Calculation of the Eigenvalues of a Symmetric Tridiagonal Matrix by the Method of Bisection

  • W. Barth
  • R. S. Martin
  • J. H. Wilkinson
Part of the Die Grundlehren der mathematischen Wissenschaften book series (GL, volume 186)


The procedure bisect is designed to replace the procedures tridibi 1 and 2 given in [5]. All three procedures are based essentially on the following theorem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bowdler, Hilary, R. S. Martin, C. Reinsc. and J. H. Wilkinson: The QR and QL algorithms for symmetric matrices. Numer. Math. 11, 293–306 (1968). Cf. II/3.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Givens, J. W.: Numerical computation of the characteristic values of a real symmetric matrix. Oak Ridge National Laboratory, ORNL-1574 (1954).Google Scholar
  3. [3]
    Rutishauser, H. : Stabile Sonderfälle des Quotienten-Differenzen-Algorithmus. Numer. Math. 5, 95 -11 (1963).MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Wilkinson, J.H.: Error analysis of floating-point computation. Numer. Math. 2, 319–340 (I960).MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Wilkinson, J.H. Calculation of the eigenvalue of a symmetric tridiagonal matrix by the method of bisection. Numer. Math. 4, 362–367 (1962).MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Wilkinson, J.H. The algebraic eigenvalue problem. London: Oxford University Press 1965.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1971

Authors and Affiliations

  • W. Barth
  • R. S. Martin
  • J. H. Wilkinson

There are no affiliations available

Personalised recommendations