assoc. Amer. Physicians 64, 279 (1951).Google Scholar
  394. Haensel, W.: Über einen Fall von Nephrokalzinose mit Hyperchlorämie und Azidose. Z. Urol. 47, 416 (1954).PubMedGoogle Scholar
  395. Hall, C. Y.: Studies of normal glomerula structur by electron microscopy. Proc. Fifth Ann. Conf. Nephrotic Syndrome. The Childrens Hospital Phila-delphia, Nov. 1953. Proc. Nation. Nephrosis Foundation, New York, 1954.Google Scholar
  396. Hall, P. W., and E. Selkurt: Effects of partial graded venous obstruction on electrolyte clearance by the dog’s kidney. Amer. J. Physiol. 164, 143 (1951).PubMedGoogle Scholar
  397. Hall, V. E., and L. L. Langeley: Influence of rate of urine formation on potassium excretion. Proc. Soc. Exper. Biol. a. Med. 44, 425 (1940).Google Scholar
  398. Hamilton, P. B., R. A. Phillips, A. Hiller, E.G. Stanley, W. H. Becker and J. Plazin: Duration of renal ischemia required to produce uremia. Amer. J. Physiol. 152, 517 (1948).PubMedGoogle Scholar
  399. Handler, P., and D. V. Cohn: Use of radiophosphorus in studies of glomerular permeability of plasma inorganic phosphate. Amer. J. Physiol. 164, 646 (1951).PubMedGoogle Scholar
  400. Hare, K.: Water metabolism: neurogenic factors. Chapt. 13 in vol. XX, Res. Publ. Assoc. Res. Nerv. a. Ment. Dis. Baltimore: Williams & Wilkins Company 1940.Google Scholar
  401. Harris, H.: Aminoaciduria in man. 3. Internat. Kongr. für Biochemie, Brüssel 1955, S. 34.Google Scholar
  402. Harrison, H. E., and H. C. Harrison: The renal excretion of inorganic phosphate in the relation to the action of vitamin D and parathyroid hormone. J. Clin. Invest. 20, 47 (1941).PubMedGoogle Scholar
  403. Harrison, H. E., and H. C. Harrison: The effect of acidosis upon the renal tubular reabsorption of phosphate. Amer. J. Physiol. 134, 781 (1941).Google Scholar
  404. Hartmann, F., u. W. Schröder: Die Aminosäurenzusammensetzung der Serumeiweißkörper bei Gesunden und Kranken. Dtsch. Arch. klin. Med. 202, 228 (1955).PubMedGoogle Scholar
  405. Hartmann, H., S. L. Orskov u. H. Rein: Die Gefäßreaktionen der Niere im Verlaufe allgemeiner Kreislauf regulations Vorgänge. Pflügers Arch. 238, 239 (1936).Google Scholar
  406. Hartmann, M. E.: Direct visualization of glomeruli in the immature mouse. Amer. J. Physiol. 180, 163 (1955).Google Scholar
  407. Hartwich, A.: Der Blutdruck bei experimenteller Urämie und partieller Nierenausschaltung. Z. exper. Med. 69, 462 (1930).Google Scholar
  408. Harvald, B., u. P. Astrup: The development of the „low salt syndrome“ during dehydratation in patients with cardiac decompensation. Nord. Med. 50, 1499 (1953).PubMedGoogle Scholar
  409. Harvey, C. C., and M. K. Horwitt: Excretion of essential amino acids by men on a controlled protein intake. J. of Biol. Chem. 178, 953 (1949).Google Scholar
  410. Hawker, R. W.: Antidiuretic substance in human serum. Lancet 1952 II, 1108.Google Scholar
  411. Hayman jr. J. M., and S. M. Johnston: The excretion of inorganic sulfates. J. Clin. Invest. 11, 607 (1932).PubMedGoogle Scholar
  412. Hayman jr. J. M., and C. F. Schmidt: The gazeous metabolism of the dog’s kidney. Amer. J. Physiol. 83, 502 (1928).Google Scholar
  413. Hayman jr. J. M., N. P. Shumway, P. Dumke and M. Miller: Experimental hyposthenuria. J. Clin. Invest. 18, 195 (1939).PubMedGoogle Scholar
  414. Haynes, F. W., and L. Dexter: Renin, hypertensinogen and hypertensinase concentration of blood of dogs during the development of hypertension by constriction of the renal artery. Amer. J. Physiol. 150,190 (1947).PubMedGoogle Scholar
  415. Haynes, F. W., L. Dexter and R. Seibel: Renin content of renal venous blood of normal and hypertensive patients ad rest. Amer. J. Physiol. 150, 198 (1947).PubMedGoogle Scholar
  416. Heidelmann, G., E. Koch u. M. Haake: Die Abhängigkeit der Aus-scheidung des endogenen Kreatinin und des Phenolrot von der Diurese. Verh. dtsch. Ges. inn. Med. 62, 621 (1956).Google Scholar
  417. Heidenhain, H. R.: Die Harnabsonderung. In Hermanns Handbuch der Physiologie, Bd. V/1, S. 279, 310. 1883.Google Scholar
  418. Heilmeyer, L., u. O. Lippross: Über doppelseitige Nierenvenenthrombose bei Erwachsenen. Dtsch. Arch. klin. Med. 179, 80 (1937).Google Scholar
  419. Hein, A.: Über die Entstehung und Bedeutung der hyalinen Tropfen in den Hauptstücken der Niere auf Grund von Experimenten an Salamandra maculosa. Virchows Arch. 301, 339 (1938).Google Scholar
  420. Heinbecker, P., and H. L. White: The role of the pituitary gland in water balance. Ann. Surg. 110, 1037 (1939).PubMedGoogle Scholar
  421. Heinbecker, P., and H. L. White: Hypothalamico-hypophyseal system and its relation to water balance in the dog. Amer. J. Physiol. 133, 582 (1941).Google Scholar
  422. Heintz, R.: Extrarenale Azotämie und extrarenales Nierensyndrom. Erg. inn. Med., N. F. 6, 334 (1955).Google Scholar
  423. Heintz, R., F. Görlitz u. E. Schneider: Untersuchungen über die renale Harnstoff- und Inulinausscheidung bei akuten Harnstoff anstieg im Serum. Klin. Wschr. 1956, 1227.Google Scholar
  424. Heller, B. I., and W. E. Jacobson: Renal hemodynamics in heart disease. Amer. Heart J. 39, 188 (1950).PubMedGoogle Scholar
  425. Heller, H.: The active principles of the neurohypophysis. J. of Pharmacy a. Pharmacol. 7, 225 (1954).Google Scholar
  426. Heller, H., and F. H. Smirk: Studies concerning the alimentary absorption of water and tissue hydration in relation to diuresis. III. The influence of posterior pituitary hormone on the absorption and distribution of water. J. of Physiol. 76,283 (1932).Google Scholar
  427. Hellwig, C. A., and H. J. Reed: Fatal anuria following sulfathiazine therapy. J. Amer. Med. Assoc. 119, 561 (1942).Google Scholar
  428. Henry, J. P., O. H. Gauer and J. L. Reeves: Evidence of the atrial location of receptors influencing urine flow. Circulation Res. 4, 85 (1956).PubMedGoogle Scholar
  429. Herrin, R. C.: Tests of kidney function. Physiologic. Rev. 21, 529 (1941).Google Scholar
  430. Hertz, M.: Studies on twenty-four hour urea clearance. Acta med. scand. (Stockh.) 113, 215 (1943).Google Scholar
  431. Hessel, G.: Über Renin. Klin. Wschr. 1938, 843.Google Scholar
  432. Heymann, N. W., and D. B. Hackel: The early development of anatomic and blood chemistry changes in the nephrotic syndrome in rats. J. Labor, a. Clin. Med. 39,429 (1952).Google Scholar
  433. Heymans, C., J. J. Bouckaert, L. Elaut, F. Bayless et A. Samaan: Hypertension artérielle chronique par ischémie rénale chez le chien totalement sympathectomisé. C. r. Soc. Biol. Paris 126, 434 (1937).Google Scholar
  434. Hiatt, E. P.: Extreme hypochlor- emia in dogs induced by nitrate administration. Amer. J. Physiol. 129, 597 (1940).Google Scholar
  435. Hilden, T.: Diodrast clearance in acute nephritis. Acta med. scand. (Stockh.) 116, 1 (1943).Google Scholar
  436. Hilden, T.: Diodrastclearance ved essential hypertension og glomerulonephritis. Kobenhavn: Rosenkilde og Baggers Forlag 1946.Google Scholar
  437. Hoef, F.: Untersuchungen über den Einfluß von Laktoflavin und Corticosteron auf den künstlichen renalen Diabetes. Klin. Wschr. 1938, 1535.Google Scholar
  438. Hoef, F.: Klinische Physiologie und Pathophysiologie. Stuttgart: Georg Thieme 1952.Google Scholar
  439. Hoef, F.: Kritische Betrachtungen zum Grundproblem der Krankheitsiebre. Dtsch. med. Wschr. 1953, 504.Google Scholar
  440. Hoef, F.: Über Urina spastica. Medizinische 1955, 65.Google Scholar
  441. Hofmann-Credner, D.: Die Beeinflussung der Wasserdiurese beim Menschen durch Flackerlicht. Helvet. med. Acta, Ser. A 20,1 (1953).Google Scholar
  442. Hogben, C. A. M., and H L. Bollmann: Renal excretion of phosphate in the dog; influence of potassium, action of parathyroid extract. Federat. Proc. 8, 357 (1949).Google Scholar
  443. Hogben, C. A. M., and H L. Bollmann Renal reabsorption of phosphate: normal and thyroparathyroidectomized dog. Amer. J. Physiol. 164, 670 (1951).PubMedGoogle Scholar
  444. Hogeman, O.: Clearance test in renal disorders and hypertension. Acta med. scand. (Stockh.) Suppl. 216 (a) (1948).Google Scholar
  445. Holden jr. R. F., and H. A. Bulger: The nature of volume effects in renal clearances. Amer. J. Physiol. 145, 638 (1946).PubMedGoogle Scholar
  446. Holli- day, M. A.: Acute metabolic alkalosis: its effect on potassium and acid excretion. J. Clin. Invest. 34, 428 (1955).PubMedGoogle Scholar
  447. Holman, R. I.: Observations on the urea clearance in dogs. Amer. J. Physiol. 104, 615 (1933).Google Scholar
  448. Holton, C., u. P. B. Rehberg: Studies on the pathological function of the kidneys in renal disease, especially Bright’s disease. I. Acta med. scand. (Stockh.) 74, 479 (1931).Google Scholar
  449. Holton, S. G., and R. R. Bensley: The functions of the differentiated parts of the uriniferous tubule in the mammal. Amer. J. Anat. 47,241 (1931).Google Scholar
  450. Holtz, P.: Experimentelle Grundlagen der renalen und essentiellen Hypertonie. Klin. Wschr. 1946, 65.Google Scholar
  451. Holtz, P., K. Credner u. F. Heepe: Über die Beeinflussung der Diurese durch Oxytyramin und andere sympathicomimetische Amine. Arch, exper. Path. u. Pharmakol. 204, 85 (1947).Google Scholar
  452. Hoshiko, T., R. E. Swanson and M. B. Visscher: Excretion of Na22 and K42 by the perfused bullfrog kidney and the effects of some poisons. Amer. J. Physiol. 184, 542 (1956).PubMedGoogle Scholar
  453. Houck, C. R.: Alterations in renal hemodynamics and function during the intravenous injection of epinephrine in the dog. Amer. J. Physiol. 166, 649 (1951).Google Scholar
  454. Houck, C. R.: Alterations in renal hemodynamics and function during intravenous injection of epinephrine in dog. Amer. J. of Physiol. 167, 523 (1951).Google Scholar
  455. Houssay, B. A., u. I. C. Fasciolo: La sécrétion hypertensive du rein ischémié. 16. Internat, physiol. Congr., Zürich, Bd. 2, S. 279. 1938.Google Scholar
  456. Howell, D. S., and J. O. Davis: Relationship of sodium retention to potassium excretion by the kidney during administration of desoxycorticosterone acetate to dogs. Amer. J. Physiol. 189, 359 (1955).Google Scholar
  457. Hubbard, R., u. F. Griffith jr.: The excretion of urea by normal subjects under basal conditions. Amer. J. Physiol. 141, 469 (1944).Google Scholar
  458. Huffman, L. D.: Renal function in the aged. California Med. 50, 16 (1939).Google Scholar
  459. Hunter, R. E., and E. E. Muirhead: Prolonged renal salt vastage in lower nephron nephrosis. Ann. Int. Med. 36, 1297 (1952).PubMedGoogle Scholar
  460. Hwang, W., L. C. Akman, A. J. Miller, E. N. Silber, J. Stamler and L. N. Katz: Effects of sustained elevation of renal venous pressure on sodium excretion in unanesthetized dog. Amer. J. Physiol. 162, 649 (1950).PubMedGoogle Scholar
  461. Insull jr. W., I. G. Tillotson and J. M. Hayman jr.: Distribution of blood in the rabbits kidney. Amer. J. Physiol. 163, 676 (1950).PubMedGoogle Scholar
  462. Jacobellis, M., E. Muntwyler and G. E. Griffin: Enzyme concentration changes in the kidneys of protein- and or potassium-deficient rats. Amer. J. Physiol. 178, 477 (1954).Google Scholar
  463. Jahan, I., and R. F. Pitts: Effect of parathyroid on renal tubular reabsorption of phosphate and calcium. Amer. J. Physiol. 155, 42 (1948).PubMedGoogle Scholar
  464. Jahnke, K., u. W. Scholtan: Zum Mechanismus der Proteinurie. Dtsch. Arch. klin. Med. 200, 821 (1953).PubMedGoogle Scholar
  465. Janssen, S., u. G. Grupp: Die Verteilung der Temperatur und der Wärmebildung in der Niere. XX. Internat. Kongr. für Physiologie, Brüssel 1956.Google Scholar
  466. Janssen, S., u. H. Rein: Über die Zirkulation und Wärmebildung der Niere. Z. Biol. 1927, 87.Google Scholar
  467. Janssen, S., u. H. Rein: Ber. ges. Biol. B, 42, 567 (1928).Google Scholar
  468. Janssen, S., u. H. Rein: Über die Zirkulation und Wärmebildung der Niere unter Einfluß von Giften. Arch, exper. Path. u. Pharmakol. 128, 107 (1928).Google Scholar
  469. Jeffers, W. A., M. M. Livezey and J. H. Austin: Method for demonstrating antidiuretic action of minute amounts of pitressin; statistical analysis of results. Proc. Soc. Exper. Biol. a. Med. 50, 184 (1942).Google Scholar
  470. Joiner, C. L., and M. C. Thorne: Salt losing nephritis. Lancet 1952 II, 454.Google Scholar
  471. Jolliffe, N., J. A. Shannon and H. W. Smith: The excretion of urine in the dog. III. The use of the glomerular filtrate. Amer. J. Physiol. 100, 301 (1932).Google Scholar
  472. Jolliffe, N., and H. W. Smith: The excretion of urine in the dog. II. The urea and creatinine clearance on cracker meal diet. Amer. J. Physiol. 99, 101 (1931).Google Scholar
  473. Josephson, B., u. O. Lindahl: On the reliability of the inulin clearance, together with a comparison between this and the Creatinin-clearance. Acta med. scand. (Stockh.) 115, 20 (1943).Google Scholar
  474. Judson, W. E., J. D. Hatcher, W. Hollander, M. H. Halperin and R. W. Wilkins: The effects of venous congestion of the limbs and phlebotomy upon renal clearances and the excretion of water and salt. II. Studies in patients with congestive failure. J. Clin. Invest. 34, 1591 (1955).PubMedGoogle Scholar
  475. Kaplan, B., and H. W. Smith: Excretion of inulin, creatinine, xylose and urea in the normal rabbit, Amer. J. Physiol. 113, 354 (1935).Google Scholar
  476. Kay, W. W., and H. L. Sheehan: The renal elimination of injected urea and creatinine. J. of Physiol. 79, 359 (1933).Google Scholar
  477. Kaye, M.: The effect of a single oral dosis of the carbonic anhydrase inhibitor, acetazoleamide, in renal disease. J. Clin. Invest, 34, 277 (1955).PubMedGoogle Scholar
  478. Keilin, D., and T. Mann: Sulfanilamide as specific inhibitor of carbonic anhydrase. Biochemic. J. 34, 1163 (1940).Google Scholar
  479. Keith, N. M., H. E. King and A. E. Osterberg: Serum concentration and renal clearance of potassium in severe renal insufficiency in man. Arch. Int. Med. 71, 675 (1943).Google Scholar
  480. Keith, N. M., M. H. Power and R. D. Peterson: The renal excretion of sucrose, xylose, urea, and inorganic sulfates in normal man. Comparison of simultaneous clearances. Amer. J. Physiol. 108, 221 (1934).Google Scholar
  481. Kelley, N. C., M. R. Ziegler, D. Doeden and J. Mc Quarrie: Labeled methionine as an indicator of protein formation in children with lipoid nephrosis. Proc. Soc. Exper. Biol. a. Med. 75, 153 (1950).Google Scholar
  482. Kelley, V. C., and R. K. Mc Donald: Further observations on effects of altitude anoxia on renal function. Amer. J. Physiol. 154, 201 (1948).PubMedGoogle Scholar
  483. Kelsall, A. R.: Inhibition of water diuresis in man by ischemic muscle pain. J. of Physiol. 109, 150 (1949).Google Scholar
  484. Kelsall, A. R.: Urinary excretion of creatine during inhibition of water diuresis in man by ischemic muscle pain. J. of Physiol. 112, 54 (1951).Google Scholar
  485. Kessler, E.: Hypercalcemia and renal insufficiency secondary to excessive milk and alkali intake. Ann. Int. Med. 42, 324 (1955).PubMedGoogle Scholar
  486. Kinter, W. B. and J. R. Pappenheimer: Renal extraction of PAH and of Diodrast-J131 as a function of arterial red cell concentration. Amer. J. Physiol. 185, 391 (1956).PubMedGoogle Scholar
  487. Kinter, W. B. and J. R. Pappenheimer: Role of red blood corpuscles in regulation of renal blood flow and glomerular filtration rate. Amer. J. Physiol. 185, 399 (1956).Google Scholar
  488. Kirk, E.: Studies on the amino-acid clearance. Acta med. scand. (Stockh.) 89, 450 (1936).Google Scholar
  489. Kirsner, J. B., A. L. Sheffner and W. L. Palmer: Studies on amino acid excretion in men. III. Amino acid levels in plasma and urine of normal men fed diets of varying protein content. J. Clin. Invest. 28, 716 (1949).Google Scholar
  490. Kiss, A.: Über Urina spastica bei Herzkranken. Wien. Z. inn. Med. 30, 484 (1949).PubMedGoogle Scholar
  491. Kleinschmidt, A.: Die Stellung der Niere im Kohlenhydratstoffwechsel. Klin. Wschr. 1953, 873.Google Scholar
  492. Klemperer, F., and W. Bauer: Influence of aspirin on urate excretion. J. Clin. Invest, 23, 950 (1944).Google Scholar
  493. Klinke, K.: Neuere Ergebnisse der Calciumforschung. Erg. Physiol. 26, 235 (1928).Google Scholar
  494. Klisiecki, A., M. Pickford, P. Rothschild and E. B. Verney: Functional division of the splanchnic nerve under local anaesthesia in the dog. J. of Physiol. 72, 26 P (1931).Google Scholar
  495. Klisiecki, A., M. Pickford, P. Rothschild and E. B. Verney: The absorption and excretion of water by the mammal. II. Factors influencing the response of the kidney to water-ingestion. Proc. Roy. Soc. Lond., Ser. B 112, 521 (1933).Google Scholar
  496. Klosterman, A. M., J. E. Haines, H. M. Hauck and A. B. Kline: The renal treshold for ascorbic acid. A modified method for estmation with results of 12 adult subjects. J. Nutrit. 33, 505 (1947).PubMedGoogle Scholar
  497. Klupp, H., et B. Watschinger: Clearanceuntersuchungen mit Thiosulfat an Ratten. Arch, internat. Pharmacodynamic 82, 297 (1950).Google Scholar
  498. Koella, W.: Die Beeinflussung der Harnsekretion durch hypothalamische Reizung. Helvet. physiol. Acta 7, 498 (1949).Google Scholar
  499. Koletsky, S., and B. J. Dillon: Survival of rats after temporary complete renal ischemia. Proc. Soc. Exper. Biol. a. Med. 70, 15 (1949).Google Scholar
  500. Korr, I. M.: The osmotic function of the chicken kidney. J. Cellul. a. Comp. Physiol. 13, 175 (1939).Google Scholar
  501. Kottke, J. F., W. G. Kubicek and M. G. Visscher: The production of arterial hypertension by chronic renal artery-nerve stimulation. Amer. J. Physiol. 145, 38 (1945).PubMedGoogle Scholar
  502. Kramer, K.: Zur Vasomotorik des intrarenalen Kreislaufs. Sitzgsber. Ges. Naturwiss. Marburg 75, 26 (1952).Google Scholar
  503. Krause, F.: Rhythmische Veränderungen im Zustand der Glomeruli. Z. Biol. 86, 99 (1927).Google Scholar
  504. Krebs, H.A.: Untersuchungen über den Stoffwechsel der Aminosäuren im Tierkörper. Z. physiol. Chem. 217, 191 (1933).Google Scholar
  505. Krebs, H.A.: Inhibition of carbonic anhydrase by sulfonamides. Biochemic. J. 43, 525 (1948).Google Scholar
  506. Krogh, A.: Some new methods for the tonometric determination of gas-tensions in fluids. Skand. Arch. Physiol. (Berl. u. Lpz.) 20, 259 (1908).Google Scholar
  507. Krogh, A.: The respiratory exchange of animals and man. Monographs on bio-chemistry. London: Longmans, Green & Co. 1916.Google Scholar
  508. Krogh, A.: Anatomie und Physiologie der Kapillaren, 2. Aufl. Berlin 1929.Google Scholar
  509. Kuehnau, J.: Neue Erkenntnisse in der Pathophysiologie des Wasserhaushaltes. Regensburger Jb. ärztl. Fortbildg 4, 69 (1955).Google Scholar
  510. Kugelmeier, L. M.: Sekundäre Tetanie bei hypochlorämischen Zuständen. Therapiewoche 5, 349 (1955).Google Scholar
  511. Kusakari, H.: Über die Beziehungen der Nierenfunktion zum vegetativen Nervensystem. Tohoku J. Exper. Med. 16, 509, 546, 553 (1930).Google Scholar
  512. Labhart, A., u. O. Spühler: Alkalotische und acidotische Hypokaliämie als Ursache und als Folge von Nierenfunktionsstörungen. Schweiz, med. Wschr. 1953, 349.Google Scholar
  513. Lambert, P. P.: A study of the mechanism by. which toxic tubular demage changes the renal threshold for glucose. Ciba-Foundation-Symposium on the Kidney. S. 97. London: J. A. Churchill 1954.Google Scholar
  514. Lambert, P. P., E. van Kessel u. C. Leplat: Etude sur l’élimination des phosphates inorganiques chez l’homme. Acta med. scand. (Stockh.) 128, 386 (1947).Google Scholar
  515. Lambert, P. P., J. Lebrun et C. de Heinzelin de Braucourt: Influence du glucoside de désoxycorticostérone sur la résorption rénale du glucose. Acta clin. belg. 3, 1 (1948).Google Scholar
  516. Lambert, P. P., J. Lebrun et C. de Heinzelin de Braucourt: Influence du glucoside de désoxycorticostérone sur la résorption rénale du glucose. Acta clin. belg. 3, 529 (1948).Google Scholar
  517. Lamy, H., A. Mayer et F. Rathery: Etudes sur la diurèse. J. Physiol, et Path. gén. 8, 624 (1906).Google Scholar
  518. Landis, E. M.: Hypertension and the pressor activity of heated extracts of human kidney. Amer. J. Med. Sei. 202, 14 (1941).Google Scholar
  519. Landis, E. M., K. A. Elsom, P. A. Bott and E.H. Shiels: Simultaneous plasma clearance of creatinine and certain organic compounds of iodine in relation to human kidney function. J. Clin. Invest. 15, 397 (1936).PubMedGoogle Scholar
  520. Landowne, M., A. S. Alving and W. Adams: Renal dynamics in,,essential” hypertension, the effect of sympathectomy. Amer. Heart J. 37, 644 (1949).Google Scholar
  521. Lassen, H. C., and E. Husfeldt: Kidney function and blood pressure. J. Clin. Invest. 13, 263 (1934).PubMedGoogle Scholar
  522. Laszt, L.: Die Phosphorylierung verschiedener Zucker durch Darmschleimhautextrakte. Biochem. Z. 276, 44 (1935).Google Scholar
  523. Laszt, L., u. H. Süllmann: Nachweis der Bildung von Phosphorsäureestern in der Darmschleimhaut bei der Resorption von Zuckern und Glycerin. Biochem. Z. 278, 401 (1935).Google Scholar
  524. Latner, A. L., and E. D. Burnard: Idiopathic hyperchloraemie acidosis of infants (nephrocalcinosis infantum); observations on site and nature of lesions. Quart. J. Med., N. S. 19, 285 (1950).Google Scholar
  525. Lauson, H. D.: The problem of estimating the rate of secretion of antidiuretic hormone in man. Amer. J. Med. 11, 135 (1951).PubMedGoogle Scholar
  526. Lauson, H. D., S. E. Bradley and A. Cournand: The renal circulation in shock. J. Clin. Invest. 23, 381 (1944).PubMedGoogle Scholar
  527. Lauson, H. D., H.A. Eder, F. P. Chinard, G. C. Cotzias and R. L. Greif: Estimation of the rate of antidiuretic hormone secretion in normal man. Feder at. Proc. 7, 69 (1948).Google Scholar
  528. Leélond, C. P.: Mécanisme de l’élimination rénale de la vitamine C. C. r. Soc. Biol. Paris 127, 208 (1938).Google Scholar
  529. Lee, Y. C.: Cellular mechanism of protein metabolism in the nephron. III. The histochemical characteristics of amino acid droplets. J. of Exper. Med. 99, 621 (1954).Google Scholar
  530. Leloir, L. F., J. M. Munoz, E. Braun-Menendez u J. C. Fasciolo: Dosaye de la renina. Rev. Soc. argent. Biol. 16, 635 (1940).Google Scholar
  531. Leschke, E.: Über die Durst- empfindung. Arch. f. Psychiatr. 59, 773 (1918).Google Scholar
  532. Leschke, E.: Beiträge zur klinischen Pathologie des Zwischenhirns. I. Mitt. Klinische und experimentelle Untersuchungen über Diabetes insipidus seine Beziehungen zur Hypophyse und zum Zwischenhirn. Z. klin. Med. 87, 201 (1919).Google Scholar
  533. Levine, R., W. Q. Wolfson and R. Lenel: Concentration and transport of true urate in the plasma of azotemic chicken. Amer. J. Physiol. 151, 186 (1947).PubMedGoogle Scholar
  534. Lewis, S. E., R. A. Light and A. Blalock: The blood flow and oxygen consumption of the kidney in experimental renal hypertension. Amer. J. Physiol. 122, 38 (1938).Google Scholar
  535. Lewis, T., and R. Grant: Observations upon reactive hyperemia in man. Heart 12, 73 (1925).Google Scholar
  536. Lichtwitz, L.: Die Praxis der Nierenkrankheiten. Berlin: Springer 1923.Google Scholar
  537. Lichty jr. J. A., W. H. Havill and G. H. Whipple: Renal thresholds for hemoglobin in dogs. Depression of threshold due to frequent hemoglobin injections and recovery during rest periods. J. of Exper. Med. 55, 603 (1932).Google Scholar
  538. Lightwood, R.: Calcium infarction of kidneys in infants. Arch. Dis. Childh. 10, 205 (1935).Google Scholar
  539. Lignac, G. O. E.: Nierenabweichungen, mangelhaftes Wachstum, Rhachitis und Störung des Zystinstoffwechseis. Münch, med. Wschr. 1937, 821.Google Scholar
  540. Lindemann: Zur Lehre von den Funktionen der Niere. Erg. Physiol. 14, 637 (1914).Google Scholar
  541. Linneweh, F.: Beitrag zur Frage der chronischen Aminoacidurie. Vergleichende Untersuchungen über Cystinurie und Cystinspeicherkrankheit. Klin. Wschr. 1951, 633.Google Scholar
  542. Lipmann, F.: Harvey Lect. 44, 99 (1948).PubMedGoogle Scholar
  543. Lippman, R. W.: Mechanism of proteinuria. Effect of parenteral bovine albumin injections on hemoglobin excretion in rats. Amer. J. Physiol. 154, 532 (1948).PubMedGoogle Scholar
  544. Lippman, R. W., H. J. Ureen and J. Oliver: Mechanism of proteinuria. III. A comparison of the functional and structural aspects of the effects of certain intraperitoneally administered proteins on hemoglobin excretion in the rat. J. of Exper. Med. 93,325 (1951).Google Scholar
  545. Lison, L.: Histochimie animale, 6. Aufl. Paris: Gauthier-Villars 1936.Google Scholar
  546. Little” J. M., H. D. Green and J. E. Hawkins: Evidence from cross- transfusion experiments that the diminished urine flow accompanying ischemic compression shock is not due to humoral factors. Amer. J. Physiol. 151, 554 (1947).Google Scholar
  547. Ljungenberg, E.: On the reabsorption of chlorides in the kidney of the rabbit. Acta med. scand. (Stockh.) Suppl. 186, 282, 345 (1947).Google Scholar
  548. Ljungenberg, E.: Chlorides in the kidney, the blood, and the urine in experimental nephritis. Scand. J. Clin. a. Labor. Invest. 1, 266 (1949).Google Scholar
  549. Lobenhofer, W.: Funktionsprüfungen an transplantierten Nieren. Mitt. Grenzgeb. Med. u. Chir. 26, 197 (1913).Google Scholar
  550. Loewe, L., P. Rosenblatt, E. Alture-Werber and M. Kozak: The prolonging action of penicillin by para-amino-hippuric acid. Proc. Soc. Exper. Biol. a. Med. 58,299 (1945).Google Scholar
  551. Long, P. H., and E. A. Bliss: The clinical and experimental use of sulfanilamid, sulfapryidine and allied compounds. New York: Macmillan & Co. 1939.Google Scholar
  552. Lotspeich, W. D.: Renal tubular reabsorbtion of inorganic phosphates in the normal dog. Amer. J. Physiol. 151, 311 (1947).PubMedGoogle Scholar
  553. Lotspeich, W. D., and R. F. Pitts: The role of amino acids in the renal tubular secretion of ammonia. J. of Biol. Chem. 168, 611 (1947).Google Scholar
  554. Ludewig, S., A. Chanutin and A. V. Masket: Studies on the calcium-protein relationship with the aid of the ultracentrifuge. II. Observations on serum. J. of Biol. Chem. 143, 753 (1942).Google Scholar
  555. Ludwig, C. L.: In Wagners Handwörterbuch der Physiologie, Bd. 2, S. 634. 1844.Google Scholar
  556. Luetscher, J. A.: Electrophoretic analysis of plasma and urinary proteins. J. Clin. Invest. 19, 313 (1940).PubMedGoogle Scholar
  557. Luetscher, J. A.: The effect of a single injection of concentrated human serum albumin on circulating proteins and proteinuria in nephrosis. J. Clin. Invest. 23, 365 (1944).PubMedGoogle Scholar
  558. Luetscher, J. A., and S. S. Blackman: Severe injury to kidney and brain following sulfathiazole administration: High serum sodium and chlorid levels and persistant cerebral damage. Ann. Int. Med. 18, 741 (1943).Google Scholar
  559. Luetscher, J. A., and Q. B. Deming: Treatment of nephrosis with cortisone. J. Clin. Invest. 29, 1576 (1950).PubMedGoogle Scholar
  560. Luetscher, J. A., Q. B. Deming and B. B. Johnson: Treatment of nephrosis with pituitary adrenocorticotropin. J. Clin. Invest. 30, 1530 (1951).PubMedGoogle Scholar
  561. Luetscher, J. A., and B. B. Johnson: Chromatographic seperation of the sodium-retaining corticoid from the urine of children with nephrosis, compared with observations on normal children. J. Clin. Invest. 33, 276 (1954).Google Scholar
  562. Luetscher, J. A., and B. B. Johnson: Observations on the sodium-retaining corticoid (Aldosterone) in the urine of children and adults in relation to sodium balance and edema. J. Clin. Invest. 33, 1441 (1954).PubMedGoogle Scholar
  563. Luetscher, J. A., B. B. Johnson, B. J. Axelrad, J. E. Cates and G. Sala: Apparent identity of electrocortin with the sodium retaining corticoid extracted from human urine. J. Clin. Endocrin. a. Metabolism 14, 812 (1954).Google Scholar
  564. Luetscher, J. A., R. Neher and A. Wettstein: Isolation of crystalline aldosterone from the urine of a nephrotic patient. Experientia (Basel) 10, 456 (1954).Google Scholar
  565. Luetscher, J. A., C. F. Piel and R. H. Curtis: The nephrotic syndrome. J. Chron. Dis. 1, 442 (1955).PubMedGoogle Scholar
  566. Luke, B.: Löwer nephron nephrosis. Mil. Surgeon 1946, 371.Google Scholar
  567. Lundbaek, K.: Renal anacidogenesis. Lancet 1951, 419.Google Scholar
  568. Lynen, F.: Acetyl coenzyme A and the fatty acid cycle. Harvey Lect. 48, 210 (1953).Google Scholar
  569. Lynen, F., E. Reichert u. L. Rueff: Zum biologischen Abbau der Essigsäure. VI. „Aktivierte Essigsäure”, ihre Isolierung aus Hefe und ihre chemische Natur. Liebigs Ann. 574, 1 (1951).Google Scholar
  570. Mackay, E. M., and L. L. Mackay: Relation of the urine chloride rate to the plasma chloride concentration before and after administration of sodium chloride. Amer. J. Physiol. 115, 455 (1936).Google Scholar
  571. Macy, J. W.: The significance of the inorganic sulfate clearance in renal disease. Proc. Staff Meet. Mayo Clin. 8, 643 (1933).Google Scholar
  572. Magoun, H. W., C. Fisher and S.W. Ranson: The neurohypophysis and water exchange in the monkey. Endocrinology 25, 161 (1939).Google Scholar
  573. Malmejac, J., et A. Gross: Réactions vaso-motrices rénales d’origine centrale et sécrétion urinaire. C. r. Soc. Biol. Paris 145, 1166 (1951).PubMedGoogle Scholar
  574. Mann, T., and D. Keilin: Sulfanilamide as a specific inhibitor of carbonic anhydrase. Nature (Lond.) 146, 164 (1940).Google Scholar
  575. Maren, T. H., and B. C. Wadsworth: Blocking of renal effect of diamox, 2-acetylamino-l,3,4-thiadiazole-5-sulfonamide, by metabolic acidosis. Federat. Proc. 13, 383 (1954).Google Scholar
  576. Marsh, J. B., D. L. Drabkin and W. B. Goddard: Kidney phosphatase in ali-mentary hyperglycemia and phlorizin. A dynamic mechanism for renal threshold for glucose. J. of Biol. Chem. 168, 61 (1947).Google Scholar
  577. Marshall jr. E. K.: The secretion of phenol red by the mammilian kidney. Amer. J. Physiol. 99, 77 (1931).Google Scholar
  578. Marshall, E. K., and M. M. Crane: The influence of temporary closure of the renal artery on the amount and composition of Urine. Amer. J. Physiol. 64, 387 (1923).Google Scholar
  579. Marshall, E. K., and M. M. Crane: The secretory function of the renal tubules. Amer. J. Physiol. 70, 465 (1924).Google Scholar
  580. Marshall jr. E. K., and J. L. Vickers: The mechanism of the elimination of phenolsulphonephthalein by the kidney; a proof of secretion by the convoluted tubules. Bull. Johns Hopkins Hosp. 34, 1 (1932).Google Scholar
  581. Marshall, M. E., and H.F. Deutsch: Clearance of some proteins by the dog kidney. Amer. J. Physiol. 163, 461 (1950).PubMedGoogle Scholar
  582. Martin, G. J.: The effect of various agents on the excretion of uric acid and allantoin. Exper. Med. a. Surg. 6, 24 (1948).Google Scholar
  583. Masugi, M.: Über das Wesen der spezifischen Veränderungen der Niere und der Leber durch das Nephrotoxin, bzw. das Hepatotoxin. Zugleich ein Beitrag zur Pathogenese der Glomerulonephritis und der eklamptischen Lebererkrankung. Beitr. path. Anat. 91, 82 (1933).Google Scholar
  584. Masugi, M.: Über die experimentelle Glomerulonephritis durch das spezifische Antinierenserum. Beitr. path. Anat, 92, 429 (1934).Google Scholar
  585. Mattis, P. A., K. H. Beyer, S. E. Mc Kinney and E. A. Patch: Toxicological manifestations and pathological findings following the administration of paraaminohippuric acid. J. of Pharmacol. 84, 147 (1945).Google Scholar
  586. Mayrs, E. B.: The relativ excretion of urea and some other costituents of the urine. J. of Physiol. 56, 58 (1922).Google Scholar
  587. Mayrs, E. B.: Secretion as factor in elimination by bird’s kidney. J. of Physiol. 58, 276 (1924).Google Scholar
  588. Mayrs, E. B., and J. M. Watt: Renal blood flow and glomerular filtration. J. of Physiol. 56, 120 (1922).Google Scholar
  589. Mc Cance, R. A., and E. M. Widdowson: Alkalosis with disordered kidney functions. Lancet 1937 II, 247.Google Scholar
  590. Mc Cune, D. J.: Refractory rickets. Amer. J. Dis. Childr. 77, 112 (1949).Google Scholar
  591. McDonald, R. K., and V. C. Kelley: Effects of altitude anoxia on renal funktion. Amer. J. Physiol. 154, 193 (1948).PubMedGoogle Scholar
  592. McDonald, R. K., N. W. Shock and M. J. Yiengst: Effect of lactate on renal tubular transfer of p-aminohippurate in man. Proc. Soc. Exper. Biol. a. Med. 77, 686 (1951).Google Scholar
  593. McLean, F. C., and A. B. Hastings: Clinical estimation and significance of calcium-ion cencentration in the blood. Amer. J. Med. Sei. 189, 601 (1935).Google Scholar
  594. Meldrum, N. U., and F. J. M. Roughton: Carbonic anhy- drase; its preparation and properties. J. of Physiol. 80, 143 (1933).Google Scholar
  595. Mendelsohn, M. L., and C. Szutu: Relationship of renal function to blood pressure during ganglionic bloackade in the anestetized dog. Amer. J. Physiol. 173, 355 (1953).PubMedGoogle Scholar
  596. Merklen, L., J. Roux et M. Vida- covitch: A propos de l’innervation rénale. C. r. Soc. Biol. Paris 127, 305 (1938).Google Scholar
  597. Merrill, A. J.: Edema and decreased renal blood flow in patients with chronic congestive heart failure: evidence of “forward failure” as primary cause of edema. J. Clin. Invest. 25, 389 (1946).Google Scholar
  598. Merrill, A. J., and H. W. Cargill: Effect of exercise on renal plasma flow and filtration rate of normal and cardiac subjects. J. Clin. Invest. 27, 272 (1948).Google Scholar
  599. Merrill, A. J., J. L. Morrison and E. S. Brannon: Concentration of renin in renal venous blood in patients with chronic heart failure. Amer. J. Med. 1, 468 (1946).PubMedGoogle Scholar
  600. Merrill, J. P.: Mechanisms of sodium retention. The Kidney. Ciba-Foundation-Symposion, London 1954, S. 177.Google Scholar
  601. Mettcoff, J., and W. M. Wallace: The nephrotic syndrome in children: response to intravenous sodium loads. J. Clin. Invest. 29, 835 (1950).Google Scholar
  602. Meyer, F.: Renale und extrarenale Clearance. Klin. Wschr. 1952, 987.Google Scholar
  603. Meyerson, R. M., and B. H. Pastor: The Fanconi syndrome and its clinical variance. Amer. J. Med. Sei. 228, 378 (1954).Google Scholar
  604. Michelson, A. A.: Vergleichendes Studium der Funktion normaler und entnervter Nieren. Izv. Nauc. Inst. Lesgafte 17/18, 183 (1934).Google Scholar
  605. Miles, B. E., F. E. Wardener and R. R. McSwiney: Renal function during emotional diuresis. Amer. J. Med. 12, 659 (1952).PubMedGoogle Scholar
  606. Miller, B., A. Alving and J. Rubin: The renal excretion of inulin at low plasma concentrations of the compound and its relationship to the glomerular filtration rate in normal, nephrotic and hypertensive individuals. J. Clin. Invest. 19, 89 (1940).PubMedGoogle Scholar
  607. Miller, G. E., and C. E. Townsend: The in vitro inactivation of pitressin by normal and cirrhotic human liver. J. Clin. Invest. 33, 549 (1954).PubMedGoogle Scholar
  608. Miller, J. H.: Changes in tubular transport maxima associated with renal vasodilatation. J. Appl. Physiol. 6, 129 (1953).PubMedGoogle Scholar
  609. Miller, J. H., and R. K. McDonald: The effect of hemoglobin on renal function in the human. J. Clin. Invest. 30, 1033 (1951).PubMedGoogle Scholar
  610. Milles, G., E. F. Müller and E. F. Peterson: Studies in renal denervation; roentgenograph demonstration of vascular alteration. Proc. Soc. Exper. Biol. a. Med. 28, 354 (1931).Google Scholar
  611. Milles, G., E. F. Müller and E. F. Peterson: Renal denervation; effect of snake venom and chilling on renal vascularisation. Arch, of Path. 13, 233 (1932).Google Scholar
  612. Milne, M. D., N. C. H. Jones and B. M. Evans: Electrolyte excretion in states of potassium depletion in man. The Kidney, Ciba-Foundation-Symposium 1954, S. 212.Google Scholar
  613. Milne, M. D., S. W. Stanbury and A. T. Thomson: Observations on the Fanconi-syndrome and renal hyperchroraemic acidosis in the adult. Quart. J. Med., N S. 21, 61 (1952).PubMedGoogle Scholar
  614. Mirsky, I. A., and M. Stein: The effect of a noxious stimulus on the anti-diuretic activity of the blood. Science (Lancaster, Pa.) 118, 602 (1953).Google Scholar
  615. Möller, E., J. F. McIntosh and D. D. vanSlyke: Studies of urea excretion. II. Relationship between urine volume and the rate of urea excretion by normal adults. J. Clin. Invest. 6, 427 (1929).Google Scholar
  616. Moeller, J.: Humorale Faktoren in der Pathogenese des menschlichen Hochdruckes. Arch. Kreislauf forsch. 18, 249 (1952).Google Scholar
  617. Moeller, J.: Nierenfunk’tionsprüfungen bei tubulärer Insuffizienz. Verh. dtsch. Ges. inn. Med. 58, 216 (1952).Google Scholar
  618. Moeller, J.: Zur Frage der Nierenschädigung bei Hämolyse. Die Bluttransfusion. Beil. z. Dtsch. med. Wschr. 1954, 9.Google Scholar
  619. Moeller, J., u. L. Abt: Zur Vereinfachung der PAH-Clearance nach H. Wittkopp. Klin. Wschr. 1952, 340.Google Scholar
  620. Moeller, J., u. J. Steger: Die Eiweißausscheidung bei der Nephrose. Z. klin. Med. 153, 205 (1955).PubMedGoogle Scholar
  621. Moeller, J., u. A. Wedl: Dosierte Blutdrucksenkung und Nierenfunktion. Klin. Wschr. 1955, 10.Google Scholar
  622. Moench, A.: Zur Wirkung langanhaltender elektrischer Impulse auf den Hauptnervenstrang des linksseitigen Nierengefäßstieles auf Funktion und Struktur der Niere. Verh. dtsch. Ges. inn. Med. 58, 221 (1952).Google Scholar
  623. Moench, A.: Unter-suchungen zur Pathogenese des nephrotischen Syndroms, zugleich ein Beitrag zur Pathogenese der genuinen Lipoidnephrose. Habil.-Schr. Freiburg i. Br. 1956.Google Scholar
  624. Mokotoff, R., G. Ross and L. Leiter: Renal plasma flow and sodium reabsorption and excretion in congestive heart failure. J. Clin. Invest. 27, 1 (1948).Google Scholar
  625. Monke, J. V., and C. L. Yuile: The renal clearance of hemoglobin in the dog. J. of Exper. Med. 72, 149 (1940).Google Scholar
  626. Montgomery, H.: Quantitative studies of the composition of the glomerular urine. XII. The reaction of glomerular urine in frogs and necturi. J. of Biol. Chem. 110, 749 (1935).Google Scholar
  627. Montgomery, H., and J. A. Pierce: The site of acidification of the urine within the renal tubule in amphibia. Amer. J. Physiol. 118, 144 (1937).Google Scholar
  628. Moore, S., and W. H. Stein: Photometrie ninhydrin method for use in the chromatography of amino acids. J. of Biol. Chem. 176, 367 (1948).Google Scholar
  629. Moore, S., and W. H. Stein: Chromatography of amino acids on starch columns. Solvent mixtures for the fractionation of protein hydrolysates. J. of Biol. Chem. 178, 53 (1949).Google Scholar
  630. Mortensen, J. T., J. L. Emmett and A. H. Baggenstoss: Clinical aspect of nephrocalcinosis. Proc. Staff Meet. Mayo Clin. 28, 305 (1953).Google Scholar
  631. Moyer, J. H., and C. A. Handley: The problem of renal vascular shunts. Amer. J. Physiol. 165, 548 (1951).PubMedGoogle Scholar
  632. Mudge, G. H.: Electrolyte metabolism of rabbit kidney slyces: Studies with radioactive potassium and sodium. Amer. J. Physiol. 173, 511 (1953).PubMedGoogle Scholar
  633. Mudge, G. H., J. G. Foulks, A. Ames III and A. Gilman: Studies on the renal secretion of potassium in the dog. Federat, Proc. 8, 115 (1949).Google Scholar
  634. Mudge, G. H., J. Foulks and A. Gilman: Effect of urea diuresis on renal excretion of electrolytes. Amer. J. Physiol. 158, 218 (1949).PubMedGoogle Scholar
  635. Mudge, G. H., and J. V. Taggart: Effect of 2,4-dinitrophenol on renal transport mechanisms in dog. Amer. J. Physiol. 161, 173 (1950).PubMedGoogle Scholar
  636. Mudge, G. H., and J. V. Taggart: Effect of acetate on renal excretion of p-aminohippurate in dog. Amer. J. Physiol. 161, 191 (1950).PubMedGoogle Scholar
  637. Mueller, C. B., A. Surtshin, M. R. Carlin and H. L. White: Glomerular and tubular influences on sodium and water excretion. Amer. J. Physiol. 165, 411 (1951).PubMedGoogle Scholar
  638. Müting, D.: Der Aminosäureaufbau der Bluteiweißkörper Nephrose- und Nephritiskranker. Verh. dtsch. Ges. inn. Med. 58, 304 (1952).Google Scholar
  639. Muirhead, E.: Patterns of renal salt loss in acute renal failure. Geriatrics 8, 471 (1953).PubMedGoogle Scholar
  640. Murphy, D., H. L. Settimi and N. J. Kozokoff: Renal disease with the salt losing syndrome. Report of 4 cases of socalled “salt losing-nephritis”. Ann. Int. Med. 38, 1160 (1953).PubMedGoogle Scholar
  641. Mylon, E., and L. R. Freeman: On occurrence of renin in blood of hypertensive patients. Amer. Heart J. 38, 509 (1949).PubMedGoogle Scholar
  642. Naegele, E.: Der primäre und der sekundäre Hyperparathyreoidismus. Über Beziehungen zwischen Epithelkörperchen, Nierenerkrankungen und Osteopathien. Dtsch. med. Wschr. 1955, 1400.Google Scholar
  643. Nagel, W. N.: Handbuch der Physiologie des Menschen, Bd. 1. Braun-schweig: F. Yieweg & Sohn 1906.Google Scholar
  644. Nash jr. T. P., and S. R. Benedict: The ammonia content of the blood and its bearing on the mechanism of acid neutralisation in the animal organism. J. Biol. Chem. 48, 463 (1921).Google Scholar
  645. Nedeljkovic, R.: Cellular storage of para- aminohippuric acid (PAH) and indirect measurement of the renal blood flow. Arch. Internat. Physiol. 64, 46 (1956).Google Scholar
  646. Nelson, W. P., and L. G. Welt: The effects of pitressin on the metabolism and excretion of water and electrolytes in normal subjects and patients with cirrhosis and ascites. J. Clin. Invest 31, 392 (1952).PubMedGoogle Scholar
  647. Newman, E. V., A. Gilman and F. S. Philips: The renal clearance of thiosulfate in man. Bull. Johns Hopkins Hosp. 79, 229 (1946).PubMedGoogle Scholar
  648. Ni, T. G., and P. B. Rehberg: On the mechanism of sugar excretion. I. Glucose. Biochemic. J. 24, 1039 (1930).Google Scholar
  649. Nicholson, T. F.: Renal function as affected by experimental unilateral kidney lesions. II. The effect of cyanide. Biochemic. J. 45, 112 (1949).Google Scholar
  650. Nicholson, T. F.: Renal function as affected by experimental unilateral renal lesions. III. The relationship of urinary acidity to ammonia formation in mild tartrate nephrosis. XIX. Internat. Physiol. Congr. Abstr. comm. S. 646, Montreal 1953.Google Scholar
  651. Nielson, A. L.: On the mechanism of glycosuria. I. Acta med. scand. (Stockh.) 130, 219 (1948).Google Scholar
  652. Nonnenbruch, W.: Das “Nephrotische Syndrom”. Klin. Wschr. 1942 I, 805, 815.Google Scholar
  653. Ochwadt, B.: Über Riickresorption und Ausscheidung von Bicarbonat durch die Niere während der Hyperventilationsalkalose. Pfliigers Arch. 252, 529 (1950).Google Scholar
  654. Ochwadt, B.: Zur Selbststeuerung des Nierenkreislaufs. Pflügers Arch. 262, 207 (1956).PubMedGoogle Scholar
  655. Ochwadt, B., and R. F. Pitts: Effects of intravenous infusion of carbonic anhydrase on carbon dioxyde tension of alkaline urine. Amer. J. Physiol. 185, 426 (1956).PubMedGoogle Scholar
  656. Ochwadt, B., u. J. Schmier: Über Temperatur- und Kreislaufzeitmessungen in verschiedenen Abschnitten der Hundeniere. Pflügers Arch. 258, 261 (1954).PubMedGoogle Scholar
  657. O’Connor, W. J., and E. B. Verney: The effect of removal of the posterior lobe of the pituitary on the inhibition of wrater-diuresis by emotional stress. Quart, J. Exper. Physiol. 31, 393 (1941/42).Google Scholar
  658. Oliver, J.: The structure of the metabolic process in the nephron. J. Mt. Sinai Hosp. 15, 175 (1948).Google Scholar
  659. Oliver, J.: New directions in renal morphology: a method, its results and its future. Harvey Lect, 40, 102 (1944/45).Google Scholar
  660. Oliver, J., M. Mac Dowell and Y. C. Lee: Cellular mechanisms of protein metabolism in the nephron. I. The structural aspects of proteinuria; tubular absorption, droplet formation, and the disposal of proteins. J. of Exper. Med. 99, 589 (1954).Google Scholar
  661. Oliver, J., M. Mac Dowell and A. Tracy: The pathogenesis of acute renal failure associated with traumatic and toxic injury. Renal ischemia, nephrotoxic damage and the ischemuric episode. J. Clin. Invest. 30, 1305 (1951).Google Scholar
  662. Oliver, J., M.J. Moses, M. C. Mac Dowell and Y. C. Lee: Cellular mechanism of protein metabolism in the nephron. II. The histochemical characteristics of protein absorption droplets. J. of Exper. Med. 99, 605 (1954).Google Scholar
  663. Ollayos, R. W., and A. W. Winkler: Urinary excretion and serum concentration of inorganic phosphate in man. J. Clin. Invest, 22, 147 (1943).PubMedGoogle Scholar
  664. Orloff, J., T. J. Kennedy and R. W. Berliner: The effect of potassium in nephrectomized rats with hypokalemic alkalosis. J. Clin. Invest, 32, 538 Handbuch d. allgem. Pathologie, Bd. V/2. 9 (1953).PubMedGoogle Scholar
  665. Ottenberg, R., and C. L. Fox: The rate of removal of hemoglobin from the circulation and its renal threshold in human beings. Amer. J. Physiol. 123, 516 (1938).Google Scholar
  666. Page, J. H.: Pressor substances from body fluids of man in health and disease. J. of Exper. Med. 61. 67 (1935).Google Scholar
  667. Page, J. H.: The relationship of the extrinsic renal nerves to the origin of experimental hypertension. Amer. J. Physiol. 112, 166 (1935).Google Scholar
  668. Page, J. H.: The effect of bilateral adrenalectomy on arterial blood pressure of dogs with experimental hypertension. Amer. J. Physiol. 122, 352 (1938).Google Scholar
  669. Page, J. H., and J. E. Sweet: Effect of exstirpation of pituitary gland on arterial blood pressure of dogs with experimental hypertension. Proc. Soc. Exper. Biol. a. Med. 34, 260 (1936).Google Scholar
  670. Pappenheimer, J.R.: Passage of molecules through capillary walls. Physiologic. Rev. 33, 387 (1953).Google Scholar
  671. Pappenheimer, J.R.: Über die Permeabilität der Glomerulummembranen in der Niere. Klin. Wschr. 1955, 362.Google Scholar
  672. Pappenheimer, J. R., and W. B. Kinter: Unequal distribution of red cells and plasma in renal cortex; significance for renal hemodynamics. Federat. Proc. 14, 110 (1955).Google Scholar
  673. Pappenheimer, J. R., and W. B. Kinter: Hematocrit ratio of blood within mammalian kidney and its signification for renal hemodynamics. Amer. J. Physiol. 185, 377 (1956).PubMedGoogle Scholar
  674. Pascale, L. R., A. Dubin and W. S. Hoffman: Therapeutic value of probenecid (benemid) in gout. J. Amer. Med. Assoc. 149, 1188 (1952).Google Scholar
  675. Pasqualini, R. Q., u A. Avogadro: Accion de la pitresina sobre la sed en la diabetes insipida. Rev. Soc. argent. Biol. 18, 88 (1942).Google Scholar
  676. Peart, W. S.: Analyse des Hypertensins. Biochemic. J. 62, 520 (1956).Google Scholar
  677. Pencharz, R. I., J. Hopper jr. and E. H. Rynearson: Water metabolism of the rat following removal of the anterior lobe of the hypophysis. Proc. Soc. Exper. Biol. a. Med. 34, 14 (1936).Google Scholar
  678. Persky, L., J. P. Storaasli and G. Austen jr.: Mechanism of hydronephrosis: never investigative techniques. J. of Urol. 73, 740 (1955).Google Scholar
  679. Petermann, M. L., and N. V. Hakala: Molecular kinetic and electrophoretic studies on carbonic anhydrase. J. of Biol. Chem. 145, 701 (1942).Google Scholar
  680. Peters, J. D., and D. D. van Slyke: Quantitative clinical chemistry. I. Interpretations. II. Methods. 2. Aufl. Baltimore: Williams & Wilkins Company 1946.Google Scholar
  681. Peters, K.: Untersuchungen über Bau und Entwicklung der Niere. Jena: Gustav Fischer, Bd. I 1909; Bd. II 1927.Google Scholar
  682. Petersdorf, R. G., and L. G. Welt: The effect of an infusion of hyperoncotic albumin on the excretion of water and solutes. J. Clin. Invest. 32, 283 (1953).PubMedGoogle Scholar
  683. Phillips, R. A., V. P. Dole, P. B. Hamilton, K. Emerson, R. M. Archibald and D. D. van Slyke: Effect of acute hemorrhagic and traumatic shock on renal function of dogs. Amer. J. Physiol. 145, 314 (1946).PubMedGoogle Scholar
  684. Phillips, D. M., and K. Hare: Antidiuretic potency of the neurohypophysis of the cat following pituitary stalk section. Endocrinology 37, 29 (1945).Google Scholar
  685. Piantoni, C.: Mechanism of renal excretion of vitamin C. Rev. Soc. argent. Biol. 16, 175 (1940).Google Scholar
  686. Piantoni, C., and O. Orias: Effect of progesterone and desoxy-corticosterone on renal excretion of vitamin C, creatinine, and wrater. Rev. Soc. argent. Biol. 17, 153 (1941).Google Scholar
  687. Pickering, G. W.: The peripheral resistance in persistant arterial hypertension. Clin. Sei. 2, 209 (1936).Google Scholar
  688. Pickering, G. W.: The role of the kidney in acute and chronic hypertension following renal artery constriction in the rabbit. Clin. Sei. 5, 229 (1945).Google Scholar
  689. Pickering, G. W.: High blood pressure. London: J.A.Churchill 1955.Google Scholar
  690. Pickering, G. W., M. Prinzmetal and A. R. Kelsall: The assay of renin in rabbits with experimental renal hypertension. Clin. Sei. 4, 401 (1942).Google Scholar
  691. Pitts, R. F.: The excretion of urin in the dog. VII. Inorganic phosphate in relation to plasma phosphate level. Amer. J. Physiol. 106, 1 (1933).Google Scholar
  692. Pitts, R. F.: The comparison of urea with urea + ammonia clearances in acidotic dogs. J. Clin. Invest. 15, 571 (1936).PubMedGoogle Scholar
  693. Pitts, R. F.: The excretion of phenol red by the chicken. J. Cellul. a. Comp. Physiol. 11, 99 (1938).Google Scholar
  694. Pitts, R. F.: A renal reabsorptive mechanism in the dog common to glycin and creatine. Amer. J. Physiol. 140, 156 (1943).Google Scholar
  695. Pitts, R. F.: A comparison of the renal reabsorptive processes for several amino acids. Amer. J. Physiol. 140, 535 (1944).Google Scholar
  696. Pitts, R. F.: Renal excretion of acid. Federat. Proc. 7, 418 (1948).Google Scholar
  697. Pitts, R. F.: Acid-base regulation by the kidneys. Amer. J. Med. 9, 356 (1950).PubMedGoogle Scholar
  698. Pitts, R. F.: Über aktive Transportmechanismen in den Tubuli der Niere. Klin. Wschr. 1955, 365.Google Scholar
  699. Pitts, R. F., and R. S. Alexander: The renal reabsorptive mechanism for inorganic phosphate in normal and acidotic dogs. Amer. J. Physiol 142, 648 (1944).Google Scholar
  700. Pitts, R. F., and R. S. Alexander: The nature of the renal tubular mechanism for acidifying the urine. Amer. J. Physiol. 144. 239 (1945).Google Scholar
  701. Pitts, R. F., J. L. Ayer and W. A. Schiess: The renal regulation of acid- base balance in man. III. The reabsorption and excretion of bicarbonate. J. Clin. Invest. 28, 35 (1949).Google Scholar
  702. Pitts, R. F., and W. D. Lotspeich: Bicarbonate and the renal regulation of acid-base balance. Amer. J. Physiol. 147, 138 (1946).PubMedGoogle Scholar
  703. Pitts, R. F., W. D. Lotspeich, W. A. Schiess and J. L. Ayer: The renal regulation of acid base balance in man. I. The nature of the mechanism for acidifying the urine. J. Clin. Invest. 27, 48 (1948).Google Scholar
  704. Pitts, R. F., W. J. Sullivan and P. J. Dorman: Regulation of the content of bicarbonate boud base in body fluids. The Kidney. Ciba-Foundation-Symposion 1954, S. 125.Google Scholar
  705. Platt, R.: Structural and functional adaptation in renal failure. Brit. Med. J. 1952, No 4773, 1372.Google Scholar
  706. Plückthun, H., K. Schreier u. H. Hauss: Untersuchungen zur Pathogenese des Eiweiß-stoffwechsels beim “Nephrotischen Syndrom.” Klin. Wschr. 1953, 558.Google Scholar
  707. Plummer, N., and F. McLellan: Production of sulfapyridin renal calculi in man following administration of sulfapyridin. J. Amer. Med. Assoc. 114, 943 (1940).Google Scholar
  708. Popper, H., u. E. Mandel: Fil- trations- und Resorptionsleistung in der Nierenpathologie. Erg. inn. Med. 53, 685 (1937).Google Scholar
  709. Porto, J.: Estructura del aparato venenoso de las aranas del genero. Rev. Soc. argent. Biol. 18, 346 (1942).Google Scholar
  710. Post, R. S.: Decrease of cardiac output by acute pericardial effusion and its effect on renal hemodynamics and electrolyte excretion. Amer. J. Physiol. 165, 278 (1951).PubMedGoogle Scholar
  711. Poulsson, L. T.: Über Hypophysenhinterlappen und Wasserausscheidung. Klin. Wschr. 1930, 1245.Google Scholar
  712. Power, M., and C. H. Greene: The state of the blood sugar as shown by compensation dialysis in vivo. J. of Biol. Chem. 94, 281 (1931).Google Scholar
  713. Prien, E. L., E. G. Crabtree and C. Frondel: The mechanism of the urinary tract obstruction in sulfathiazole therapy: Identification of crystals in tissue by polarized light. J. of Urol. 46, 1020 (1941).Google Scholar
  714. Prinzmetal, M., and C. Wilson: The nature of the peripheral resistance in arterial hypertension with special reference to the vasomotor system. J. Clin. Invest. 15, 63 (1936).PubMedGoogle Scholar
  715. Pütter, A.: Die Dreidrüsen-Theorie der Harnbereitung. Berlin: Springer 1926.Google Scholar
  716. Pütter, A.: Die Sekretionsmechanismen der Niere. Berlin: W. de Gruyter & Co. 1929.Google Scholar
  717. Raaschou, F.: Studies of chronic pyelonephritis with special reference to the kidney function. Copenhagen: Ejnar Munksgaard 1948.Google Scholar
  718. Ragan, C., J. W. Ferebee, P. Phyfe, A. Atchley and R. F. Loeb: A syndrome of polydispsia and polyuria induced in normal animals by desoxycorticosterone acetate. Amer. J. Physiol. 131, 73 (1940).Google Scholar
  719. Ralli, E. P., M. Brown and A. Pariente: The urea clearance test in normal dogs. Amer. J. Physiol. 97, 432 (1931).Google Scholar
  720. Ralli, E. P., G. J. Friedman and S. H. Rubin: The mechanism of the excretion of vitamin C by the human kidney. J. Clin. Invest, 17, 765 (1938).PubMedGoogle Scholar
  721. Ralli, E. P., J. S. Robson, D. Clarke and C. L. Hoagland: Factor influencing ascites in patients with cirrhosis of the liver. J. Clin. Invest, 24, 316 (1945).PubMedGoogle Scholar
  722. Rammelkamp, C. H., and S. E. Bradley: Excretion of penicillin in man. Proc. Soc. Exper. Biol. a. Med. 53, 30 (1943).Google Scholar
  723. Randerath, E.: Über den Ort der Eiweißausscheidung in der Niere bei nephrotischen Nierenkrankheiten, nebst Bemerkungen über den Begriff und die Einteilung der Nephrosen. Beitr. path. Anat. 95, 403 (1935).Google Scholar
  724. Randerath, E.: Die Entwicklung der Lehre von den Nephrosen in der pathologischen Anatomie. Erg. Path. 32, 91 (1937).Google Scholar
  725. Randerath, E.: Nephrose — Nephritis. Klin. Wschr. 1941, 281.Google Scholar
  726. Rantz, L., and W. Kirby: The absorption and excretion of penicillin following continuous intravenous and subcutaneous administration. J. Clin. Invest. 23, 789 (1944).PubMedGoogle Scholar
  727. Rapoport, S., and C. D. West: Excretion of sodium and potassium during osmotic diuresis in the hydropenic dog. Amer. J. Physiol. 163, 175 (1950).PubMedGoogle Scholar
  728. Rasmussen, A. T., and W. J. Gardner: Effects of hypophyseal stalk resection on the hypophysis and hypothalamus of man. Endocrinology 27, 219 (1940).Google Scholar
  729. Rather, L. J.: On the problem of renal tubular reabsorption of protein. Stanford Med. Bull. 6, 117 (1948).PubMedGoogle Scholar
  730. Rather, L. J.: Filtration, resorption, and excretion of protein by the kidney. Medicine 31, 357 (1952).PubMedGoogle Scholar
  731. Rector, F. C., D. W. Seldin, A. D. Roberts and J. H. Copenhaver: Relation of ammonia excretion to urine-pH. Amer. J. Physiol. 179, 353 (1954).PubMedGoogle Scholar
  732. Rehberg, P. B.: Studies on kidney function. I. The rate of filtration and reabsorption in the human kidney. Biochemic. J. 20, 447 (1926).Google Scholar
  733. Rehberg, P. B.: Studies on kidney function. II. The excretion of urea and chloride analyzed according to a modified filtration-reabsorption theory. Biochemic. J. 20, 461 (1926).Google Scholar
  734. Rehm, W. S., C. R. Crawford, P. A. Wolff, D. O. Demunbrum, H. Hodges and H. S. Schlesinger: The effect of carbonic anhydrase inhibitor 6063 on acid secretion and gastric potential. Amer. J. Physiol. 171, 759 (1952).Google Scholar
  735. Reily, J., A. Compagnon, A. Laporte et H. du Buit: Le rôle de système nerveux en pathologie rénale. Paris: Masson & Cie. 1942.Google Scholar
  736. Rein, H.: Physiologie des Menschen, 7. Aufl. Berlin: Springer 1943.Google Scholar
  737. Rein, H., u. D. Schneider: Erfahrungen über Narkosen zu wissenschaftlichen Versuchszwecken. Klin. Wschr. 1934, 870.Google Scholar
  738. Relman, A. S., B. Etstein and W. B. Schwarz: The regulation of renal bicarbonate reabsorption by plasma carbon dioxyde tension. J. Clin. Invest. 32, 972 (1953).PubMedGoogle Scholar
  739. Renkin, E. M.: Filtration diffusion, and molecular sieving through pourous cellulose membranes. J. Gen. Physiol. 38, 225 (1955).Google Scholar
  740. Renzi, A. A., M. Renzi, J. J. Chart u. R. Gaunt: The effects of aldosteron and other steroids on water intoxication and renal function. Acta endocrinol. (Copenh.) 21, 47 (1956).Google Scholar
  741. Reubi, F. C.: Le flux sanguin rénal et le filtrat glomérulaire au stade initial de la glomérulonéphrite aiguë. Schweiz, med. Wschr. 1949, 896.Google Scholar
  742. Reubi, F. C.: Le flux sanguin rénal. Helvet, med. Acta, Ser. A 17, Suppl. 26, H. 2 (1950) und Benno Schwabe & Co., Basel, 1950.Google Scholar
  743. Reubi, F. C.: Glucose titration in renal glycosuria. The Kidney. Ciba-Foundation- Symposium, London 1954, S. 96.Google Scholar
  744. Reubi, F. C., et A. Schmid: L’hyperlipidémie du syndrome néphrotique est-elle d’origine rénale? J. d’Urol. 61, 304 (1955).Google Scholar
  745. Reubi, F. C., and H. A. Schroeder: Can vascular shunting be induced in the kidney by vasoactive drugs ? J. Clin. Invest. 28, 114 (1949).Google Scholar
  746. Reubi, F. C., H. A. Schroeder, P. H. Futcher and C. Reubi: A discrepancy between renal extraction and urinary excretion of various substances (p-amino- hippurate, mannitol, creatinine, thiosulfate) in man. J. Appl. Physiol. 3, 63 (1950/51).Google Scholar
  747. Reubi, F. C., et F. Wuethrich: Glycosurie rénale massive consécutive à l’ingestion de ferri- cyanure de potassium. Acta clin. belg. 10, 198 (1955).PubMedGoogle Scholar
  748. Rhoads, C. P., A. S. Alving, A. Hiller and D.D. van Slyke: The functional effect of explanting one kidney and removing the other. Amer. J. Physiol. 109, 329 (1934).Google Scholar
  749. Rhode, E., u. P. Ellinger: Über die Funk- tion der Nierennerven. Zbl. Physiol. 27, 12 (1913).Google Scholar
  750. Richards, A. N., P. A. Bott and B. B. Westfall: Experiments concerning the possibility that inulin is secreted by the renal tubules. Amer. J. Physiol. 123, 281 (1938).Google Scholar
  751. Richards, A.N., and C. F. Schmidt: The glomerular circulation in the frog’s kidney. Amer. J. Physiol. 59, 489 (1922).Google Scholar
  752. Richards, A.N., and C. F. Schmidt: A description of the glomerular circulation in the frogs kidney and observations concerning the action of adrenalin and various other substances upon it. Amer. J. Physiol. 71, 178 (1924).Google Scholar
  753. Richards, A. N., and A. M. Walker: The accessibility of the glomerular vessels to fluids perfused through the renal portal system of the frog kidney. Amer. J. Physiol. 79, 419 (1927).Google Scholar
  754. Richards, A. N., and A. M. Walker: Quantitative studies of the glomerular elimination of phenole red and indigo carmin in frogs. J. of Biol. Chem. 87, 479 (1930).Google Scholar
  755. Richards, A. N., and A. M. Walker: Urine formation in the amphibian kidney. Amer. J. Med. Sei. 190, 727 (1935).Google Scholar
  756. Richards, A.N., B.B. Westfall and P. A. Bott: Renal excretion of inulin, creatinine and xylose in normal dogs. Proc. Soc. Exper. Biol. a. Med. 32, 73 (1934).Google Scholar
  757. Richter, C. P.: Experimental diabetes insipidus: its relation to the anterior and posterior lobes of the hypophysis. Amer. J. Physiol. 110, 439 (1934).Google Scholar
  758. Richter, C. P.: The primary of polyuria in diabetes insipidus. Amer. J. Physiol. 112, 481 (1935).Google Scholar
  759. Rigas, D. A., and C. G. Heller: The amount and nature of urinary proteins in normal human subjects. J. Clin. Invest. 30, 853 (1951).PubMedGoogle Scholar
  760. Rittel, W., B. Iselin, H. Kappeler, B. Riniker u. R. Schwyzer: Synthese von Hypertensin-II-Peptiden. Angew. Chem. 69, 179 (1957).Google Scholar
  761. Ritter, E. R.: Pressure, flow relations in kidney: alleged effects of pulse pressure. Amer. J. Physiol. 168, 84 (1952).Google Scholar
  762. Roberts, K. E., M. G. Magida and R. F. Pitts: Relationship between potassium and bicarbonate in blood and urine. Amer. J. Physiol. 172, 47 (1953).PubMedGoogle Scholar
  763. Roberts, K. E., H. T. Randall, H. L. Sanders and M. Hood: Effects of potassium on renal tubular reabsorbtion of bicarbonate. J. Clin. Invest. 34, 666 (1955).PubMedGoogle Scholar
  764. Roblin jr. R. O., and J. W. Clapp: The preparation of heterocyclic sulfonamides. J. Amer. Chem. Soc. 72, 4890 (1950).Google Scholar
  765. Roemmelt, J. C., O. W. Sartorius and R.F. Pitts: Excretion and reabsorption of sodium and water in the adrenalectomized dogs. Amer. J. Physiol. 159, 124 (1949).PubMedGoogle Scholar
  766. Roesen, U.: Die PAH-Clearance im Vergleich mit üblichen Untersuchungsmethoden bei Hypertonikern. Diss. Freiburg 1953.Google Scholar
  767. Roscoe, H. H.: The endogenous creatinine clearance in normal subjects. J. Clin. Path. 7, 327 (1954).PubMedGoogle Scholar
  768. Roth, J., u. N. Szent-Gyoergyi: Plasmaeiweißbildung, oncotischer Druck, Ödembereitschaft bei der Sublimatniere. Klin. Wschr. 1934, 726, 1792.Google Scholar
  769. Roth, J., u. N. Szent-Gyoergyi: Extrarenale Vorgänge bei Sublimatnephrose. Heilung eines Falles. Klin. Wschr. 1937, 895.Google Scholar
  770. Rother, K., H. Sarre, R. Kluthe, E. Fischer u. A. Schütte: Über immunserologische und spektralphotometrische Untersuchungen von Serumproteinen bei experimentellem nephrotischem Syndrom. Z. exper. Med. 129, 87 (1957).Google Scholar
  771. Rothlin, E., and A. Cerletti: Experimental studies on renal circulation. J. Mt. Sinai Hosp. 19,138 (1952).Google Scholar
  772. Roughton, F. J. W.: Harvey Lect. 39,96(1943).Google Scholar
  773. Roughton, F. J. W., u. A. M. Clark: Carbonic anhydrase. In J. B. Sumner u. K. Myrbäck, The Enzymes. Bd. I, Teil II, S. 1250.Google Scholar
  774. Rowntree, L. G., R. Fitz and J. T. Geraghty: The effects of experimental chronic passive congestion on renal function. Arch, int. Med. 11, 121 (1913).Google Scholar
  775. Russo, H. F., L. D. Wright, H. R. Skeggs, E. K. Tillson and K. H. Beyer: Renal clearence of essential amino acids: Threonine and phenylalanine. Amer. J. Physiol. 149, 130 (1947).PubMedGoogle Scholar
  776. Ryberg, C.: The importance of sodium ions for the excretion of ammonium and hydrogen ions in the urine. Acta physiol. scand. (Stockh.) 15, 161 (1948).Google Scholar
  777. Samaan, A.: The effect of pituitary (posterior lobe) extract upon the urinary flow in non-anaesthetized dogs. J. of Physiol. 85, 37 (1935).Google Scholar
  778. Sanderson, P. H.: Renal failures following abdominal catastrophe and alkalosis. Clin. Sei. 6, 207 (1948).Google Scholar
  779. Sandkühler, S.: Über Proteinurie. Ärztl. Laborat. 1, 51 (1955).Google Scholar
  780. Sandkühler, S.: Über Proteinurie bei Nierenkranken. Dtsch. med. Wschr. 1951, 462.Google Scholar
  781. Sargent, F., II, and R. Golden: Interactions between ascorbic acid and plasma and amino acids: failure to find bound ascorbic acid in plasma. Federat. Proc. 9, 369 (1950).Google Scholar
  782. Sarre, H.: Untersuchungen über die Sauerstoff- und Kohlensäurespannung im Harn und ihre Beziehung zum Nierengewebe und zur Nierenfunktion. Pflügers Arch. 239, 377 (1937).Google Scholar
  783. Sarre, H.: Über normale und pathologische Sauerstoffversorgung des Gewebes, insbesondere der Niere. Klin. Wschr. 1938, 1716.Google Scholar
  784. Sarre, H.: Die Bedeutung der experimentellen Forschung zur Pathogenese der menschlichen diffusen Glomerulonephritis. Deutsch, med. Wschr. 1939, 1661.Google Scholar
  785. Sarre, H.: Die Durchblutung der Niere bei der experimentellen diffusen Glomerulonephritis. Dtsch. Arch. klin. Med. 183, 515 (1939).Google Scholar
  786. Sarre, H.: Untersuchungen über Beziehungen zwischen Hochdruck, Nebennierenrindenhormon und Kochsalz. Dtsch. Arch, klin. Med. 192, 167 (1944).Google Scholar
  787. Sarre, H.: Zur Pathogenese und Therapie des nephrotischen Syndroms. Dtsch. med. Wschr. 1954, 1652, 1713.Google Scholar
  788. Sarre, H.: Nierenkrankheiten, Physiologie, Pathophysiologic. Klinik und Therapie. Stuttgart: Georg Thieme 1958.Google Scholar
  789. Sarre, H., u. E. Ansorge: Die reaktive Hyperämie der Niere. Pflügers Arch. 242, 79 (1939).Google Scholar
  790. Sarre, H., R. Engeru. W. Gerstner: Die Abhängigkeit der Nierendurchblutung vom Ureter endruck. Zbl. inn. Med. 1937,865.Google Scholar
  791. Sarre, H., R. Enger u. F. Linder: Wirkung quantitativ abgestufter Drosselung der Nierendurchblutung auf den Blutdruck. Z. exper. Med. 104, 1 (1938).Google Scholar
  792. Sarre, H., u. A. Moench: Funktionelle und morphologische Veränderungen der Niere durch chronischen Nervenreiz. Verh. dtsch. Ges. inn. Med. 56, 187 (1950).Google Scholar
  793. Sarre, H., u. A. Moench: Über den Einfluß einer chronischen Entzündung im Gebiet der Nierennervenversorgung auf Funktion und Struktur der Niere. Acta neurovegetativa (Wien) 3, 219 (1951).Google Scholar
  794. Sarre, H., u. A. Moench: Funktionelle und morphologische Veränderungen der Niere durch chronischen Nervenreiz. Z. exper. Med. 117, 49 (1951).Google Scholar
  795. Sarre, H., u. A. Moench: Funktionelle und morphologische Veränderungen der Niere bei anhaltender elektrischer Reizung der vegetativen Nerven im Bereich des Nierengefäßstieles. Acta neurovegetativa (Wien) 4, 316 (1952).Google Scholar
  796. Sarre, H., u. H. Wirtz: Durchblutung der Niere bei der experimentellen diffusen Glomerulonephritis und Folgen ihrer Denervierung. Verh. dtsch. Ges. Kreislauf forsch. 1939, 280.Google Scholar
  797. Sartorius, O. W., and K. Roberts: The effects of pitressin and desoxycorticosteron in low dosage on the excretion of sodium, potassium, and water by the normal dog. Endocrinology 45, 273 (1949).PubMedGoogle Scholar
  798. Sartorius, O. W., J. C. Roemmelt and R. F. Pitts: The renal regulation of acid-base balance in man. IV. The nature of the renal compensations in ammonium chloride acidosis. J. Clin. Invest. 28, 423 (1949).Google Scholar
  799. Schachter, D., and J. V. Taggart: Benzoyl coenzyme A and hippuric synthesis. J. of Biol. Chem. 203, 925 (1953).Google Scholar
  800. Schaffer, N. K., L. V. Dill and H. J. Stander: The effect of renin on the uric metabolism of the pregnant and non-pregnant dalmatian dog. Endocrinology 29, 243 (1941).Google Scholar
  801. Scher, M.: Focal blood flow measurements in cortex and medulla of kidney. Amer. J. Physiol. 167, 539 (1951).PubMedGoogle Scholar
  802. Schettler, G.: Nierenfunktionsdiagnostik mit Clearance-Methoden. Klin. Wschr. 1952, 59.Google Scholar
  803. Schettler, G., F. Dietrich, H. Dudas u. R. Schubert: Klinische Ergebnisse mit Clearance-Methoden. Dtsch. med. Wschr. 1952, 705.Google Scholar
  804. Schlegel, M., and J. B. Moses: A method for visualisation of kidney bloodvessels applied to studies of the crush-syndrome. Proc. Soc. Exper. Biol. a. Med. 74, 832 (1950).Google Scholar
  805. Schmidt-Nielsen: Renal tubular excretion of urea in kangaroo-rats. Amer. J. Physiol. 170, 45 (1952).PubMedGoogle Scholar
  806. Schmidt-Nielsen: Excretion of endogenous creatinine and of mannitol in the kangaroo-rat. Amer. J. Physiol. 178, 177 (1954).Google Scholar
  807. Schmidt-Nielsen, B., D. Schmidt-Nielsen, T. R. Houpt and S. Jarnum: Urea excretion in the camel. Amer. J. Physiol. 188, 477 (1957).PubMedGoogle Scholar
  808. Schneider, M.: In H. Rein, Einführung in die Physiologie des Menschen, herausgeg. von M. Schneider. Berlin: Springer 1955.Google Scholar
  809. Schneider, M., u. E. Wildbolz: Dekapsulation und Enervation der Niere und Nierendurchblutung. Z. urol. Chir. u. Gynäk. 43, 1 (1937).Google Scholar
  810. Schou, P.: Experimental studies on kidney function during sulphate diuresis. I. Investigations on the diuresis of rabbits during infusion of a hypertonic sulphate solution. Amer. J. Dis. Childr. 45, 41 (1933).Google Scholar
  811. Schou, P.: Experimental studies on kidney function during sulfate diuresis. III. Investigations on the tubular function of rabbit-kidney during infusion of a hypertonic sulfate solution. Acta physiol. scand. (Stockh.) 7, 183 (1944).Google Scholar
  812. Schrade, W., E. Böhle u. G. Becker: Über die Ausscheidung von Lipoproteiden im Urin bei den sogenannten Albuminurien. Dtsch. Arch. klin. Med. 202, 415 (1955).PubMedGoogle Scholar
  813. Schreier, K.: Die angeborenen Stoffwechselanomalien des Menschen. Klin. Wschr. 1953, 729.Google Scholar
  814. Schwalb, H.: Clearance-Untersuchungen bei Nierenkrankheiten und Hochdruck. Münch, med. Wschr. 95, 1001 (1953).Google Scholar
  815. Schwartz, B. M., P.K. Smith and A.W. Winkler: Renal excretion of sulfate. Amer. J. Physiol. 137, 658 (1942).Google Scholar
  816. Schwartz, W. B.: The effect of sulfanilamid on salt and water excretion in congestive heart failure. New England J. Med. 240, 173 (1949).Google Scholar
  817. Schwartz, W. B., R. L. Jenson and A. S. Relman: The disposition of acid administered to sodium-depleted subjects: The renal response and the role of the whole body buffers. J. Clin. Invest. 33, 587 (1954).PubMedGoogle Scholar
  818. Acidification of the urine and increased ammonium excretion without change in acid-base equilibrium: sodium reabsorption as a stimulus to the acidifying process. J. Clin. Invest. 34, 673 (1955).Google Scholar
  819. Schweizer, M., R. Gaunt, N. Zinken and O. Nelson: The role of the adrenal cortex and the anterior pituitary in diabetes insipidus. Amer. J. Physiol. 132, 141 (1941).Google Scholar
  820. Schwiegk, H.: Die Auswirkungen von Funktionsstörungen des Herzens auf die Peripherie. Z. Kreislauf forsch. 45, 634 (1956).Google Scholar
  821. Scott, D. A., and A. M. Fisher: Carbonic anhydrase. J. of Biol. Chem. 144, 371 (1942).Google Scholar
  822. Scribner, B. H., K. Fremont-Smith and J. M. Burnell: The effect of acute respiratory acidosis on the internal equilibrium of potassium. J. Clin. Invest. 34, 1276 (1955).PubMedGoogle Scholar
  823. Seitz, W., E. Zimmer u. P. E. Alberti: Papierelektrophoretische Untersuchungen der Proteine im Harn Gesunder und Kranker. Z. klin. Med. 152, 196 (1953).PubMedGoogle Scholar
  824. Selkurt, E. E.: The influence of glucose renal tubular reabsorption and p-aminohippuric acids tubular excretion on the simultaneous clearance of ascorbic acid. Amer. J. Physiol. 142, 182 (1944).Google Scholar
  825. Selkurt, E. E.: Influence of hypoxia on renal circulation and on excretion of electrolytes and water. Amer. J. Physiol. 172, 700 (1953).PubMedGoogle Scholar
  826. Selkurt, E. E.: Nierenfunktion bei veränderten Kreislauf Verhältnissen. In 3. Freiburger Symposion, Pathologische Physiologie und Klinik der Nierensekretion, S. 23. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  827. Selkurt, E. E.: Der Nierenkreislauf. Klin. Wschr. 1955, 359.Google Scholar
  828. Selkurt, E. E., M. Brandfonbrener and H. M. Geller: Effect of ureteral pressure increase on renal hemodynamics and the handling of electrolytes and water. Amer. J. Physiol. 170, 61 (1952).PubMedGoogle Scholar
  829. Selkurt, E. E., P. W. Hall and M. P. Spencer: Influence of graded aterial pressure decrement on renal clearance of creatinine, p-amino-hippurate and sodium. Handbuch d. allgem. Pathologie. Bd. Y/2. 9. Amer. J. Physiol. 159, 369 (1949).PubMedGoogle Scholar
  830. Selkurt, E. E., and C. R. Houck: The effect of sodium and potassium chloride on the renal clearance of ascorbic acid. Amer. J. Physiol. 141, 423 (1944).Google Scholar
  831. Selkurt, E. E., L. J. Talbot and C. R. Houck: The effect of the administration of oestrogen on the mechanism of ascorbic acid excretion in the dog. Amer. J. Physiol. 140, 260 (1943).Google Scholar
  832. Sellers, A. L., N. Griggs, J. Marmorston and H. C. Goodman: Filtration and reabsorption of protein by the kidney. J. of Exper. Med. 100, 1 (1954).Google Scholar
  833. Sendroy jr. J., J. S. Seelig and D. D. van Slyke: Studies of acidosis. XXIII. The carbon dioxide tension and acid-base balance of human urine. J. of Biol. Chem. 106, 479 (1934).Google Scholar
  834. Shannon, J. A.: The excretion of inulin by the dogfish. Squalus acenthias. J. Cellul. a. Comp. Physiol. 5, 301 (1934).Google Scholar
  835. Shannon, J. A.: The excretion of inulin by the dog. Amer. J. Physiol. 112, 405 (1935).Google Scholar
  836. Shannon, J. A.: Excretion of phenol red by the dog. Amer. J. Physiol. 113, 602 (1935).Google Scholar
  837. Shannon, J. A.: Glomerular filtration and urea excretion in relation to urine flow in the dog. Amer. J. Physiol. 117, 206 (1936).Google Scholar
  838. Shannon, J. A.: The excretion of uric acid by the chicken. J. Cellul. a. Comp. Physiol. 11, 135 (1938).Google Scholar
  839. Shannon, J. A.: The renal excretion of phenol red by the aglomerular fishes Opsanus tau and Lophius piscatorius. J. Cellul. a. Comp. Physiol. 11, 315 (1938).Google Scholar
  840. Shannon, J. A.: Urea excretion in the normal dog during forced diuresis. Amer. J. Physiol. 122, 782 (1938).Google Scholar
  841. Shannon, J. A.: The renal reabsorption and excretion of urea under conditions of extreme diuresis. Amer. J. Physiol. 128, 182 (1938).Google Scholar
  842. Shannon, J. A.: Renal tubular excretion. Physiologic. Rev. 19, 63 (1939).Google Scholar
  843. Shannon, J. A.: The control of the renal excretion of water. I. The effect of variations in the state of hydration on water excretion in dogs with diabetes insipidus. J. of Exper. Med. 76, 371 (1942).Google Scholar
  844. Shannon, J. A.: The control of the renal excretion of water. II. The rate of liberation of the posterior pituitary antidiuretic hormon in the dog. J. Exper. Med. 76, 387 (1942).Google Scholar
  845. Shannon, J. A., S. Farber and L. Troast: The measurement of glucose Tm in the normal dog. Amer. J. Physiol. 133, 752 (1941).Google Scholar
  846. Shannon, J. A., and S. Fisher: The renal tubular reabsorption of glucose in the normal dog. Amer. J. Physiol. 122, 765 (1938).Google Scholar
  847. Shannon, J. A., N. Jolliffe and H. W. Smith: The excretion of urine in the dog. IV. The filtration and secretion of exogenous creatinine. Amer. J. Physiol. 102, 534 (1932).Google Scholar
  848. Shannon, J. A., and H. W. Smith: The excretion of inulin, xylose and urea by normal and phlorizined man. J. Clin. Invest. 14, 393 (1935).PubMedGoogle Scholar
  849. Shannon, J. A., and F. R. Winton: The renal excretion of inulin and creatinine by the anaesthetized dog and the pump-lung-kidney preparation. J. of Physiol. 98, 97 (1940).Google Scholar
  850. Sheehan, H. L.: The renal elimination of phenol red in the dog. J. of Physiol. 87, 237 (1936).Google Scholar
  851. Sheffner, A. L., J. B. Kirsner and W. L. Palmer: Studies on amino acid excretion in man. I. Amino acids in urine. J. of Biol. Chem. 175, 107 (1948).Google Scholar
  852. Sherry, S., G. J. Friedman, K. Paley, J. Berkman and E. Ralli: The mechanism of the excretion of vitamin C by the dog kidney. Amer. J. Physiol. 130, 276 (1940).Google Scholar
  853. Shipley, R. E., and R. S. Study: Changes in renal blood flow, extraction of inulin, glomerular fil-tration rate, tissue pressure and urine flow with acute alterations of renal artery blood pressure. Amer. J. Physiol. 167, 676 (1951).PubMedGoogle Scholar
  854. Shorr, E., S. Baez, W. B. Zweifach, Payne, A. Mazur and Metz: Antidiuretic action of hepatic vasodepressor ferritin (VDM) and its occurence in conditions associated with antidiuresis in man. Trans. Assoc. Amer. Physicians 63, 39 (1950).Google Scholar
  855. Silvette, H., and S. W. Britton: Renal function in the opossum and the mechanism of cortico-adrenal and postpituitary action. Amer. J. Physiol. 128, 747 (1938).Google Scholar
  856. Singer, B., and J. Werner: Excretion of sodium-retaining substance in patients with congestive heart failure. Amer. Heart J. 45, 795 (1953).PubMedGoogle Scholar
  857. Sirota, J. H.: Carbon tetrachloride poisoning in man. I. The mechanism of renal failure and recovery. J. Clin. Invest. 28, 1412 (1949).PubMedGoogle Scholar
  858. Sirota, J. H., D. Hamerman and E. E. Jaffe: Renal function studies in an adult subject with Fanconi-syndrome. Amer. J. Med. 16, 138 (1954).PubMedGoogle Scholar
  859. Sirota, J. H., T. F. Yti and A. B. Gutman: Effect of benemid p-(di-n-propylsulfamyl)-benzoic acid) on urate clearance and other discrete renal functions in gouty subjects. J. Clin. Invest. 31, 692 (1952).PubMedGoogle Scholar
  860. Skeggs, L. T., J. R. Kahn and N. P. Shumway: The isolation of hypertensin from the circulating blood of normal dogs with experimental renal hypertension by dialysis in an artificial kidney. Circulation (New York) 3, 384 (1951).Google Scholar
  861. Skeggs jr. L. T., K. E. Lentz, J. R. Kahn, N. P. Shumway and K. R. Woods: The amino acid sequence of hypertensin. J. of Exper. Med. 104, 193 (1956).Google Scholar
  862. Slyke, D. D. van: Urea. Harvey Lect. 11, 146 (1915/16).Google Scholar
  863. Slyke, D. D. van: The effect of shocks in the kidney. Ann. Int. Med. 28, 701 (1948).Google Scholar
  864. Slyke, D. D. van: L’insufficienzia renale tubulare nello shock e nella nephrite. Minerva med. (Torino) 1954, 1501.Google Scholar
  865. Slyke, D. D. van, A. Hiller and B. F. Miller: The clearance extraction percentage and estimated filtration of sodium ferrocyanide in the mammalian kidney. Comparison with inulin, creatinine and urea. Amer. J. Physiol. 113, 611 (1935).Google Scholar
  866. Slyke, d. D. van, R. A. Phillips, P. B. Hamilton, R. M. Archibald, P. H. Futcher and A. Hiller: Glutamine as source material of urinary ammonia. J. of Biol. Chem. 150, 481 (1943).Google Scholar
  867. Slyke, D. D. van, C. P. Rhoads, A. Hiller and A. S. Alving: Relationship between urea excretion, renal blood flow, renal oxygen consumption and diuresis. The mechanism of urea excretion. Amer. J. Physiol. 109, 336 (1934).Google Scholar
  868. Smirk, F. H.: The influence of posterior pituitary hormone on the absorption and distribution of water in man. J. of Physiol. 78, 147 (1933).Google Scholar
  869. Smith, H. W.: The excretion of the non-metabolized sugars in the dogfish, the dog and man. In H. Berglund, G. Medes, G. Huber, W. Longecope u. A. Richards, The Kidney in Health and Disease, S. 92. Philadelphia: Lea a. Febiger 1935.Google Scholar
  870. Smith, H. W.: Studies in the physiology of the kidney. Lawrence: University of Kansas 1939.Google Scholar
  871. Smith, H. W.: Lectures on the kidney. University Extension Division. Lawrence: University of Kansas 1943.Google Scholar
  872. Smith, H. W.: The physiology of the kidney. Oxford University Press 1937.Google Scholar
  873. Smith, H. W.: The Kidney, Structure and Function in Health and Disease. New York: Oxford University Press 1951.Google Scholar
  874. Smith, H. W.: Renal excretion of sodium and water. Federat. Proc. 11, 701 (1952).Google Scholar
  875. Smith, H. W., and R. W. Clarke: The excretion of inulin and creatinine by the anthropoid apes and other infrahuman primates. Amer. J. Physiol. 122, 132 (1938).Google Scholar
  876. Smith, H. W., N. Finkelstein, L. Ali- minosa, B. Crawford and M. Graber: The renal clearance of substituted hippuric acid derivatives and other aromatic acids in dog and man. J. Clin. Invest. 24, 388 (1945).PubMedGoogle Scholar
  877. Smith, H. W., W. Goldring and H. Chasis: The measurement of the tubular excretory mass, effective blood flow and filtration rate in the normal human kidney. J. Clin. Invest. 17, 263 (1938).PubMedGoogle Scholar
  878. Smith, H. W., W. Goldring, H. Chasis, H. A. Ranges and S. E. Bradley: The application of saturation methods to the study of glomerular and tubular function in the human kidney. J. Mt. Sinai Hosp. 10, 59 (1943).Google Scholar
  879. Smith, L. H., and G. E. Schreiner: Studies on renal hyperchloraemic acidosis. J. Labor, a. Clin. Med. 43, 347 (1954).Google Scholar
  880. Smith, P. K., R. W. Ollayos and A. W. Winkler: Tubular reabsorption of phosphate in the dog. J. Clin. Invest. 22, 143 (1943).PubMedGoogle Scholar
  881. Smith, W., N. Finkelstein and H. W. Smith: Renal excretion of hexitols and their derivates and of endogenous creatinine-like chromogen in dog and man. J. of Biol. Chem. 135, 231 (1940).Google Scholar
  882. Smith, W. W.: The excretion of phenol red in the dogfish, Squalus acanthias. J. Cellul. a. Comp. Physiol. 14, 357 (1939).Google Scholar
  883. Smith, W. W., and H. W. Smith: Protein binding of phenol red, diodrast and other substances in plasma. J. of Biol. Chem. 124, 107 (1938).Google Scholar
  884. Soulier, J. P.: Étude électrophorétique de 86 cas de protéinurie (albuminurie). (Protéinurie des myélomes et des néphropathies.) Presse méd. 1953, 49.Google Scholar
  885. Southworth, H.: Acidosis associated with administration of paraamino- bencene sulfonamide (Prontylin). Proc. Soc. Exper. Biol. a. Med. 36, 58 (1937).Google Scholar
  886. Spanner, R.: Der Abkürzungskreislauf der menschlichen Niere; Beitrag zur Kenntnis der Leistungszweiteilung ihres Gefäßsystems. Klin. Wschr. 1937, 1421.Google Scholar
  887. Spanner, R.: Die Kleisterinjektion, ihre praktische Anwendung und Verbesserung für Aufhellungspräparate. Anat. Anz. 85, 299 (1938).Google Scholar
  888. Sperber, I.: The excretion of some glucoronic acid derivates and phenol sulfuric esters in the chicken. Ann. Roy. Agricult. Coll. Sweden 15, 317 (1948).Google Scholar
  889. Sperber, I.: The excretion of piperidine, guanidine, methylguanidine and N-methylnicotinamid in the chicken. Ann. Roy. Agricult. Coll. Sweden 16, 49 (1948).Google Scholar
  890. Sperber, I.: Competitive inhibition and specificity of renal tubular transport mechanism. Arch, internat. Pharmacodynamic 97, 221 (1954).Google Scholar
  891. Spinelli, A. S.: Lesioni del reue consecutive ad irritazione dei nervi del peduncolo. Ann. ital. Chir. 11, 585 (1932).Google Scholar
  892. Springorum, P. W.: Über die Unabhängigkeit hormonaler und zentralnervöser Diuresehemmung von der Nierengesamtdurchblutung und dem arteriellen Druck. Pflügers Arch. 240, 342 (1938).Google Scholar
  893. Springorum, P. W., u. D. Centenera: Die verschiedene Beteiligung beider Nieren an Diureseänderungen und vasomotorischen Reaktionen. Pflügers Arch. 239, 440 (1937).Google Scholar
  894. Spühler, O.: Zur Patho-Physiologie der Niere. Bern: H. Huber 1946.Google Scholar
  895. Spühler, O., u. H. U. Zollinger: Die diabetische Glomerulosklerose. Dtsch. Arch. klin. Med. 190, 321 (1943).Google Scholar
  896. Stadtman, E. R,: The net enzymatic synthesis of acetyl coenzyme A. J. of Biol. Chem. 196, 535 (1952).Google Scholar
  897. Starling, E. H., and E. B. Verney: The secretion of urine as studied on the isolated kidney. Proc. Roy. Soc. Lond., Ser. B 97, 321 (1925).Google Scholar
  898. Steggerda, F. R.: Comparative study of water metabolism in amphibians injected with Pituitrin. Proc. Soc. Exper. Biol. a. Med. 36, 103 (1937).Google Scholar
  899. Stein, W. H.: Excretion of amino acids in cystinuria. Proc. Soc. Exper. Biol. a. Med. 78, 705 (1951).Google Scholar
  900. Stein, W. H., and S. Moore: Chromatography of amino acids on starch columus. Separation of Phenylalanin, leucine, isoleucine, methionine, tyrosine, valine. J. of Biol. Chem. 176, 337 (1948).Google Scholar
  901. Steinitz, K.: A colorimetric method for the determination of inulin in blood plasma and urine. J. of Biol. Chem. 126, 589 (1938).Google Scholar
  902. Steinitz, K.: Studies on the conditions of glucose excretion in man. J. Clin. Invest. 19, 299 (1940).PubMedGoogle Scholar
  903. Steinitz, K.: Zur Frage der Nierendurchblutung bei Normalen, Hypertonikern und Nierenkranken. Acta med. scand. (Stockh.) 109, 95 (1941).Google Scholar
  904. Stemmler, M.: Die akuten Nephrosen. 1. Mitt. Die Sublimatnephrose. Arch. f. Anat. 328, 1 (1956).Google Scholar
  905. Stern, J. R, B. Shapiro, E. R. Stadtman and S. Ochoa: Enzymatic synthesis of citric acid. J. of Biol. Chem. 193, 703 (1951).Google Scholar
  906. Stierlen, G.: Untersuchungen über die Nierengefäßreaktion bei Mangeldurchblutung. Pflügers Arch. 238, 727 (1937).Google Scholar
  907. Still, Z., and E. Whitcomb: An investigation of renal shunts in rats. Amer. J. Physiol. 178, 399 (1954).PubMedGoogle Scholar
  908. Stoll, J. E., and A. J. Carlson: The anuria following temporary anemia of the kidneys. Amer. J. Physiol. 67, 153 (1923).Google Scholar
  909. Stowers, J. M., and C. E. Dent: Studies on mechanism of Fanconi-Syndrome. Quart. J. Med. 16, 275 (1947).PubMedGoogle Scholar
  910. Straus, W., and J. Oliver: Cellular mechanisms of protein metabolism in the nephron. VI. The immunological demonstration of egg white in droplets and other cellular fractions of the rat kidney after intraperitoneal injection. J. of Exper. Med. 102, 1 (1955).Google Scholar
  911. Study, R. S., and R. E. Shipley: Comparison of direct with indirect renal blood flow, extraction of inulin and diodrast, before and during acute renal nerve stimulation. Amer. J. Physiol. 163, 442 (1950).PubMedGoogle Scholar
  912. Sullivan, W. J., and P. J. Dorman: Effects of chronic respiratory acidosis on renal tubular reabsorption of bicarbonate. Federat. Proc. 13, 148 (1954).Google Scholar
  913. Sullivan, W. J., and P. J. Dorman: The renal response to chronic respiratory acidosis. J. Clin. Invest. 34, 268 (1955).PubMedGoogle Scholar
  914. Summerville, W. W., R. F. Hanzal and H. Goldblatt: Urea clearance in normal dog. Amer. J. Physiol. 102, 1 (1932).Google Scholar
  915. Surtshin, A., C. B. Mueller and H. L. White: Effect of acute changes in glomerular filtration rate on water and electrolyte excretion: mechanism of denervation diuresis. J. of Physiol. 169, 159 (1952).Google Scholar
  916. Svanborg, A.: Studies on renal hyperlipemia. Acta med. scnad. (Stockh.) 141, Suppl. Bd. 264 (1951).Google Scholar
  917. Swanson, R. E., T. Hoshiko and M. B. Visscher: Transtubular water movement in the isolated doubly-perfused bullfrog kidney. Amer. J. Physiol. 184, 535 (1956).PubMedGoogle Scholar
  918. Taggart, J. V.: Encymatic processes in tubular secretory transport. Renal function. Transaction of the 3. conference. Josiah Macy jun. Foundation, New York 1952, S. 201.Google Scholar
  919. Taggart, J. V.: Some bichemical features of tubular transport mechanism. The Kidney. Ciba-Foundation-Symposin, London 1954.Google Scholar
  920. Taggart, J. V., and D. R. Drury: The action of renin on rabbits with renal hypertension. J. of Exper. Med. 71, 857 (1940).Google Scholar
  921. Taggart, J. V., L. Silverman and E. M. Trayner: Influence of renal electrolyte composition on the tubular excretion of p-aminohippurate. Amer. J. Physiol. 173, 345 (1953).PubMedGoogle Scholar
  922. Talbott, J. H.: Gout. Chapt. 4, Oxford Medicine 4. New York: Oxford University Press 1948.Google Scholar
  923. Talbott, J. H.: Clinical and metabolic effects of benemid in gout. Bull. Rheumat. Dis. 2, 1 (1951).PubMedGoogle Scholar
  924. Talbott, J. H., C. Bishop, B. M. Norcross and L. M. Lochie: The clinical and metabolic effects of benemid in patient with gout. Trans. Assoc. Amer. Physicians 64, 372 (1951).Google Scholar
  925. Talbott, J. H., B. Castleman, R. H. Smithwick and R. S. Melville: Renal biopsy studies correlated with renal clearance observations in hypertensive patients treated with radical sympathectomy. J. Clin. Invest. 22, 387 (1943).PubMedGoogle Scholar
  926. Tarail, R., and J. R. Elkinton: Potassium deficiency and the role of the kidney in its production. J. Clin. Invest. 28, 99 (1949).Google Scholar
  927. Tashiro, K., and H. Abe: The dependence of the nature of caffeine diuresis upon the dose used. I. Renal oxygen consumption and blood flow during caffeine diuresis. Tohoku J. exper. Med. 3, 142 (1924).Google Scholar
  928. Taugner, R., M. v. Bubnoff u. W. Braun: Gibt es eine tubuläre Phosphatsekretion ? Über die Ausscheidung von anorganischem und organischem Phosphat bei der Katze. Pflügers Arch. 258, 133 (1953).PubMedGoogle Scholar
  929. Terbrüggen, A.: Über das Vorkommen hyaliner Tropfen in der Niere in Abhängigkeit vom Auftreten körperfremden Eiweißes. Beitr. path. Anat. 86, 235 (1931).Google Scholar
  930. Terry, R., D. R. Hawkins, E. H. Church and G. H. Whipple: Proteinuria related to hyperproteinemia in dogs following plasma given paren- terally. A renal threshold for plasma proteins. J. of Exper. Med. 87, 561 (1948).Google Scholar
  931. Theobald, G. W., and E. B. Verney: Inhibition of water diuresis by afferent nerve stimuli after complete denervation of kidney. J. of Physiol. 83, 341 (1935).Google Scholar
  932. Theobald, G. W., and M. White: An antidiuretic substance extracted from the liver. J. of Physiol. 78, 18 P (1933).Google Scholar
  933. Thompson, D. D., and M. J. Barrett: Renal reabsorption of bicarbonate. Amer. J. Physiol. 176, 201 (1954).PubMedGoogle Scholar
  934. Thompson, D. D., M. J. Barrett and R. F. Pitts: Significance of glomerular perfusion in relation to variability of filtration rate. Amer. J. Physiol. 167, 546 (1951).PubMedGoogle Scholar
  935. Thompson, D. D., and R. F. Pitts: Effects of alterations of renal arterial pressure on sodium and water excretion. Amer. J. Physiol. 168, 490 (1952).PubMedGoogle Scholar
  936. Thomson, D. L., and J. B. Collip: The parathyroid glands. Physiologic. Rev. 12, 309 (1932).Google Scholar
  937. Tigerstedt, R., u. P. G. Bergmann: Niere und Kreislauf. Skand. Arch. Physiol. (Berl. u. Lpz.) 8, 223 (1898).Google Scholar
  938. Toni, G. de: Remarks on relations between renal rickets (renal dwarfism) and renal diabetes. Acta paediatr. (Stockh.) 16, 479 (1933).Google Scholar
  939. Un nouveau syndrome dysmétabolique et dysendocrine: Acidose rénale idiopathique avec néphrocalcinose et Pseudoparalyse hypopotassiémique, nanisme, rachitisme tardif, dystrophie adiposogénitale. Ann. paediatr. (Basel) 182,63 (1954).Google Scholar
  940. Tribe, E. M., and J. Barcroft: The vascular metabolic conditions of the normal kidney in rabbits. Proc. Physiol. Soc. London 50, 10 (1915/16).Google Scholar
  941. Trueta, J., A. E. Barclay, P. Daniel, K. J. Franklin and M. M. L. Pritchard: Studies of the renal circulation. Spriengfield: Ch. C. Thomas 1947.Google Scholar
  942. Trueta, J., A. E. Barclay, K. L. Franklin, P. Daniel and M. M. L. Prichard: Renal pathology in the light of recent neurovascular studies: Preliminary communication. Lancet 1946II, 237.Google Scholar
  943. Uehlinger, E.: Renale Osteo-dystrophia fibrosa und renale Osteomalacic. Schweiz. Z. Path. u. Bakter. 16, 997 (1953).Google Scholar
  944. Uehlinger, E.: Pathogenese des Hyperparathyreoidismus. 62. Tagg der Dtsch. Ges. Inn. Med. 1956.Google Scholar
  945. Ullrich, K. J., F. O. Drenckhahn u. K. H. Jarausch: Untersuchungen zum Problem der Harnkonzentrierung und -Verdünnung. Über das osmotische Verhalten von Nierenzellen und die begleitende Elektrolytanhäufung im Nierengewebe bei verschiedenen Diuresezuständen. Pflügers Arch. 261, 62 (1955).PubMedGoogle Scholar
  946. Ullrich, K. J., u. K. H. Jarausch: Über die Verteilung von Elektrolyten (Na, K, Ca, Mg, Cl, anorganischem Phosphat), Harnstoff, Aminosäuren, exogenem Kreatinin und organischen Phosphorverbindüngen in Rinde und Mark der Hundeniere bei verschiedenen Diuresezuständen. XX. Internat. Kongr. Physiol. Brüssel 1956.Google Scholar
  947. Uzman, L. L.: On the relationship of urinary copper excretion to the aminoaciduria in Wilson’s disease (Hepatolenticular degeneration). Amer. J. Med. Sei. 226, 645 (1953).Google Scholar
  948. Uzman, L. L., and D. Denny-Brown: Aminoaciduria in hepatolenticular degeneration (Wilson’s disease). Amer. J. Med. Sei. 215, 599 (1948).Google Scholar
  949. Vehniäinen, E., u. G. Tötterman: Clearence determinations in a case of renal diabetes. Ann. med. int. fenn. 37, 68 (1948).PubMedGoogle Scholar
  950. Verney, E. B.: Absorption and excretion of water: antidiuretic hormone. Lancet 1946 II, 781.Google Scholar
  951. Verney, E. B.: Agents determining and influencing the functions of the pars nervosa of the pituitary. Brit. Med. J. 1948, 119.Google Scholar
  952. Verney, E. B.: Antidiuretic hormone and the factors which determine its release. Proc. Roy. Soc. Lond., Ser. B 135, 25 (1947).Google Scholar
  953. Verney, E. B., and F. R. Winton: The action of caffeine on the isolated kidney of the dog. J. of Physiol. 69, 153 (1930).Google Scholar
  954. Verwey, W. F., and A. K. Miller: Effect of caronamide upon penicillin therapy of experimental pneumococcus and thyphoid infections in mice. Proc. Soc. Exper. Biol. a. Med. 65, 222 (1947).Google Scholar
  955. Viar, W. X., B. B. Oliver, S. Eisenberg, P. A. Lombardo, K. Willis and T. R. Harrison: Effect of posture and of compression of neck on excretion of electrolytes and glomerular filtration: further studies. Circulation (New York) 3, 105 (1951).Google Scholar
  956. Vigneaud, V. du, D. T. Gish and P. G. Katsoyannis: A synthetic preparation possessing biological properities associated with arginine-vasopressin. J. Amer. Chem. Soc. 76, 4751 (1954).Google Scholar
  957. Vimtrup, B.: On the number, shape, structure and surface area of the glomeruli in the kidney of man and mammals. Amer. J. Anat. 41, 123 (1928).Google Scholar
  958. Vimtrup, B.: Histological examinations of kidneys of heteromyidae. Scand. J. Clin, a, Labor. Invest. 1, 339 (1949).Google Scholar
  959. Vogel, G., E. Heym u. K. Anderssohn: Versuche zur Bedeutung kolloidosmotischer Druckdifferenzen für einen passiven Transportmechanismus in den Nierenkanälchen. Z. exper. Med. 126, 485 (1955).Google Scholar
  960. Volhard, F.: Die Pathogenese der Nephritis. Krkh.forsch. 1, H. 4 (1925).Google Scholar
  961. Volhard, F.: Nieren und ableitende Harnwege. In Handbuch der inneren Medizin (Bergmann-Staehelin), 2. Aufl., Bd. VI, Teil 2. Berlin: Springer 1931.Google Scholar
  962. Volhard, F.: Über die Nephrose. Verh. des 3. Internat. Kongr. vergl. Pathologie, Athen 1936.Google Scholar
  963. Volhard, F.: Nierenerkrankungen und Hochdruck. Leipzig: Johann Ambrosius Barth 1942.Google Scholar
  964. Volhard, F., G. Bergmann u. R. Staehelin: Die doppelseitigen hämatogenen Nierenerkrankungen. In Handbuch der inneren Medizin, 2. Aufl., Bd. VI/1 u. 2. Berlin: Springer 1931.Google Scholar
  965. Wakerlin, G. E.: Factors regulating blood pressure. 1950. Zit. nach A. Bohle 1954.Google Scholar
  966. Walker, A.M.: Ammonia formation in the amphibian kidney. Amer. J. Physiol. 131, 187 (1940).Google Scholar
  967. Walker, A. M., P. A. Bott, J. Oliver and M. C. Mac Dowell: The collection and analysis of fluid from single nephrons of the mammilian kidney. Amer. J. Physiol. 134, 580 (1941).Google Scholar
  968. Walker, A. M., and C. L. Hudson: The reabsorption of glucose from the renal tubule in amphibia and the action of phlorhizin upon it. Amer. J. Physiol. 118, 130 (1937).Google Scholar
  969. Walker, A. M., and C. L. Hudson: The role of the tubule in the excretion of inorganic phosphates by the amphibian kidney. Amer. J. Physiol. 118, 153 (1937).Google Scholar
  970. Walker, A. M., C. L. Hudson, T. Findley jr. and A. N. Richards: The total molecular concentration and the chloride concentration of fluid from different segments of the renal tubule of amphibia: the site of chloride reabsorption. Amer. J. Physiol. 118, 121 (1937).Google Scholar
  971. Walker, A. M., and J. Oliver: Methods for the collection of fluid form single glomeruli and tubules of the mammalian kidney. Amer. J. Physiol. 134, 562 (1941).Google Scholar
  972. Walker, A. M., and J. A. Reisinger: Quantitative studies of the composition of glomerular urine from frogs and necturi determined by an ultramicroadaptation of the method of Summer. Observations on the action of phlorizin. J. of Biol. Chem. 101, 223 (1933).Google Scholar
  973. Wallenius, G.: Renal clearance of dextran as a measure of glomerular permeability. Acta Soc. Med. upsal. 59, Suppl. 4, 91 (1954).Google Scholar
  974. Warren, J. V., E. S. Brannon and A. J. Merrill: A method of obtaining renal venous blood in unanesthetized persons with observations on the extraction of oxygen and sodium para-aminohippurate. Science (Lancaster, Pa.) 100, 108 (1944).Google Scholar
  975. Wearn, I. T., and A.N. Richards: Observations on the compostion of glomerular urine, with particular reference to the problem of reabsorption in the renal tubules. Amer. J. Physiol. 71, 209 (1924).Google Scholar
  976. Wearn, I. T., and A.N. Richards: The concentration of chloride in the glomerular urine of frogs. J. of Biol. Chem. 66, 247 (1925).Google Scholar
  977. Weaver jr. T. A., and P. C. Bucy: The anatomical relationships of the hypophyseal stem and the median eminence. Endocrinology 27, 227 (1940).Google Scholar
  978. Weil, A.: Über die hereditäre Form des Diabetes insipidus. Arch. f. Anat. 95, 70 (1884).Google Scholar
  979. Welt, L. G., and J. Orloff: The effects of an increase in plasma volume on the metabolism and excretion of water and electrolytes by normal subjects. J. Clin. Invest. 30, 751 (1951).PubMedGoogle Scholar
  980. Werkö, L., H. Bucht and B. Josephson: The renal extraction of para-amino-hippuric acid and oxygen in man during postural changes of the circulation. Scnad. J. Clin. a. Labor. Invest. 1, 321 (1949).Google Scholar
  981. Wesson jr. L. G., and W. P. Anslow: Excretion of sodium and water during osmotic diuresis in the dog. Amer. J. Physiol. 153, 465 (1948).PubMedGoogle Scholar
  982. Wesson jr. L. G., and W. P. Anslow: Effect of osmotic and mercurial diuresis on simultaneous water-diuresis. Amer. J. Physiol. 170, 255 (1952).PubMedGoogle Scholar
  983. Wesson jr. L. G., and W. P. Anslow: Relationship of changes in glomerular filtration, plasma chloride and bicarbonate concentrations and urinary osmotic load to renal excretion of chloride. Amer. J. Physiol. 180, 237 (1955).PubMedGoogle Scholar
  984. Wesson jr. L. G., W. P. Anslow jr. L. G. Raisz, A. A. Bolomey and M. Ladd: Effect of sustained expansion of extracellular fluid volume upon filtration rate, renal plasma flow and electrolyte and water excretion in the dog. Amer. J. Physiol. 162, 677 (1950).PubMedGoogle Scholar
  985. Wesson jr. L. G., W. P. Anslow jr. and H. W. Smith: The excretion of strong electrolytes. Bull. New York Acad. Med. 24, 586 (1948).Google Scholar
  986. West, C. D., and S. Rapoport: Urinary excretion of phosphate following the injection of sodium p-aminohippurate. Proc. Soc. Exper. Biol. a. Med. 71, 322 (1949).Google Scholar
  987. Wettstein, A.: Chemie und Biologie neuer Corticoide. Verh. dtsch. Ges. inn. Med. 62 (1956).Google Scholar
  988. White, G., G. Rubin and L. Leiter: Studies in edema. III. The effect of pitressin on the renal excretion of water and electrolytes in patients with and without liver disease. J. Clin. Invest. 30, 1287 (1951).PubMedGoogle Scholar
  989. White, H. L.: Studies on renal tubule function. I. A comparison of the concentration ratio of various urinary costituents. Amer. J. Physiol. 65, 200 (1923).Google Scholar
  990. White, H. L.: Studies on renal tubule function. II. A comparison of the plasma concentrations and rates of excretion of various urinary costituents. Amer. J. Physiol. 65, 212 (1923).Google Scholar
  991. White, H. L.: Studies on renal tubule function. III. Observations on the excretion of sulfate, with a modified technic for the determination of inorganic sulfate in blood or plasma. Amer. J. Physiol. 65, 537 (1923).Google Scholar
  992. White, H. L.: Further observations on the glomerular function. Amer. J. Physiol. 102, 222 (1932).Google Scholar
  993. White, H. L.: Observations on the behavior of diodrast in the dog. Amer. J. Physiol. 130, 454 (1940).Google Scholar
  994. White, H. L., and T. Findley jr.: Time relations in renal excretion of threshold and no-threshold substances. Amer. J. Physiol. 119, 740 (1937).Google Scholar
  995. White, H. L., and B. Monaghan: A comparison of the clearences of various urinary consistuents. Amer. J. Physiol. 104, 412 (1933).Google Scholar
  996. White, H. L., and F. 0. Schmitt: The site of reabsorption in the kidney tubule of Necturus. Amer. J. Physiol. 76, 483 (1926).Google Scholar
  997. Wilbrandt, W., u. L. Laszt: Untersuchungen über die Ursachen der selektiven Resorption der Zucker aus dem Darm. Biochem. Z. 259, 398 (1933).Google Scholar
  998. Williams, R. H., and C. Henry: Nephrogenic diabetes insipidus: transmitted by females and appearing during infancy in males. Ann. Int. Med. 27, 84 (1947).PubMedGoogle Scholar
  999. Williams, T. F., W. Hollander, M. B. Strauss, E. C. Rossmeisl and R. Mac Lean: Mechanism of increased renal sodium excretion following mannitol infusion in man. J. Clin. Invest. 34, 595 (1955).PubMedGoogle Scholar
  1000. Williamson, D. A. J.: Cystinosis. Arch. Dis. Childh. 27, 356 (1952).PubMedGoogle Scholar
  1001. Winer, N. J.: Renal function in diabetes insipidus. Arch. Int. Med. 70, 61 (1942).Google Scholar
  1002. Winkler, A. W., and P. K. Smith: Renal excretion of potassium salts. Amer. J. Physiol. 138, 94 (1942).Google Scholar
  1003. Winton, F. R.: The glomerular pressure in the isolated mammalian kidney. J. of Physiol. 72, 361 (1931).Google Scholar
  1004. Winton, F. R.: The controle of the glomerular pressure by vascular changes within the isolated mammalian kidney, demonstrated by the action of adrenaline. J. of Physiol. 73, 151 (1931).Google Scholar
  1005. Winton, F. R.: Physical factors involved in the activities of the mammalian kidney. Harvey Lect. 47, 21 (1951/52).Google Scholar
  1006. Wirz, H.: Untersuchungen über die Nierenfunktion bei adrenalektomierten Katzen. Helvet. physiol. Acta 3, 589 (1945).Google Scholar
  1007. Winton, F. R.: Der osmotische Druck des Blutes in der Nierenpapille. Helvet. physiol. Acta 11, 20 (1953).Google Scholar
  1008. Winton, F. R.: Heutige Ansichten der Nierenphysiologie. Pathologische Physiologie und Klinik der Nierensekretion, S. 1. 3. Freiburger Symposion. Berlin: Springer 1955.Google Scholar
  1009. Wirz, H., B. Hargitay u. W. Kuhn: Lokalisation der Konzentrat]onsprozesse in der Niere durch direkte Nierenkryoskopie. Helvet. physiol. Acta 9, 196 (1951).Google Scholar
  1010. Wittkopf, H.: Eine Vereinfachung der Nierenfunktionsprüfung mit PAH nach der Clearancemethode. Klin. Wschr. 1951, 191.Google Scholar
  1011. Wolf, A. V.: The urinary function of the kidney. New York: Grune & Stratton 1950.Google Scholar
  1012. Wolf, A. V., and S. M. Ball: Effect of intravenous calcium salts on renal excretion in the dog. Amer. J. Physiol. 158, 205 (1949).PubMedGoogle Scholar
  1013. Wolff, H. P., K. H. Koczorek u. E. Buchborn: Klinische Aldosteronuntersuchungen. Verh. dtsch. Ges. inn. Med. 62 (1956).Google Scholar
  1014. Wolfson, W. Q., C. Cohn, R. Levine and B. Huddlestun: The transport and excretion of uric acid in man. III. Physiological significance of the uricosuric effect of caronamide. Amer. J. Med. 4, 774 (1948).Google Scholar
  1015. Wolfson, W. Q., Huddlestun and R. Levine: The transport of excretion of uric acid in man. II. The endogenous uric acid-like chromogen of biological fluids. J. Clin. Invest. 26, 995Google Scholar
  1016. Wolfson, W. Q., R. Levine and M. Tinsley: The transport and excretion of uric acid in man. I. True uric acid in normal cerebrospinal fluid, in plasma and in ultrafiltrates of plasma. J. Clin. Invest. 26, 991 (1947).Google Scholar
  1017. Wollheim, E.: Über die tubulären Funktionsstörungen der Niere. Verh. dtsch. Ges. inn. Med. 58, 211 (1952).Google Scholar
  1018. Womersley, R. A., and J. H. Darrach: Potassium and sodium restriction in the normal human. J. Clin. Invest. 34, 456 (1955).PubMedGoogle Scholar
  1019. Wright, L. D.: Symposium: amino acid excretion. Renal clearances of essential amino acids. Trans. New York Acad. Sei., Ser. II 10, 271Google Scholar
  1020. Wright, L. D., H. F. Russo, H. R. Skeggs, E. A. Patch and K. H. Beyer: The renal clearance of essential amino acids: arginine, histidine, lysine, and methionine. Amer. J. Physiol. 149, 130 (1947).PubMedGoogle Scholar
  1021. Wuethrich, F., u. F. Reubi: Renale Glykosurie beim Menschen und Kaninchen nach Vergiftung mit Ferricyankalium und anderen Fein Verbindungen. Helvet. med. Acta 22, 389 (1955).Google Scholar
  1022. Wuhrmann, F., u. C. Wunderly: Neuere klinische Untersuchungen über die Proteinurie. Bull. Schweiz. Akad. Med. Wiss. 6, 254 (1950).Google Scholar
  1023. Wuhrmann, F., u. C. Wunderly: Die Bluteiweißkörper des Menschen. Basel: Bruno Schwabe & Co. 1947 u. 1952.Google Scholar
  1024. Yeh, H. L., W. Frankl, M. S. Dunn, P. Parker, B. Hughes and P. Gyorgy: Urinary excretion of amino acids by cystinuric subjects. Amer. J. Med. Sei. 214, 507 (1947).Google Scholar
  1025. Yuile, C. L., and W. F. Clark: Myohemoglobinuria: a study of the renal clearance of myo- hemoglobin in dogs. J. of Exper. Med. 74, 187 (1941).Google Scholar
  1026. Zahn, K., u. H. Langendorf: Die Abscheidungsgeschwindigkeit des Primärharnes im Glomerulus der Froschniere. Pflügers Arch. 251, 177 (1949).Google Scholar
  1027. Zak, G. A., C. Brun and H. W. Smith: The mechanism of formation of osmotically concentrated urine during the antidiuretic state. J. Clin. Invest. 33, 1494 (1954).Google Scholar
  1028. Zenker, R, H. Sarre, K. H. Pfeffer u. H. H. Lohr: Die Sympathektomie beim Nochdruck und ihre Ergebnisse. Erg. inn. Med. 3, 1 (1952).Google Scholar
  1029. Zollinger, H. U.: Die Anurie bei Chromoproteinurie. Stuttgart: Georg Thieme 1952.Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1959

Authors and Affiliations

  • H. Sarre
    • 1
  • J. Gayer
    • 2
  1. 1.Medizinischen Universitäts-PoliklinikFreiburg i. Br.Deutschland
  2. 2.Freiburg jetzt Marburg a.d. LahnDeutschland

Personalised recommendations